
HAL Id: hal-00657837
https://hal.science/hal-00657837v1

Submitted on 11 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stochastic Low-Rank Kernel Learning for Regression
Pierre Machart, Thomas Peel, Liva Ralaivola, Sandrine Anthoine, Hervé

Glotin

To cite this version:
Pierre Machart, Thomas Peel, Liva Ralaivola, Sandrine Anthoine, Hervé Glotin. Stochastic Low-Rank
Kernel Learning for Regression. International Conference on Machine Learning (ICML’11), Jun 2011,
Bellevue (Washington), United States. pp.969–976, ISBN : 978-1-4503-0619-5. �hal-00657837�

https://hal.science/hal-00657837v1
https://hal.archives-ouvertes.fr

Stochastic Low-Rank Kernel Learning for Regression

Pierre Machart PIERRE.MACHART@LIF.UNIV-MRS.FR

LIF, LSIS, CNRS, Aix-Marseille Université

Thomas Peel THOMAS.PEEL@LIF.UNIV-MRS.FR

LIF, LATP, CNRS, Aix-Marseille Université

Sandrine Anthoine ANTHOINE@CMI.UNIV-MRS.FR

LATP, CNRS, Aix-Marseille Université

Liva Ralaivola LIVA.RALAIVOLA@LIF.UNIV-MRS.FR

LIF, CNRS, Aix-Marseille Université

Hervé Glotin GLOTIN@UNIV-TLN.FR

LSIS, CNRS, Université du Sud-Toulon-Var

Abstract

We present a novel approach to learn a kernel-

based regression function. It is based on the use

of conical combinations of data-based parameter-

ized kernels and on a new stochastic convex op-

timization procedure of which we establish con-

vergence guarantees. The overall learning pro-

cedure has the nice properties that a) the learned

conical combination is automatically designed to

perform the regression task at hand and b) the

updates implicated by the optimization proce-

dure are quite inexpensive. In order to shed light

on the appositeness of our learning strategy, we

present empirical results from experiments con-

ducted on various benchmark datasets.

1. Introduction

Our goal is to learn a kernel-based regression function,

tackling at once two problems that commonly arise with

kernel methods: working with a kernel tailored to the

task at hand and efficiently handling problems whose size

prevents the Gram matrix from being stored in memory.

Though the present work focuses on regression, the mate-

rial presented here might as well apply to classification.

Compared with similar methods, we introduce two nov-

elties. Firstly, we build conical combinations of rank-1

Appearing in Proceedings of the 28
th International Conference

on Machine Learning, Bellevue, WA, USA, 2011. Copyright 2011
by the author(s)/owner(s).

Nyström approximations, whose weights are chosen so as

to serve the regression task – this makes our approach dif-

ferent from (Kumar et al., 2009) and (Suykens et al., 2002),

which focus on approximating the full Gram matrix with no

concern for any specific learning task. Secondly, to solve

the convex optimization problem entailed by our model-

ing choice, we provide an original stochastic optimization

procedure based on (Nesterov, 2010). It has the follow-

ing characteristics: i) the computations of the updates are

inexpensive (thanks to the designing choice of using rank-

1 approximations) and ii) the convergence is guaranteed.

To assess the practicality and effectiveness of our learning

procedure, we conduct a few experiments on benchmark

datasets, which allow us to draw positive conclusions on

the relevance of our approach.

The paper is organized as follows. Section 2 introduces

some notation and our learning setting; in particular the

optimization problem we are interested in and the rank-

1 parametrization of the kernel our approach builds upon.

Section 3 describes our new stochastic optimization proce-

dure, establishes guarantees of convergence and details the

computations to be implemented. Section 4 discusses the

hyperparameters inherent to our modeling as well as the

complexity of the proposed algorithm. Section 5 reports

results from numerical simulations on benchmark datasets.

2. Proposed Model

Notation X is the input space, k : X×X → R denotes the

(positive) kernel function we have at hand and φ : X → H
refers to the mapping φ(x) := k(x, ·) from X to the repro-

ducing kernel Hilbert space H associated with k. Hence,

Stochastic Low-Rank Kernel Learning for Regression

k(x,x′)=〈φ(x), φ(x′)〉, with 〈·, ·〉 the inner product of H.

The training set is L := {(xi, yi)}
n
i=1 ∈ (X × R)n,

where yi is the target value associated to xi. K =
(k(xi,xj))1≤i,j≤n ∈ R

n×n is the Gram matrix of k with

respect to L. For m = 1, . . . , n, cm ∈ R
n is defined as:

cm :=
1

√

k(xm,xm)
[k(x1,xm), . . . , k(xn,xm)]⊤.

2.1. Data-parameterized Kernels

For m = 1, . . . , n, φ̃m : X → H̃m is the mapping:

φ̃m(x) :=
〈φ(x), φ(xm)〉

k(xm,xm)
φ(xm). (1)

It directly follows that k̃m defined as, ∀x,x′ ∈ X ,

k̃m(x,x′) := 〈φ̃m(x), φ̃m(x′)〉 =
k(x,xm)k(x′,xm)

k(xm,xm)
,

is indeed a positive kernel. Therefore, these parameterized

kernels k̃m give rise to a family (K̃m)1≤m≤n of Gram ma-

trices of the following form:

K̃m = (k̃m(xi,xj))1≤i,j≤n = cmcTm, (2)

which can be seen as rank-1 Nyström approximations of the

full Gram matrix K (Drineas & Mahoney, 2005; Williams

& Seeger, 2001).

As studied in (Kumar et al., 2009), it is sensible to con-

sider convex combinations of the K̃m if they are of very

low rank. Building on this idea, we will investigate the use

of a parameterized Gram matrix of the form:

K̃(µ) =
∑

m∈S

µmK̃m with µm ≥ 0, (3)

where S is a set of indices corresponding to the specific

rank-one approximations used. Note that since we con-

sider conical combinations of the K̃m, which are all posi-

tive semi-definite, K̃(µ) is positive semi-definite as well.

Using (1), one can show that the kernel k̃µ, associated to

our parametrized Gram matrix K̃(µ), is such that:

k̃µ(x,x
′) = 〈φ(x), φ(x′)〉A = φ(x)⊤Aφ(x), (4)

with A : =
∑

m∈S

µm

φ(xm)φ(xm)⊤

k(xm,xm)
. (5)

In other words, our parametrization induces a modified

metric in the feature space H associated to k. On a side

note, remark that when S = {1 . . . , n} (i.e. all the columns

are picked) and we have uniform weights µ, then K̃(µ) =
KK⊤, which is a matrix encountered when working with

the so-called empirical kernel map (Schölkopf et al., 1999).

From now on, M denotes the size of S and m0 refers to

the number of non-zero components of µ (i.e. it is the 0-

pseudo-norm of µ).

2.2. Kernel Ridge Regression

Kernel Ridge regression (KRR) is the kernelized version

of the popular ridge regression (Hoerl & Kennard, 1970)

method. The associated optimization problem reads:

min
w

{

λ‖w‖2 +

n
∑

i=1

(yi − 〈w, φ(xi)〉)
2

}

, (6)

where λ > 0 is a regularization parameter.

Using I for the identity matrix, the following dual formu-

lation may be considered:

max
α∈Rn

{

FKRR(α) := yTα−
1

4λ
αT (λI +K)α

}

. (7)

The solution α∗ of the concave problem (7) and the optimal

solution w∗ of (6) are connected through the equality

w∗ =
1

2λ

n
∑

i=1

α∗
i φ(xi),

and α∗ can be found by setting the gradient of FKRR to

zero, to give

α∗ = 2(I + 1
λ
K)−1y. (8)

The value of the objective function at α∗ is then:

FKRR(α
∗) = yT (I + 1

λ
K)−1y, (9)

and the resulting regression function is given by:

f(x) =
1

2λ

n
∑

i=1

α∗
i k(xi,x). (10)

2.3. A Convex Optimization Problem

KRR may be solved by solving the linear system (I +
K
λ
)α = 2y, at a cost of O(n3) operations. This might

be prohibitive for large n, even more so if the matrix I+ K
λ

does not fit into memory. To cope with this possible prob-

lem, we work with K̃(µ) (3) instead of the Gram matrix

K. As we shall see, this not only makes it possible to avoid

memory issues but it also allows us to set up a learning

problem where both µ and a regression function are sought

for at once. This is very similar to the Multiple Kernel

Learning paradigm (Rakotomamonjy et al., 2008) where

one learns an optimal kernel along with the target function.

To set up the optimization problem we are interested in, we

proceed in a way similar to (Rakotomamonjy et al., 2008).

For m = 1, . . . , n, define the Hilbert space H̃′
m as:

H̃′
m :=

{

f ∈ H̃m

∣

∣

∣

∣

‖f‖H̃m

µm

< ∞

}

. (11)

Stochastic Low-Rank Kernel Learning for Regression

One can prove (Aronszajn, 1950) that H̃ =
⊕

H̃′
m is the

RKHS associated to k̃ =
∑

µmk̃m. Mimicking the rea-

soning of (Rakotomamonjy et al., 2008), our primal opti-

mization problem reads:

min
{fm},µ

{

λ
∑

m∈S

1

µm

‖fm‖2
H̃′

m

+
n
∑

i=1

(yi −
∑

m∈S

fm(xi))
2

}

,

s.t.
∑

m∈S

µm ≤ n1 , µm ≥ 0, (12)

where n1 is a parameter controlling the 1-norm of µ. As

this problem is also convex in µ, using the earlier results

on the KRR problem, (12) is equivalent to:

min
µ≥0

{

max
α

yTα−
1

4λ
αT (λI + K̃(µ))α

}

= min
µ≥0

{

yT (I + 1
λ
K̃(µ))−1y

}

s.t.
∑

m∈S

µm ≤ n1. (13)

Finally, using the equivalence between Tikhonov and

Ivanov regularization methods (Vasin, 1970), we obtain the

convex and smooth optimization problem we focus on:

min
µ≥0

{

F (µ) := y
T (I+ 1

λ
K̃(µ))−1

y + ν
∑

m

µm

}

. (14)

The regression function f̃ is derived using (1), a minimizer

µ∗ of the latter problem and the accompanying weight vec-

tor α∗ such that

α∗ = 2
(

I + 1
λ
K̃(µ∗)

)−1

y, (15)

(obtained adapting (8) to the case K = K(µ∗)). We have:

f̃(x) =
1

2λ

n
∑

i=1

α∗
i k̃(xi,x) =

1

2λ

∑

m∈S

µ∗
m

n
∑

i=1

α∗
i k̃m(xi,x)

=
1

2λ

∑

m∈S

α̃∗
mk(xm,x), (16)

where α̃∗
m := µ∗

m

c⊤mα∗

√

k(xm,xm)
. (17)

3. Solving the problem

We now introduce a new stochastic optimization procedure

to solve (14). It implements a coordinate descent strategy

with step sizes that use second-order information.

3.1. A Second-Order Stochastic Coordinate Descent

Problem (14) is a constrained minimization based on the

differentiable and convex objective function F . Usual con-

vex optimization methods (such as projected gradient de-

scent, proximal methods) may be employed to solve this

problem, but they may be too computationally expensive

if n is very large, which is essentially due to a suboptimal

exploitation of the parametrization of the problem. Instead,

the optimization strategy we propose is specifically tailored

to take advantage of the parametrization of K̃(µ).

Algorithm 1 depicts our stochastic descent method, in-

spired by (Nesterov, 2010). At each iteration, a randomly

chosen coordinate of µ is updated via a Newton step. This

method has two essential features: i) using coordinate-wise

updates of µ involves only partial derivatives which can be

easily computed and ii) the stochastic approach ensures a

reduced memory cost while still guaranteeing convergence.

Algorithm 1 Stochastic Coordinate Newton Descent

Input: µ0 random.

repeat

Choose coordinate mk uniformly at random in S .

Update : µk+1
m = µk

m if m 6= mk and

µk+1
mk

=argmin
v≥0

∂F (µk)
∂µmk

(v−µk
mk

)+ 1
2
∂2F (µk)
∂µ2

mk

(v−µk
mk

)2,

(18)

until F (µk)− F (µk−M) < ǫF (µk−M)

Notice that the Stochastic Coordinate Newton Descent

(SCND) is similar to the algorithm proposed in (Nesterov,

2010), except that we replace the Lipschitz constants by the

second-order partial derivatives
∂2F (µk)
∂µ2

mk

. Thus, we replace

a constant step-size gradient descent by a the Newton-step

in (18), which allows us to make larger steps.

We show that for the function F in (14), SCND does prov-

ably converge to a minimizer of Problem (14). First, we

rewrite (18) as a Newton step and compute the partial

derivatives:

Proposition 1. Eq. (18) is equivalent to

µk+1
mk

=

{

(

µk
mk

− ∂F (µk)
∂µmk

/∂2F (µk)
∂µ2

mk

)

+
if

∂2F (µk)
∂µ2

mk

6=0

0 otherwise.

(19)

Proof. (19) gives the optimality conditions for (18).

Proposition 2. The partial derivatives
∂pF (µ)
∂µ

p
m

are:

∂F (µ)
∂µm

= −λ(y⊤K̃−1
λ,µcm)2 + ν, (20)

∂pF (µ)
∂µ

p
m

= (−1)pp!λ(y⊤K̃−1
λ,µcm)2(c⊤mK̃−1

λ,µcm)p−1,

with p ≥ 2 and K̃−1
λ,µ := (λI + K̃(µ))−1. (21)

Proof. Easy but tedious calculations give the results.

Theorem 1 (Convergence). For any sequence {mk}k, the

sequence {F (µk)}k verifies:

Stochastic Low-Rank Kernel Learning for Regression

(a) ∀k, F (µk+1) ≤ F (µk).

(b) limk→∞ F (µk) = minµ≥0 F (µ).

Moreover, if there exists a minimizer µ∗ of F such that the

Hessian ∇2F (µ∗) is positive definite then:

(c) µ∗ is the unique minimizer of F . The sequence {µk}
converges to µ∗: ||µk−µ∗||→0.

Sketch of proof. (a) Using that
∂3F (µ)
∂µ3

m
≤ 0 (see (20)), one

shows that the Taylor series truncated to the second or-

der: v → F (µ)+ ∂F (µ)
∂µm

(vm−µm)+ 1
2
∂2F (µ)
∂µ2

m
(vm−

µm)2, is a quadratic upper-bound of F that matches F
and ∇F at point µ (for any fixed m and µ). From this,

the update formula (18) yields F (µk+1) ≤ F (µk).

(b) First note that ||µk|| ≤ F (µ0) and extract a con-

verging subsequence {µφ(k)}. Denote the limit by

µ̂. Separating the cases where
∂2F (µ̂)
∂µ2

m
is zero or not,

one shows that µ̂ satisfies the optimality conditions:

〈∇F (µ̂),v − µ̂〉 ≥ 0, ∀v ≥ 0. Thus µ̂ is a mini-

mizer of F and we have limF (µk) = limF (µφ(k)) =
F (µ̂) = minµ≥0 F (µ).

(c) is standard in convex optimization.

3.2. Iterative Updates

One may notice that the computations of the deriva-

tives (20), as well as the computation of α∗, depend on

K̃−1
λ,µ. Moreover, the dependency in µ, for all those quan-

tities, only lies in K̃−1
λ,µ. Thus, a special care need be taken

on how K̃−1
λ,µ is stored and updated throughout.

Let S+
µ

= {m ∈ S|µm > 0} and m0 = ‖µ‖0 = |S+
µ
|. Let

C = [ci1 · · · cim0
] be the concatenation of the cij ’s, for

ij ∈ S+
µ

and D the diagonal matrix with diagonal elements

µij , for ij ∈ S+
µ

. Remark that throughout the iterations the

sizes of C and D may vary. Given (21) and using Wood-

bury formula (Theorem 2, Appendix), we have:

K̃−1
λ,µ =

(

λI + CDC⊤
)−1

=
1

λ
I −

1

λ2
CGC⊤ (22)

with G :=
(

D−1 +
1

λ
C⊤C

)−1

. (23)

Note that G is a square matrix of order m0 and that an

update on µ will require an update on G. Even though

updating G−1, i.e. D−1 + 1
λ
C⊤C, is trivial, it is more

efficient to directly store and update G. This is what we

describe now.

At each iteration, only one coordinate of µ is updated. Let

p be the index of the updated coordinate, µold, Cold, Dold

and Gold, the vectors and matrices before the update and

µnew, Cnew, Dnew and Gnew the updated matrices/vectors.

Let also ep bethe vector whose pth coordinate is 1 while

other coordinates are 0. We encounter four different cases.

Case 1: µold
p = 0 and µnew

p = 0. No update needed:

Gnew = Gold. (24)

Case 2: µold
p 6= 0 and µnew

p 6= 0. Here, Cold = Cnew and

D−1
new = D−1

old +∆pepe
⊤
p , where ∆p :=

1

µnew
p

−
1

µold
p

.

Then, using Woodbury formula, we have:

Gnew =
(

G−1
old +∆pepe

⊤
p

)−1

= Gold −
∆p

1 + ∆pgpp
gpg

⊤
p ,

(25)

with gpp the (p, p)th entry of Gold and gp its pth column.

Case 3: µold
p 6= 0 and µnew

p = 0. Here, S+
µnew

=

S+
µold

\ {p}. It follows that we have to remove cp from

Cold to have Cnew. To get Gnew, we may consider the

previous update formula when µnew
p → 0 (that is, when

∆p → +∞). Note that we can use the previous formula

because µp 7→ K̃−1
λ,µ is well-defined and continuous at 0.

Thus, as limµnew
p →0

∆p

1+∆pgpp
= 1

gpp
, we have:

Gnew =

(

Gold −
1

gpp
gpg

⊤
p

)

\{p}

, (26)

where A\{p} denotes the matrix A from which the pth col-

umn and pth row have been removed.

Case 4: µold
p = 0 and µnew

p 6= 0. We have Cnew =

[Cold cp
]

. Using (23), it follows that

Gnew =

(

D−1
old + 1

λ
C⊤

oldCold
1
λ
C⊤

oldcp
1
λ
c⊤p Cold

1
µnew
p

+ 1
λ
c⊤p cp

)−1

=

(

G−1
old

1
λ
C⊤

oldcp
1
λ
c⊤p Cold

1
µnew
p

+ 1
λ
c⊤p cp

)−1

=

(

A v

v⊤ s

)

,

where, using the block-matrix inversion formula of Theo-

rem 3 (Appendix), we have:

s =

(

1

µnew
p

+
1

λ
c⊤p cp −

1

λ2
c⊤p ColdGoldC

⊤
oldcp

)−1

v = −
s

λ
GoldC

⊤
oldcp (27)

A = Gold +
1

s
vv⊤.

Stochastic Low-Rank Kernel Learning for Regression

Algorithm 2 SLKL: Stochastic Low-Rank Kernel Learning

inputs: L := {(xi, yi)}
n
i=1, ν > 0, M > 0, ǫ > 0.

outputs: µ, G and C (yield (λI +K(µ))−1 from (22)).

initialization: µ(0) = 0.
repeat

Choose coordinate mk uniformly at random in S .

Update µ(k) according to (19), by changing only the

mk-th coordinate µk
mk

of µ(k):

• compute the second order derivative

h = λ(y⊤K̃−1
λ,µcmk

)2(c⊤mk
K̃−1

λ,µcmk
) ;

• if h > 0 then

µ
(k+1)
mk

= max

(

0, µ(k)
mk

+
λ(y⊤K̃−1

λ,µcmk
)2 − ν

h

)

;

else µ
(k+1)
mk = 0.

Update G(k) and C(k) according to (24)-(27).

until F (µk)− F (µk−M) < ǫF (µk−M)

Complete learning algorithm. Algorithm 2 depicts

the full Stochastic Low-Rank Kernel Learning algorithm

(SLKL), which recollects all the pieces just described.

4. Analysis

Here, we discuss the relation between λ and ν and we argue

that there is no need to keep both hyperparameters. In addi-

tion, we provide a short analysis on the runtime complexity

of our learning procedure.

4.1. Pivotal Hyperparameter λν

First recall that we are interested in the minimizer µ∗
λ,ν of

constrained optimization problem (14), i.e.:

µ∗
λ,ν = argmin

µ≥0
Fλ,ν(µ), (28)

where, for the sake of clarity, we purposely show the de-

pendence on λ and ν of the objective function Fλ,ν

Fλ,ν(µ) = y⊤
(

I + K̃
(

µ

λ

)

)−1

y + λν
∑

m

µm

λ
, (29)

We may name α∗
λ,ν , α̃∗

λ,ν the weight vectors associated

with µ∗
λ,ν (see (15) and (17)). We have the following:

Proposition 3. Let λ, ν, λ′, ν′ be strictly positive real num-

bers. If λν = λ′ν′ then

µ∗
λ′,ν′ = λ′

λ
µ∗

λ,ν , and f̃λ,ν = f̃λ′,ν′ .

As a direct consequence:

∀λ, ν ≥ 0, f̃λ,ν = f̃1,λν .

Proof. Suppose that we know µ∗
λ,ν . Given the defini-

tion (29) of Fλ,ν and using λν = λ′ν′, we have

Fλ,ν(µ) = Fλ′,ν′

(

λ′

λ
µ
)

Since the only constraint of problem (28) is the nonneg-

ativity of the components of µ, it directly follows that

λ′µ∗
λ,ν/λ is a minimizer of Fλ′,ν′ (under these constraints),

hence µ∗
λ′,ν′ = λ′µ∗

λ,ν/λ.

To show f̃λ,ν = f̃λ′,ν′ , it suffices to observe that, according

to the way α∗
λ,ν is defined (cf. (15)),

α∗
λ′,ν′ = 2

(

I +K
(

µ
∗

λ′,ν′

λ′

))−1

y

= 2
(

I +K
(

λ′

λ

µ
∗

λ,ν

λ′

))−1

y = α∗
λ,ν ,

and, thus, α̃∗
λ′,ν′ = λ′α̃∗

λ,ν/λ. The definition (16) of f̃λ,ν

then gives f̃λ,ν = f̃λ′,ν′ , which entails f̃λ,ν = f̃1,λν .

This proposition has two nice consequences. First, it says

that the pivotal hyperparameter is actually the product λν:

this is the quantity that parametrizes the learning problem

(not λ or ν, seen independently). Thus, the set of regression

functions, defined by the λ and ν hyperparameter space,

can be described by exploring the set of vectors (µ∗
1,ν)ν>0,

which only depends on a single parameter. Second, con-

sidering (µ∗
1,ν)ν>0 allows us to work with the family of

objective functions (F1,ν)ν>0, which are well-conditioned

numerically as the hyperparameter λ is set to 1.

4.2. Runtime Complexity and Memory Usage

For the present analysis, let us assume that we pre-compute

the M (randomly) selected columns c1, . . . , cM . If a is the

cost of computing a column cm, the pre-computation has a

cost of O(Ma) and has a memory usage of O(nM).

At each iteration, we have to compute the first and second-

order derivatives of the objective function, as well as its

value and the weight vector α. Using (22), (20), (14) and

(15), one can show that those operations have a complexity

of O(nm0) if m0 is the zero-norm of µ.

Besides, in addition to C, we need to store G for a mem-

ory cost of O(m2
0). Overall, if we denote the number

of iterations by k, the algorithm has a memory cost of

O(nM +m2
0) and a complexity of O(knm0 +Ma).

If memory is a critical issue, one may prefer to compute the

columns cm on-the-fly and m0 columns need to be stored

instead of M (this might be a substantial saving in terms

of memory as can be seen in the next section). This im-

provement in term of memory usage implies an additive

cost in the runtime complexity. In the worst case, we have

Stochastic Low-Rank Kernel Learning for Regression

to compute a new column c at each iteration. The result-

ing memory requirement scales as O(nm0 + m2
0) and the

runtime complexity varies as O(k(nm0 + a)).

5. Numerical Simulations

We now present results from various numerical experi-

ments, for which we describe the datasets and the protocol

used. We study the influence of the different parameters of

our learning approach on the results and compare the per-

formance of our algorithm to that of related methods.

5.1. Setup

First, we use a toy dataset (denoted by sinc) to better un-

derstand the role and influence of the parameters. It con-

sists in regressing the cardinal sine of the two-norm (i.e.

x 7→ sin(‖x‖)/‖x‖) of random two-dimensional points,

each drawn uniformly between −5 and +5. In order to have

a better idea on how the solutions may or may not over-fit

the training data, we add some white Gaussian noise on the

target variable of the randomly picked 1000 training points

(with a 10 dB signal-to-noise ratio). The test set is made of

1000 non-noisy independent instance/target pairs.

We then assess our method on two UCI datasets: Abalone

(abalone) and Boston Housing (boston), using the same

normalizations, Gaussian kernel parameters (σ denotes the

kernel width) and data partition as in (Smola & Schölkopf,

2000). The United States Postal Service (USPS) dataset

is used with the same setting as in (Williams & Seeger,

2001). Finally, the Modified National Institute of Standards

and Technology (MNIST) dataset is used with the same pre-

processing as in (Maji & Malik, 2009). Table 1 summarizes

the characteristics of all the datasets we used.

Table 1. Datasets used for the experiments.

dataset #features #train (n) #test σ2

sinc 2 1000 1000 1

abalone 10 3000 1177 2.5
boston 13 350 156 3.25
USPS 256 7291 2007 64

MNIST 2172 60000 10000 4

As displayed in Algorithm 1, at each iteration k > M , we

check if F (µk)−F (µk−M) < ǫF (µk−M) holds. If so, we

stop the optimization process. ǫ thus controls our stopping

criterion. In the experiments, we set ǫ = 10−4 unless oth-

erwise stated and we set λ to 1 for all the experiments and

we run simulations for various values of ν and M . In order

to assess the variability incurred by the stochastic nature of

our learning algorithm, we run each experiment 20 times.

0 2 4 6 8 10
4.58

4.6

4.62

4.64

4.66

4.68

4.7

4.72

ν=0.01 M=1000

lo
g

(o
b

je
c

ti
v

e
 v

a
lu

e
)

log(iteration)

Figure 1. Evolution of the objective during the optimization pro-

cess for the sinc dataset with ν = 0.01, M = 1000 (for 20 runs).

0 200 400 600 800 1000
0

50

100

150

200

250

300

350

M
fi

n
a

l
L

0
(m

u
)

(m
e

a
n

)

nu = 1e−6

nu = 1e−4

nu = 1e−2

nu = 1

Figure 2. Zero-norm of the optimal µ∗ as a function of M for

different values of ν for the sinc dataset (averaged on 20 runs).

5.2. Influence of the parameters

5.2.1. EVOLUTION OF THE OBJECTIVE

We have established (Section 3) the convergence of our op-

timization procedure, under mild conditions. A question

that we have not tackled yet is to evaluate its convergence

rate. Figure 1 plots the evolution of the objective function

on the sinc dataset. We observe that the evolutions of the

objective function are impressively similar among the dif-

ferent runs. This empirically tends to assert that it is rele-

vant to look for theoretical results on the convergence rate.

A question left for future work is the impact of the random

selection of the set of columns S on the reached solution.

5.2.2. ZERO-NORM OF µ

As shown in Section 4.2, both memory usage and the com-

plexity of the algorithm depend on m0. Thus, it is inter-

esting to take a closer look at how this quantity evolves.

Figure 2 and 3 experimentally point out two things. On the

one hand, the number of active components m0 = ‖µ‖0 re-

mains significantly smaller than M . In other words, as long

as the regularization parameter is well-chosen, we never

have to store all of the cm at the same time. On the other

hand, the solution µ∗ is sparse and ‖µ∗‖0 grows with M
and diminishes with ν. A theoretical study on the depen-

dence of µ∗ and m0 in M and ν, left for future work, would

Stochastic Low-Rank Kernel Learning for Regression

0 1000 2000 3000 4000 5000 6000
0

100

200

300

400

ν=0.01 M=1000

iteration

L
0
(m

u
)

Figure 3. Evolution of the zero-norm of µ (m0) with the iterations

for the sinc dataset with ν = 0.01, M = 1000 (20 runs).

be all the more interesting since sparsity is the cornerstone

on which the scalability of our algorithm depends.

5.3. Comparison to other methods

This section aims at giving a hint on how our method per-

forms on regression tasks. To do so, we compare the Mean

Square Error (over the test set). In addition to our Stochas-

tic Low-Rank Kernel Learning method (SLKL), we solve

the problem with the standard Kernel Ridge Regression

method, using the n training data (KRRn) and using only M
training data (KRRM). We also evaluate the performance

of the KRR method, using the kernel obtained with uni-

form weights on the M rank-1 approximations selected for

SLKL (Unif). The results are displayed in Table 2, where

the bold font indicates the best low-rank method (KRRM,

Unif or SLKL) for each experiment.

Table 2 confirms that optimizing the weight vector µ is de-

cisive as our results dramatically outperform those of Unif.

As long as M < n, our method also outperforms KRRM.

The explanation probably lies in the fact that our approx-

imations keep information about similarities between the

M selected points and the n − M others. Furthermore,

our method SLKL achieves comparable performances (or

even better on abalone) than KRRn, while finding sparse

solutions. Compared to the approach from (Smola &

Schölkopf, 2000), we seem to achieve lower test error on

the boston dataset even for M = 128. On the abalone

dataset, this method outperforms ours for every M we tried.

Finally, we also compare the results we obtain on the USPS

dataset with the ones obtained in (Williams & Seeger,

2001) (Nyst). As it consists in a classification task, we

actually perform a regression on the labels to adapt our

method, which is known to be equivalent to solving Fisher

Discriminant Analysis (Duda & Hart, 1973). The perfor-

mance achieved by Nyst outperforms ours. However, one

may argue that the performance have a same order of mag-

nitude and note that the Nyst approach focuses on the clas-

sification task, while ours was designed for regression.

Table 3. Number of errors and standard deviation on the test set

(2007 examples) of the USPS dataset.

M 64 256 1024

Nyst 101.3± 22.9 34.5± 3.0 35.9± 2.0

SLKL 76.3± 9.9 47.6± 3.1 41.5± 3.9
m0 61 210 515

5.4. Large-scale dataset

To assess the scalability of our method, we ran experiments

on the larger handwritten digits MNIST dataset, whose

training set is made of 60000 examples. We used a Gaus-

sian kernel computed over histograms of oriented gradients

as in (Maji & Malik, 2009), in a “one versus all” setting.

For M=1000, we obtained classification error rates around

2% over the test set, which do not compete with state-of-

the-art results but achieve reasonable performance, consid-

ering that we use only a small part of the data (cf. the size

of M) and that our method was designed for regression.

Although our method overcomes memory usage issues for

such large-scale problems, it still is computationally inten-

sive. In fact, a large number of iterations is spent picking

coordinates whose associated weight remains at 0. Though

those iterations do not induce any update, they do require

computing the associated Gram matrix column (which is

not stored as it does not weigh in the conic combination) as

well as the derivatives of the objective function. The main

focus of our future work is to avoid those computations, us-

ing e.g. techniques such as shrinkage (Hsieh et al., 2008).

6. Conclusion

We have presented an original kernel-based learning pro-

cedure for regression. The main features of our contri-

bution are the use of a conical combination of data-based

kernels and the derivation of a stochastic convex optimiza-

tion procedure, that acts coordinate-wise and makes use of

second-order information. We provide theoretical conver-

gence guarantees for this optimization procedure, we de-

pict the behavior of our learning procedure and illustrate its

effectiveness through a number of numerical experiments

carried out on several benchmark datasets.

The present work naturally raises several questions.

Among them, we may pinpoint that of being able to estab-

lish precise rate of convergence for the stochastic optimiza-

tion procedure and that of generalizing our approach to the

use of several kernels. Establishing data-dependent gener-

alization bounds taking advantage of either the one-norm

constraint on µ or the size M of the kernel combination is

of primary importance to us. The connection established

between the one-norm hyperparameter ν and the ridge pa-

Stochastic Low-Rank Kernel Learning for Regression

Table 2. Mean square error with standard deviation measured on three regression tasks.

sinc boston abalone
M 256 512 1000 128 256 350 512 1024 3000

KRRn 0.009± 09 10.17± 0 6.91± 0

KRRM
0.0146 0.0124 0.0099 33.27 16.89 10.17 6.14 5.51 5.25
±1e−3

±7e−4
±0 ±7.8 ±3.27 ±0 ±0.25 ±0.09 ±0

Unif
0.0124 0.0124 0.0124 149.7 147.84 147.72 10.04 9.96 9.99
±1e−4

±3e−5
±0 ±5.57 ±2.24 ±0 ±0.17 ±0.06 ±0

SLKL
0.0106 0.0103 0.0104 20.17 13.1 11.43 5.04 4.94 4.95

±4e−4
±2e−4

±1e−4
±2.3 ±0.87 ±0.06 ±0.08 ±0.03 ±0.004

m0 83 108 139 108 161 184 159 191 253

rameter λ, in section 4, seems interesting and may be wit-

nessed in (Rakotomamonjy et al., 2008). Although not

been mentioned so far, there might be connections between

our modeling strategy and boosting/leveraging-based opti-

mization procedures. Finally, we plan on generalizing our

approach to other kernel methods, noting that rank-1 up-

date formulas as those proposed here can possibly be ex-

hibited even for problems with no closed-form solution.

Acknowledgments

This work is partially supported by the IST Program of

the European Community, under the FP7 Pascal 2 Network

of Excellence (ICT-216886-NOE) and by the ANR project

LAMPADA (ANR-09-EMER-007).

A. Matrix Inversion Formulas

Theorem 2. (Woodbury matrix inversion formula (Wood-

bury, 1950)) Let n and m be positive integers, A ∈ R
n×n

and C ∈ R
m×m be non-singular matrices and let U ∈

R
n×m and V ∈ R

m×n be two matrices. If C−1+V A−1U
is non-singular then so is A+UCV and:

(A+UCV)−1 = A−1−A−1U(C−1+V A−1U)−1V A−1.

Theorem 3. (Matrix inversion with added column) Given

m, integer and M ∈ R
(n+1)×(n+1) partitioned as:

M =

(

A b

b⊤ c

)

, where A ∈ R
n×n, b ∈ R

n and c ∈ R.

If A is non-singular and c− b⊤A−1b 6= 0, then M is non-

singular and the inverse of M is given by

M−1 =

(

A−1 + 1
k
A−1bb⊤A−1 − 1

k
A−1b

− 1
k
b⊤A−1 1

k

)

, (30)

where k = c− b⊤A−1b.

References

Aronszajn, N. Theory of reproducing kernels. Transactions of the
American Mathematical Society, 68(3):337–404, May 1950.

Drineas, P. and Mahoney, M. On the nyström method for approx-
imating a gram matrix for improved kernel-based learning. J.
of Machine Learning Research, 6:2153–2175, Dec. 2005.

Duda, Richard O. and Hart, Peter E. Pattern Classification and
Scene Analysis. John Wiley and Sons, 1973.

Hoerl, A. and Kennard, R. Ridge regression: applications to
nonorthogonal problems. Technometrics, 12(1):69–82, 1970.

Hsieh, C.-J., Chang, K.-W., Lin, C.-J., Keerthi, S. Sathiya, and
Sundararajan, S. A dual coordinate descent method for large-
scale linear svm. In Proceedings of the 25th International Con-
ference on Machine Learning, pp. 408–415, 2008.

Kumar, S., Mohri, M., and Talwalkar, A. Ensemble nyström
method. In Advances in Neural Information Processing Sys-
tems 22, pp. 1060–1068, 2009.

Maji, S. and Malik, J. Fast and accurate digit classification. Tech-
nical report, EECS Department, UC Berkeley, 2009.

Nesterov, Y. Efficiency of coordinate descent methods on huge-
scale optimization problems. Core discussion papers, 2010.

Rakotomamonjy, A., Bach, F., Canu, S., and Grandvalet, Y. Sim-
plemkl. J. of Machine Learning Research, 9:2491–2521, 2008.

Schölkopf, B., Mika, S., Burges, C. J. C., Knirsch, P., Müller, K.-
R., Rätsch, G., and Smola, A. J. Input space versus feature
space in kernel-based methods. IEEE Transactions on Neural
Networks, 10(5):1000–1017, September 1999.

Smola, A. J. and Schölkopf, B. Sparse greedy matrix approxi-
mation for machine learning. In International Conference on
Machine Learning, pp. 911–918, 2000.

Suykens, Johan A. K., Gestel, Tony Van, Brabanter, Jos De, Moor,
Bart De, and Vandewalle, Joos. Least Squares Support Vector
Machines, chapter 6, pp. 173–182. World Scientific, 2002.

Vasin, V. V. Relationship of several variational methods for the ap-
proximate solution of ill-posed problems. Mathematical Notes,
7(3):161–166, 1970.

Williams, C. and Seeger, M. Using the nyström method to speed
up kernel machines. In Advances in Neural Information Pro-
cessing Systems 13, pp. 682–688. MIT Press, 2001.

Woodbury, M. A. Inverting modified matrices. Technical report,
Statistical Research Group, Princeton University, 1950.

