
HAL Id: hal-00657716
https://hal.science/hal-00657716v2

Submitted on 15 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Definable envelopes in groups having a simple theory
Cédric Milliet

To cite this version:
Cédric Milliet. Definable envelopes in groups having a simple theory. Journal of Algebra, 2017, 492,
pp.298-323. �10.1016/j.jalgebra.2017.09.007�. �hal-00657716v2�

https://hal.science/hal-00657716v2
https://hal.archives-ouvertes.fr


DEFINABLE ENVELOPES IN GROUPS HAVING A SIMPLE THEORY

CÉDRIC MILLIET

Abstract. Let G be a group having a simple theory. For any nilpotent subgroup N of class n,
there is a definable nilpotent subgroup E of G which is virtually ‘nilpotent of class at most 2n’ and
finitely many translates of which cover N . The group E is definable using parameters in N , and
normalised by NG(N). If S is a soluble subgroup of G of derived length ℓ, there is a definable soluble
subgroup F which is virtually ‘soluble of derived length at most 2ℓ’ and contains S. The group F

is definable using parameters in S and normalised by NG(S). Analogous results are shown in the
more general setting where the ambient group G is defined by the conjunction of infinitely many
formulas in a structure having a simple theory. In that case, the envelopes E and F are defined by
the conjunction of infinitely many formulas.

1. Introduction

When studying a group, a model theorist focuses on sets that are definable by formulas. It
happens that in a group G, one finds a subgroup H of particular interest, having a given property
P such as abelian, nilpotent, soluble etc. One then tries to find a definable group which also has
property P and contains H. We call any group containing H an envelope of H. Finding a definable
envelope of H with property P is possible when the ambient group is well behaved:

A group has the property MC if it satisfies the minimality condition on centralisers, that is if
every strictly decreasing chain of centralisers CG(A1) ⊃ CG(A2) ⊃ · · · has a finite length. An
abelian subgroup of an MC group is contained in an abelian definable subgroup (the centre of its
centraliser). Stable groups are particular examples of MC groups. Poizat showed that if G is stable,
then every nilpotent subgroup of G is contained in a nilpotent definable subgroup of the same
nilpotency class, and every soluble subgroup of G is contained in a soluble definable subgroup of
the same derived length (see [Poi87] ; the results also appear in [Wag97]). In a recent paper, Altınel
and Baginski have shown that a nilpotent subgroup of an MC group is enveloped by a nilpotent
definable subgroup of the same nilpotency class (see [AB]).

Wider than the class of stable groups is the class of groups that do not have the independence
property. In the case where G is a group without the independence property, Shelah [She09] has
shown that if there is an infinite abelian subgroup of G, then there is one which is definable. This
was improved by Aldama [Ald] who showed that any nilpotent subgroup of G of nilpotency class n
is enveloped by a definable nilpotent group of class n. In those two cases, the parameters needed to
define the enveloping group may lie in a saturated extension of the ambient group, i.e. the envelope
is of the form G ∩E, where E is a definable subgroup of a saturated extension G of G.

Another important class of groups extending the class of stable groups is the class of groups
having a simple theory, which includes in particular all pseudofinite simple groups (i.e. pseudofinite
groups without non-trivial normal subgroups, see [Wil] and [Hru] ; we shall keep those two wordings
to avoid any confusion between simple groups and groups having a simple theory). The previous
results however do not hold in general if G has merely a simple theory. For instance they do not
hold if G is an infinite extra-special p-group for some odd prime p, i.e. if every g in G has order p
and in addition the centre of G is cyclic of order p and equals G′. Such a group has a simple theory
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(actually its theory is supersimple of SU-rank 1, see [MS] and Appendix), is nilpotent of class 2, and
possesses an infinite abelian subgroup; but any abelian definable subgroup of G is finite by [Plo].

However, if G is a group having a supersimple theory of finite rank which eliminates the quantifier
∃∞, it is shown in [EJMR] that a soluble subgroup S of G of derived length ℓ is contained in a
definable soluble subgroup E such that the derived series of S and E share the same number of
infinite factors. The authors of [EJMR] derive that the soluble radical of G is definable and soluble.
If G merely has a simple theory, it is shown in [Mil12] that an abelian subgroup of G is always
contained in a definable subgroup H of G that has a normal finite subgroup N such that H/N is
abelian (we call such a group H finite-by-abelian).

Let us recall that a group is FC if each of its elements has finitely many conjugates. Finite-by-
abelian groups are FC-groups. When we were looking for the narrowest possible definable group
which envelopes an abelian, a nilpotent, or a soluble subgroup of a group having a simple theory,
it turned out that the problem was conceptually simpler in a more general setting involving FC,
FC-nilpotent, and FC-soluble groups instead of abelian, nilpotent, and soluble groups. Our main
results are the following two theorems which hold for any group G having a simple theory:

Theorem 1.1 (definable envelope around a nilpotent or FC-nilpotent subgroup).

(1) Let A be an FC-nilpotent subgroup of G of class n. There is a definable (using parameters
in A) FC-nilpotent subgroup of G of class n which is normalised by NG(A) and contains A.

(2) Let N be a nilpotent subgroup of G of nilpotency class n. There is a definable (using pa-
rameters in N) nilpotent subgroup F of G, which is virtually 2n-nilpotent, and finitely many
translates of which cover N . Moreover, F is normalised by any element of NG(N).

Theorem 1.2 (definable envelope around a soluble or FC-soluble subgroup).

(1) Let B be an FC-soluble subgroup of G of length n. There is a definable (using parameters
in B) FC-soluble subgroup of G of length ℓ which is normalised by NG(B) and contains B.

(2) Let S be a soluble subgroup of G of derived length ℓ. There is a definable (using parameters
in S) soluble subgroup R of G, which is virtually 2ℓ-soluble, and contains S. Moreover, R is
normalised by any element of NG(S).

From Theorem 1.1, one can derive a positive answer to a question raised by Elwes, Jaligot, Ryten
and Macpherson in [EJMR]:

Corollary 1.3. The Fitting subgroup of a supersimple group of finite rank is nilpotent and definable.

The following result follows from Theorem 1.2:

Corollary 1.4. The soluble radical of a supersimple group of arbitrary rank is soluble and definable.

The proofs of Corollary 1.3 and 1.4 can be found in [Mil13]. In the last section, we extend the
previous results to the case where the ambient group G is merely given by a bounded intersection
of formulas in a simple theory:

Theorem 1.5. Let N be a nilpotent subgroup of G of class n. There is a type-definable (with param-
eters in N) nilpotent subgroup F which is virtually 2n-nilpotent, and a finite number of translates
of which cover N . The group F is normalised by NG(N).

Theorem 1.6. Let S be a soluble subgroup of G of derived length ℓ. There is a type-definable (with
parameters in S) soluble subgroup R, which is virtually 2ℓ-soluble, and contains S. The group R is
normalised by NG(S).

2. Preliminaries on FC-nilpotency and FC-solubility

Let G be a group and g, h ∈ G. We call gh = h−1gh the h-conjugate of g and CG(h) = {g ∈
G : hg = h} the centraliser of h in G. If N is a normal subgroup of G, we denote by hN the coset

{hn : n ∈ N} and by CG
Ä

{hN}
ä

the set {g ∈ G : hgN = hN}. Let H be a subgroup of G, we write

Hg for the set {hg : h ∈ H}. We call the set NG(H) = {g ∈ G : Hg = H} the normaliser of H in
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G. The G-conjugacy class of h is the set hG = {hg : g ∈ G}. We call G an FC-group if for every
g ∈ G, the conjugacy class gG is finite, or equivalently if the index [G : CG(g)] is finite.

Following Haimo in [Hai], we define the FC-centraliser of a subgroup H of G by:

FCG(H) =
¶

g ∈ G : H/CH(g) is finite
©

.

If N is a normal subgroup of H, we extend this definition by putting

FCG(H/N) =
¶

g ∈ G : H
¿

CH
Ä

{gN}
ä

is finite
©

.

The FC-centre of G is defined by:

FC(G) = FCG(G).

Then, we define the nth FC-centre of G by the following induction on n:

FC0(G) = {1} and FCn+1(G) = FCG
Ä

G/FCn(G)
ä

.

Finally, the FC-normaliser of H in G is defined by:

FNG(H) =
¶

g ∈ G : Hg/H ∩Hg and H/H ∩Hg are finite
©

.

These are all subgroups of G. The chain FC1(G) 6 · · · 6 FCn(G) is an ascending chain of
characteristic subgroups of G (in particular, FCn(G) is normal in G and its inductive definition
makes sense).

Lemma 2.1. Let G be a group, g ∈ G an element, N 6 H 6 G subgroups and n ∈ ω. Then,

(1) NG(H) normalises FCG(H),

(2) If N and H are normal in G, then CG({gN}) is a subgroup of CG
Ä

{gH}
ä

,

(3) H ∩ FCn(G) is a subgroup of FCn(H),
(4) If N is a finite normal subgroup of H, then FCG(H/N) = FCG(H).

Proof. (1) Let h ∈ NG(H). As CH(g
h) = CH(g)

h, if H/CH(g) is finite, then so is H/CH(g
h). It

follows that h normalises FCG(H).
(2) If h centralises {gN}, then [g, h] is an element of N , hence of H, so h centralises {gH}.
(3) If h is an element of H∩FC(G), then G/CG(h) is finite. As H/CH(h) embeds in G/CG(h), the

element h belongs to FC(H) as well. Now suppose that FCn(G)∩H is a subgroup of FCn(H) and

let h belong to FCn+1(G)∩H. It follows that G
¿

CG
Ä

{hFCn(G)}
ä

is finite, so H
¿

CH
Ä

{hFCn(G)}
ä

is finite. As h is an element of H, one has CH
Ä

{hFCn(G)}
ä

= CH
Ä

{h(FCn(G)∩H)}
ä

. By induction

hypothesis and point 2, the group H
¿

CH
Ä

{hFCn(H)}
ä

must be finite, which proves that h belongs

to FCn+1(H).
(4) For any g ∈ G, the group CH(g) is a subgroup of CH({gN}), so if H/CH(g) is finite, then so

is H/CH({gN}). It follows that the group FCG(H) is a subgroup of FCG(H/N). If x is an element
of the latter, there is a subgroup F of finite index in H which centralises the finite set {xN}. So xF

is finite, and so is xH . �

Definition 2.2 (Haimo [Hai]). A group is called FC-nilpotent if one of the following equivalent facts
holds:

(1) There is an FC-central series of finite length, i.e. a sequence of normal subgroups of G

{1} = H0 6 H1 6 · · · 6 Hn = G

such that Hi+1/Hi is included in the FC-centre of G/Hi for every i in {0, . . . , n − 1}.
(2) The sequence of iterated FC-centres ends on G after n steps. We call the least such n the

FC-class of G, or simply its class when there is no ambiguity.

Proof. The sequence of iterated FC-centres is an FC-central series, so (ii) implies (i). Reciprocally,
if (i) holds, an induction on n shows that Hi 6 FCi(G) holds for all i 6 n. This shows that FCn(G)
equals G. �
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Definition 2.3 (adapted from Duguid, McLain [DM]). A group G is called FC-soluble if there exists
a normal FC-series of finite length, i.e. a finite sequence of normal subgroups G0, G1, . . . , Gℓ of G
such that

G = G0 Q G1 Q · · · Q Gℓ = {1}

and such that Gi/Gi+1 is an FC-group for all i. We call the least such natural number ℓ the
FC-length of G, or simply its length.

Remark 2.4. For a group G, the requirements of having a finite series with abelian factors, and a
finite series with abelian factors whose members are in addition normal in G are equivalent. This
may not be true in the case of an FC-series. We have modified the original definition in [DM] and
we do require here that the FC-series of G consist of subgroups which are normal in G.

Finite groups and abelian groups are FC-groups. FC-nilpotent groups of class 1 and FC-soluble
groups of length 1 coincide with FC-groups. Nilpotent groups of class n are FC-nilpotent of class
at most n. A soluble group G of derived length ℓ is FC-soluble of length at most ℓ. In fact, if G has
a derived series with d 6 ℓ infinite factors, then G is FC-soluble of length d. FC-nilpotent groups
of class n are FC-soluble of length at most n. We recall from [Neu, Theorem 3.1]:

Theorem 2.5 (Neumann). Let G be an FC-group whose conjugacy classes are finite and bounded.
Then the derived subgroup G′ is finite.

The direct image of an FC-group by a group homomorphism is an FC-group, and the pre-image
of an FC-group by a group homomorphism having a finite kernel is FC. As a corollary:

Lemma 2.6. Let G and H be two groups and f : G→ H an homomorphism.

(1) If G is FC-nilpotent, so is f(G). If the kernel of f is finite and f(G) is FC-nilpotent, so
is G.

(2) If G is FC-soluble, so is f(G). If the kernel of f is finite and f(G) is FC-soluble, so is G.

In particular, subgroups and quotient groups of FC-nilpotent groups are FC-nilpotent, and subgroups
and quotient groups of FC-soluble groups are FC-soluble.

The centre of a nilpotent group is non-trivial. For an FC-nilpotent group:

Lemma 2.7. Let G be any group.

(1) If G is FC-nilpotent and infinite, then FC(G) is infinite.
(2) FCn(G) is FC-nilpotent of class at most n.

Proof. If FC(G) is finite, then FC2(G) equals FC(G) by Lemma 2.1(4), so G is finite.

For point (ii), one has FCn(G) ⊂ FCn
Ä

FCn(G)
ä

by Lemma 2.1(3) and the other inclusion is
obvious �

3. Groups having a simple theory

Simple theories are pointed out in [She80] as a wider class than, but still analoguous to the
class of stable theories, which in turn were introduced in [She69] as a generalisation of Morley’s
totally transcendental theories (see [Mor]). In Morley’s own word, the terminology transcendental
is suggested by the theory of algebraically closed field. In Shelah’s word, the rank of a stable theory
is a generalisation of Morley’s rank of transcendence. Let us recall that one way to define the
dimension of an algebraic variety V over an algebraically closed field is inductively, saying that V
has dimension at least n+1 if there are infinitely many disjoint sub-varieties of V having dimension
at least n. Note that these sub-varieties are defined by specifying a parameter in the polynomial
equations defining V , hence are uniformly defined by a single formula. This is the point of view that
we chose here to define a simple theory.

We recall in this section all the elementary definitions and known results on groups having a
simple theories that will be needed in the paper and refer to [She80], [Pil98] and [Wag05, Wag00] for
more details. In a given language, let ψ(x̄) and φ(x̄, ȳ) be first order formulas, T a complete theory
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and M a model of T . Let k be a natural number. We define the Dφ,k-rank of ψ with respect to T
by induction:

(1) D(ψ, φ, k) > 0 if ψ is consistent with T ;

(2) D(ψ, φ, k) > n + 1 if there is a sequence ā0, ā1, . . . such that D
Ä

ψ(x̄) ∧ φ(x̄, āi), φ, k
ä

is at

least n for all i and if the formulas φ(x̄, ā0), φ(x̄, ā1), . . . are k-inconsistent with T .

If X is a set defined by a formula ψ(x̄), we write D(X,φ, k) for D(ψ, φ, k). In other words, the set
X has Dφ,k rank at least n+1 if one can find an infinite family of k-inconsistent subsets of X which
are all uniformly definable using the single formula φ, and whose Dφ,k rank is at least n. Note that
the rank D(ψ, φ, k) takes three arguments. A basic induction shows that it is increasing in the first
argument (with respect to logical implication), decreasing in the second one, and increasing in the
third one (with respect to the natural order on N). We say that a subset of the cartesian product
Mn is type-definable if it is defined by the conjunction of a bounded infinity of first order formulas.
The following lemma is a slight generalisation of [Wag00, Remark 4.1.5], with a parameter b̄ allowed
in the second argument of the rank D.

Lemma 3.1 (Wagner). Let ℓ,m ∈ ω, let ȳ be an ℓ-tuple of variables and z̄ an m-tuple of vari-

ables. Let φz̄(x̄, ȳ) be a formula. For any formula ψ(x̄, ȳ) and k ∈ ω, the set
¶

(ā, b̄) ∈ M ℓ+m :

D(ψ(x̄, ā), φb̄, k) > n
©

is type-definable.

Proof. By induction on n. For n = 0, the set
¶

(ā, b̄) ∈ M ℓ+m : D(ψ(x̄, ā), φb̄, k) > 0
©

is defined by

the type {∃x̄ψ(x̄, ā)} ∪ T . Let us assume that
¶

(ā, b̄, c̄) ∈ M2ℓ+m : D(ψ(x̄, ā) ∧ φb̄(x̄, c̄), φb̄, k) > n
©

is defined by the type π(ā, b̄, c̄). The condition ‘φb(x̄, ā0), φb̄(x̄, ā1), . . . are k-inconsistent with T ’,
which we write I(ā0, ā1, . . . , b̄), is expressed by the conjunction

∧

χ∈T

χ ∧
∧

06i1<i2<···<ik

¬(∃x̄)
Ä

φb̄(x̄, āi1) ∧ · · · ∧ φb̄(x, āik)
ä

.

It follows that the condition D(ψ(x̄, ā), φb̄, k) > n+ 1 is equivalent to

(∃ā0∃ā1∃ā2 · · · )I(ā0, ā1, ā2, . . . , b̄) ∧
∧

i>0

π(ā, b̄, āi),

which can be shown to be a type-definable condition, by a compactness argument. �

Definition 3.2 (Shelah [She80]). A complete theory is called simple if for every formula φ and
every natural number k, the Dφ,k-rank of all of its formulas is a natural number. A structure is
called simple if its first order theory is so.

Lemma 3.3 (Shelah [She80]). Let X and Y be two definable subsets of some given structure. The
rank D(X ∪ Y, φ, k) equals the maximum of D(X,φ, k) and D(Y, φ, k).

Proof. By a basic induction on the rank D(X ∪ Y, φ, k). �

Let φ(x̄, ȳ) be a formula and g a function symbol. We write g−1φ(x̄, ȳ) for the formula φ(g(x̄), ȳ).
If the language contains the language of groups, we write zφ(x̄, ȳ) or simply zφ for the formula
φ(z−1x̄, ȳ), where z is thought of as a new parameter variable of arity 1. Likewise, we often talk of
Dzφ,2-rank, for example. We take the opportunity to stress the following crucial lemma, which we
could not find anywhere in the literature:

Lemma 3.4. In any structure, let X and Y be two definable sets and let g be a definable map from
X to Y .

(1) If g is surjective, then D(X, g−1φ, k) > D(Y, φ, k).
(2) If g has fibres of size at most n, then D(X, g−1φ, k) 6 D(Y, φ, kn).

Proof. (1) Assume that g is surjective. We proceed by induction on the rank D(Y, φ, k). If Y is
consistent, then so is X. If D(Y, φ, k) > n + 1 holds, then there are formulas φ(x̄, ā1), φ(x̄, ā2), . . .
which are k-inconsistent, with each φ(Y, āi) having Dφ,k-rank at least n. By induction hypothesis,
their preimages g−1φ(x̄, ā1), g

−1φ(x̄, ā2), . . . witness that the Dg−1φ,k-rank of X is at least n+ 1.
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For point (2), there is no harm in assuming that g is onto. If X is consistent, then so is Y . We go
on inductively and suppose that D(X, g−1φ, k) is at least m+1. This provides us with k-inconsistent
sets X0,X1, . . . defined by g−1φ(x̄, ā0), g

−1φ(x̄, ā1), . . . with the rank D(X ∩Xi, g
−1φ, k) being at

least m. By induction hypothesis, as g is onto, D
Ä

Y ∩ g(Xi), φ, kn
ä

> m holds. Let I be a subset

of N of cardinality kn and suppose that there is some element ȳ of
⋂

i∈I g(Xi). Let x̄1, . . . , x̄p be
the list of all pre-images of ȳ by g. Every xi belongs to finitely many distinct sets among (Xi)i∈I ,
let us say say ni distinct ones, so we have n1 + · · · + np > |I|. As p is at most n, at least one ni
must be greater or equal than k, which contradicts that the sets X0,X1, . . . are k-inconsistent. This
shows that the sets g(X0), g(X1), . . . are kn-inconsistent and that the rank D(Y, φ, kn) is at least
m+ 1. �

It is worth mentioning that one could weaken the definability assumption on g in the previous
lemma and require only that the images and pre-images by g of uniformly definable sets be uniformly
definable. In particular, one could take g to be an automorphism of the structure. As our proofs
on groups heavily rely on passing to quotient groups, we recall that simplicity is preserved under
taking a quotient by a definable equivalence relation.

Corollary 3.5 (Shelah). Let M be a simple structure and let E be a definable equivalence relation
on M . Then the disjoint union of M and M/E is a simple structure. (The language considered
is the language on M extended by a predicate for M/E and a function symbol for the canonical
surjection from M to M/E).

Proof. As E is definable in M , the new language does not induce new formulas on M , so M is simple
in the extended language. By Lemma 3.3, it is enough to show that M/E is simple. If φ(x̄, ȳ) is

any formula, we write φE(x̄, ȳ) for the formula (∃z̄)
Ä

x̄Ez̄ ∧ φ(z̄, ȳ)
ä

. By Lemma 3.4(1) applied to

the canonical surjection from M to M/E, the rank D(M,φ, k) is at least D(M/E,φE , k), so M/E
is simple. �

Lemma 3.6 (adapted from Pillay [Pil98, Remark 3.12]). In any group, let G be a definable subgroup,
and let H be a definable subgroup of G relatively defined in G by the formula φ ( i.e. H is the subset
of G whose elements verify φ). Then the coset space G/H is finite if and only if H and G have the
same Dzφ,2-rank.

Proof. For all formulas ψ(x̄, ȳ) and all natural numbers k, the cosets of H have the same Dzψ,k-rank
by Lemma 3.4. If G/H is finite, then G is covered by finitely many cosets of H, so G and H
have the same Dzψ,k-rank by Lemma 3.3. Reciprocally, if G/H is infinite, then G is covered by
infinitely many pairwise disjoint cosets of H. This witnesses that the rank D(G, zφ, 2) is at least
D(H, zφ, 2) + 1. �

The dimension of an algebraic variety V is also defined by the Krull dimension of the algebra of
the polynomials over V , which provides a bound on the length of a descending chain of sub-varieties
of V . In a group having a simple theory, the intersections of subgroups which are uniformly defined
by a fixed formula satisfy a descending chain condition ‘up to finite index’:

Theorem 3.7 (Wagner [Wag00, Theorem 4.2.12]). Let φ(x, ȳ) be a fixed formula, let G be a group
having a simple theory and let H1,H2, . . . be a family of subgroups of G defined respectively by
formulas φ(x, ā1), φ(x, ā2) . . . . If G1 > G2 > G3 > · · · is a descending chain of finite intersections
of Hi, then there exists a natural number n such that Gm has a finite index in Gn for all m > n.

Proof. By adding new subgroups in the chain G1 > G2 > G3 > · · · , we may assume without loss of
generality that for every i > 1, there exists a parameter b̄i and a subgroup Ki of G defined by the
formula φ(x, b̄i), such that Gi+1 equals Gi ∩Ki. As D(G1, zφ, 2) is finite, there is a natural number
n such that Gm and Gn have the same Dzφ,2-rank for all m > n. By Lemma 3.6, the quotient
Gn/Gm is finite for every m > n. �

Two subgroups of a given group G are called commensurable if the index of their intersection
is finite in each of them. Commensurability is an equivalence relation on the set of subgroups
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of G. A family of subgroups of G is called uniformly commensurable if its members are pairwise
commensurable and if the correspondent family of finite indexes is bounded by a natural number.
The following result appears in its original form in [Sch]; the generalised version stated bellow is the
one given by Peter Neumann in [Ne], with some additional details coming from [Wag00, Theorem
4.2.4] and its proof (〈H〉 in [Wag00, Theorem 4.2.4] is replaced by H4 here, which stands for the set
⋃

Hi∈HH1H2H3H4. This is immediate from the construction of N in Wagner’s proof).

Theorem 3.8 (Neumann’s version of Schlichting). Let G be a group and let H be a family of uni-
formly commensurable subgroups of G. Then there exists a subgroup N of G which is commensurable
with the members of H and invariant under the action of the automorphisms of the structure G (possi-
bly extending the group structure) which stabilise the family H setwise. The inclusions

⋂

H ⊂ N ⊂ H4

hold. Moreover, N is a finite extension of a finite intersection of subgroups belonging to H. In par-
ticular, if H consists of definable groups, then N is also definable.

4. Definable envelopes

Theorem 4.1. In a group G having a simple theory, let H be a definable subgroup (using parameters
in a finite set A). The FC-centraliser, FC-normaliser and iterated FC-centres of H are definable
subgroups of G (using parameters in the set A). In particular, FC(H) has finite and bounded
conjugacy classes, and the set {Hg : g ∈ FNG(H)} consists of uniformly commensurable subgroups.

Proof. Let G be an ℵ0-saturated elementary extension of G. That is, if ϕ(x1, . . . , xn) is a formula
without parameters and g1, . . . , gn belong to G, then ϕ(g1, . . . , gn) holds in G if and only if it holds
in G.

We shall prove that FCG(H) is definable. Let φ(x, g) be a formula defining the group CG(g),
let ψ(x) be a formula defining H and H the set of realisations of ψ(x) in G. We denote the rank
D(H, zφ(x, g), 2) by n. By Lemma 3.6, we have

FCG(H) =
¶

g ∈ G : D
Ä

CH(g), zφ(x, g), 2
ä

= n
©

=
¶

g ∈ G : D
Ä

CH(g), zφ(x, g), 2
ä

> n
©

As G is ℵ0-saturated, one can identify the type-definable sets with parameters in A with the con-
sistent types over A. On the one hand, by Lemma 3.1, FCG(H) is a type-definable subgroup of G,
so FCG(H) is closed in the topology generated by formulas over A so is a compact set of types. On

the other hand, the condition
∣

∣

∣H/CH(g)
∣

∣

∣ = n is an A-definable condition on g, so FCG(H) is cov-

ered by the countable union
⋃

n∈N∗

¶

g ∈ G :
∣

∣

∣H/CH(g)
∣

∣

∣ = n
©

of clopen sets. By the Compactness

Theorem, finitely many of these clopen sets must cover FCG(H). Thus, FCG(H) is defined by a
single formula ϕ(x) using parameters in A. We claim that

FCG(H) = {g ∈ G : ϕ(g) holds in G}.

If g is an element of G such that ϕ(g) holds, then g belongs to FCG(H) so gH is finite, and gH

is also finite. Reciprocally, if g is an element of G such that gH is finite, it equals some natural

number, say m. The condition
∣

∣

∣gH
∣

∣

∣ = m is expressible by a formula using parameters in G. As G

is an elementary extension of G, this formula also holds in G, so that
∣

∣

∣gH
∣

∣

∣ = m. It follows that g

belongs to FCG(H), and ϕ(g) holds in G, hence in G.
We have just shown that FCG(H) is definable. By Corollary 3.5, if N is a definable normal

subgroup of H, the structure G ∪H/N is also simple. A similar argument shows that FCG(H/N)
is definable. By an immediate induction, the iterated FC-centres of H are also definable.

A similar argument works for FNG(H) as well: Let φ(x, g) be a formula defining the group Hg,
let ψ(x) be a formula defining H and H the set of realisations of ψ(x) in G. We denote the rank
D(H, zφ(x, g), 2) by n. By Lemma 3.6, we have

FNG(H) =
¶

g ∈ G : D
Ä

H
g ∩H, zφ(x, g), 2

ä

> n and D
Ä

H
−g ∩H, zφ(x, g), 2

ä

> n
©
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On the other hand, FNG(H) is covered by the following countable union of clopen sets:
⋃

n,m∈N∗

¶

g ∈ G :
∣

∣

∣H/Hg ∩H

∣

∣

∣ = n and
∣

∣

∣H
g/Hg ∩H

∣

∣

∣ = m
©

.

�

Theorem 4.2. Let G be a group having a simple theory and let N be an FC-nilpotent subgroup of
class n. There is an FC-nilpotent definable subgroup E of G of class n which envelopes N . Moreover,
E is normalised by any element of NG(N).

Proof. By Theorem 4.1, the FC-centralisers, FC-normalisers and iterated FC-centres of definable
subgroups of G are definable. We build recursively a decreasing chain of definable subgroups B1 >

· · · > Bn such that for every i in {1, . . . , n},

(1) Bi envelopes N ,
(2) NG(N) normalises Bi.
(3) FCi(Bi) envelopes FCi(N).

We begin by building the group B1. Let a1, . . . , ap be elements of FC(N) such that CG(a1, . . . , ap, a)
has a finite index in CG(a1, . . . , ap) for any a in FC(N). They do exist by Theorem 3.7. We denote
by C1 the subgroup CG(a1, . . . , ap), which is minimal ‘up to finite index’. Note that N/CN (ai) is
finite for every ai, so N/N ∩C1 is also finite. For every element g of NG(N), the subgroup Cg1 equals
CG(a

g
1, . . . , a

g
p). As NG(N) normalises FC(N), the subgroups Cg1 and C1 are commensurable by

minimality of C1. It follows that the FC-normaliser of C1 contains NG(N). As FNG(C1) is defin-
able by Theorem 4.1, the family of NG(N)-conjugates of C1 must be uniformly commensurable. This

allows us to apply Theorem 3.8 to the set
¶

Cg1 : g ∈ NG(N)
©

and to find some definable subgroup

D1 which is commensurable with C1 and which in addition is normalised by NG(N). As N/N ∩C1

is finite, N/N ∩D1 is finite too, so the subgroup N · D1 is a finite union of cosets of D1, hence is
definable. We define B1 to be N ·D1 and claim that its FC-centre contains FC(N): if g belongs to
B1 \FC(B1), then B1/B1∩CG(g) is infinite. But B1 and C1 are commensurable, so C1/C1 ∩CG(g)
is infinite too, and g cannot belong to FC(N) by minimality of C1. This completes the first step.

Now we assume that B1, . . . , Bk−1 are built, and we build Bk. The subgroup Bk−1 normalises
FCk−1(Bk−1) by Lemma 2.1(1), so Bk−1/FCk−1(Bk−1) is a group. Note that the disjoint union of G
and Bk−1/FCk−1(Bk−1) is a simple structure by Corollary 3.5, so we may apply the descending chain
condition of Theorem 3.7 in G, taking parameters in Bk−1/FCk−1(Bk−1). For any element b of Bk−1,
we write b̄ for the class of b in the quotient group Bk−1/FCk−1(Bk−1). Let b1, . . . , bm be elements of
FCk(N) such that CBk−1

(b̄1, . . . , b̄m, b̄) has a finite index in CBk−1
(b̄1, . . . , b̄m) for any b in FCk(N).

Let us denote by Ck the group CBk−1
(b̄1, . . . , b̄m). The quotient N

¿

CN
Ä¶

biFCk−1(N)
©ä

is finite for

every bi, and FCk−1(Bk−1) envelopes FCk−1(N) by induction hypothesis, soN
¿

CN
Ä¶

biFCk−1(Bk−1)
©ä

is also finite by Lemma 2.1(2). It follows that N/CN (b̄1, . . . , b̄m) is finite. So is N/N ∩ Ck. We

can once again show that the groups in
¶

Cgk : g ∈ NG(N)
©

are uniformly commensurable, apply

Theorem 3.8 to the set of NG(N)-conjugates of Ck, and find some definable subgroup Dk normalised
by NG(N) and commensurable with Ck. We denote by Bk the definable subgroup N ·Dk, which is a
subgroup of Bk−1. To finish the proof, we just need to show that FCk(Bk) envelopes FCk(N). If g

is an element of Bk \ FCk(Bk), then Bk
¿

Bk ∩CG
Ä¶

gFCk−1(Bk)
©ä

is infinite. As Bk is a subgroup

of Bk−1, Lemma 2.1(3) yields

FCk−1(Bk−1) ∩Bk 6 FCk−1(Bk),

so the group Bk
¿

Bk ∩ CG
Ä¶

g(FCk−1(Bk−1) ∩Bk)
©ä

is infinite. As g belongs to Bk, we have

Bk ∩ CG
(

¶

g(FCk−1(Bk−1) ∩Bk)
©

)

= Bk ∩ CG
(

¶

gFCk−1(Bk−1)
©

)

= Bk ∩CG(ḡ).

It follows that Bk/Bk ∩ CG(ḡ) is infinite. As Bk and Ck are commensurable, the quotient Ck/Ck ∩
CG(ḡ) is infinite too, so g is not an element of FCk(N) by minimality of Ck. This completes the
recursive construction of the groups Bi.
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It follows that FCn(Bn) is a definable FC-nilpotent subgroup of class at most n that contains
FCn(N), hence N . By Lemma 2.1(i), the group FCn(Bn) is normalised by NG(Bn) hence by
NG(N). �

Remark 4.3. It may be desirable to have a closer look at the parameters necessary to define the
definable envelope of N in the previous proof. The only places where we may have used parameters
outside N is when we applied Schlichting’s Theorem, the first time being to the set

¶

Cg1 : g ∈

NG(N)
©

, where C1 is definable using parameters in N . This provides a finite extension D1 of

a group D definable using parameters in NG(N) (D is the intersection of finitely many NG(N)-
conjugates of C1). But the automorphisms of the structure G fixing N pointwise stabilise the set
¶

Cg1 : g ∈ NG(N)
©

setwise (we shall say that it is N -invariant). By Schlichting’s Theorem again,
the group D1 is N -invariant, hence definable using parameters in N . It follows that every definable
group considered in the proof is in fact definable using parameters in N .

Remark 4.4. When applying Schlichting’s Theorem, instead of considering the action of NG(N) by
conjugation, we can modify the construction of E and consider the action of the automorphisms of
the structure G which leave N invariant. This ensures that the definable envelope E is σ-invariant
whenever σ is an automorphism of G such that N is σ-invariant.

In [Wag00], Wagner defines a notion of ‘almost’ centraliser, which suggests a notion of ‘almost-
nilpotent’ group suitable for groups which are hyperdefinable in a simple theory. He shows that
the 0-hyperdefinable connected component of a 0-hyperdefinable almost-nilpotent group of class n
is nilpotent of class at most 2n (we recall that the 0-hyperdefinable connected component is by
definition the intersection of all the subgroups having bounded index which are hyper-definable with
no parameters).

If G is a definable group, we call the intersection of all the subgroups of G having a finite index
in G that are definable using parameters in A the connected component of G over A. We denote it
by G0

A, or simply G0 when A is the empty set.

Proposition 4.5. In a group having a simple theory, if H is an FC-nilpotent subgroup of class n
that is definable using parameters in a set A, then H0

A is nilpotent of nilpotency class at most 2n.

Proof. We may add the elements of A in the language and assume that A is empty. If K and L are
two subsets of H, we call the generating set of [K,L] the set of all commutators k−1ℓ−1kℓ when k
ranges over K and ℓ over L. We denote by [K,L] the subgroup that these commutators generate.
We define [K,n L] recursively by putting

[K,n L] = [K,L] for n = 1, and [K,n+1 L] =
î

[K,n L], L
ó

.

Note that the generating set of [FC(H), FC(H] is finite by Theorem 2.5 and Theorem 4.1. Follow-
ing exactly the proof of [Wag00, Proposition 4.4.10.3] while remarking that ‘bounded’ in Wagner
gets replaced by ‘finite’, we claim that the generating set of [FC(H),H0] is also finite. We do
not give a proof here, as it involves technicalities that we have not defined. Because [FC(H),H0]
is normal in H, the centraliser in H of [FC(H),H0] has a finite index in H. It follows that

CH
Äî

FC(H),H0
óä

contains H0, so that the group [FC(H),H0,H0] is trivial. We show inductively

on n that [FCn(H),2nH
0] is trivial. Let us assume that [FCk(H),2kH

0] is trivial. By the first

step of the induction, the generating set of
î

FC
Ä

H/FCk(H)
ä

,
Ä

H/FCk(H)
ä

0
ó

is finite, so the gen-

erating set of
î

FCk+1(H)/FCk(H),H0/FCk(H)
ó

is also finite. It follows that the centraliser of
î

FCk+1(H),H0
ó

FCk(H)
¿

FCk(H) has a finite index in H, hence contains H0. Thus we have
î

FCk+1(H),H0,H0
ó

6 FCk(H).

Applying the induction hypothesis, we get
î

FCk+1(H),2k+2H
0
ó

6
î

FCk(H),2kH
0
ó

= {1}.

This shows that [FCn(H),2nH
0] is trivial. As FCn(H) equals H, the group [H0,2nH

0] is trivial. �
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Let P be a group property. We call a group G virtually P if it has a definable subgroup of finite
index with property P . We shall say that G is n-nilpotent if it is nilpotent of nilpotency class at
most n, and ℓ-soluble if it is soluble of derived length at most ℓ.

Corollary 4.6. In a group G having a simple theory, let N be a nilpotent subgroup of nilpotency
class n. There is a definable (using parameters in N) nilpotent subgroup F of G, which is virtually
2n-nilpotent, and finitely many translates of which cover N . Moreover, F is normalised by any
element of NG(N).

Proof. Let G be a |N |-saturated elementary extension of G. By Theorem 4.2, there is an FC-
nilpotent subgroup of G of class n which contains N , is normalised by NG(N). Let us call it H. By
Remark 4.3, H is definable with parameters in N . By Proposition 4.5, the subgroup H

0
N is nilpotent

of nilpotency class at most 2n. This is witnessed by the formula saying that the commutator of every
2n + 1 elements is trivial. As H

0
N is the intersection of groups definable using parameters in N ,

by the Compactness Theorem and the saturation assumption, it follows that there is a subgroup of
finite index in H that is 2n-nilpotent, and definable using parameters in N . It follows that H has a
definable 2n-nilpotent normal subgroup E of finite index. Let F denote the Fitting subgroup of H,
that is, the subgroup of H generated by all the normal nilpotent subgroups of H. The group F is a
characteristic nilpotent subgroup of H, hence is also normalised by NG(N). As F is a finite union
of translates of E, it is definable. For any subset X of G defined in G by a formula φ(x), we denote

by X the set
¶

g ∈ G : φ(g) hold
©

. As G is an elementary substructure of G, the group F has the
same first order properties as F. In particular, F has a finite index in H. As H contains N , finitely
many translates of F cover N . �

Corollary 4.7. In a group having a simple theory, a nilpotent subgroup N of nilpotency class n is
contained in a 3n-soluble virtually 2n-nilpotent definable subgroup, using parameters in N .

Proof. By Corollary 4.6, there is a definable 2n-nilpotent subgroup F such that the quotient N/N∩F
is finite. The N -core of F defined by FN =

⋂

n∈N F
n is thus a finite intersection of definable groups,

hence definable, and 2n-nilpotent as a subgroup of F . As N normalises FN , the product N · FN is
soluble of derived length at most n+2n. As a union of finitely many cosets of FN , the group N ·FN
is definable. �

Corollary 4.8. In a group G having a simple theory, let N be a nilpotent normal subgroup of
nilpotency class n. Then, there is a normal 3n-nilpotent subgroup of G enveloping N and definable
using parameters in N .

Proof. As above, we consider the definable group FN ·N . As N and FN are both normal subgroups
in FN · N , by Fitting’s Lemma, FN · N is nilpotent of class at most n + 2n. We take the G-core
(FN ·N)G. �

Corollary 4.9. Let G be a group having a simple theory. If G has an infinite nilpotent subgroup,
then G has an infinite finite-by-abelian definable subgroup.

Proof. By Corollary 4.6, the group G has an infinite definable subgroup N which is nilpotent, and
hence FC-nilpotent. The FC-centre of N is definable by Theorem 4.1, hence finite-by-abelian by
Theorem 2.5, and infinite by Lemma 2.7. �

We go on with the soluble subgroups of a group G having a simple theory. It was shown laboriously
in [Mil12, Corollary 5.12] that a soluble subgroup of G whose derived length is ℓ is enveloped by a
definable subgroup H that has a finite series H = H0 Q H1 Q · · · Q H2ℓ−1 = {1} of length 2ℓ − 1
consisting of definable subgroups whose factors Hi/Hi+1 are finite-by-abelian. We provide a better
version here.

Theorem 4.10. Let G be a group having a simple theory and let S be an FC-soluble subgroup of
length ℓ. Then S is enveloped by a definable (using parameters in S) FC-soluble subgroup E of
length ℓ, the members of whose FC-series are normal definable subgroups (using parameters in S).
Moreover, E is normalised by any element of NG(S).
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Proof. Let S = S0 Q S1 Q · · · Q Sℓ = {1} be an FC-series for S. We recall that every Si is normal
in S. We set Z0 equal to the trivial subgroup and recursively build an ascending chain of definable
subgroups Z1 P Z2 P · · · P Zℓ such that for every i in {1, . . . , ℓ},

(1) Zi is normal in Zℓ,
(2) Zi contains Sℓ−i,
(3) NG(Sℓ−i) normalises Zi,
(4) Zi/Zi−1 is an FC-group.

Let us first build Z1. By Theorem 3.7, let a1, . . . , ap be elements of Sℓ−1 such that CG(a1, . . . , ap, a)
has a finite index in CG(a1, . . . , ap) for all a in Sℓ−1. We write C1 for the centraliser CG(a1, . . . , ap).
As Sℓ−1 is an FC-group, the quotient Sℓ−1/Sℓ−1∩C1 is finite. Let g be an element of NG(Sℓ−1). As
g normalises Sℓ−1, the subgroup Cg1 is the centraliser of elements of Sℓ−1, hence is commensurable

with C1 by minimality of C1. As previously seen, the set
¶

Cg1 : g ∈ NG(Sℓ−1)
©

consists of uniformly
commensurable subgroups. By Theorem 3.8, there is a definable subgroup B1 which is commen-
surable with C1 and normalised by NG(Sℓ−1). The subgroup B1 · Sℓ−1 is a finite extension of B1,
hence definable, and commensurable with B1. Let us call it D1. Let Z1 be its FC-centre and let
N1 = NG(Z1). We show that Z1 contains Sℓ−1: if g belongs to D1 \ FC(D1), then D1/D1 ∩ CG(g)
is infinite and so is C1/C1 ∩ CG(g). By minimality of C1, the element g is not in Sℓ−1.

Now we assume that Z1, . . . , Zk are built, and we put Ni = NG(Zi) for each i. Note that
N1∩· · ·∩Nk contains S. For any b inNk, we write b̄ for the class of b in the quotient group Nk/Zk. Let
b1, . . . , bp be elements of Sℓ−k−1 such that N1∩· · ·∩Nk∩CG(b̄1, . . . , b̄p) is minimal up to finite index.
Let us denote by Ck+1 the group N1∩ · · · ∩Nk ∩CG(b̄1, . . . , b̄p). By induction hypothesis, the group

Zk contains Sℓ−k, so ZkSℓ−k−1/Zk is an FC-group. In particular,
Ä

Nk ∩CG(b̄i)
ä

/Zk ∩ZkSℓ−k−1/Zk
has a finite index in ZkSℓ−k−1/Zk for every i in {1, . . . , p}. Note that N1∩· · ·∩Nk contains S and Zk,
and hence ZkSℓ−k−1. It follows that (ZkSℓ−k−1/Zk)∩ (Ck+1/Zk) has a finite index in ZkSℓ−k−1/Zk.
If g normalises Sℓ−k−1, then Cgk+1 and Ck+1 are commensurable by minimality of Ck+1; note that

Cgk+1 is a subgroup of N1 ∩ · · · ∩Nk. As previously seen, the set
¶

Cgk+1 : g ∈ NG(Sℓ−k−1)
©

consists

of uniformly commensurable subgroups, so we apply Theorem 3.8 to
¶

Cgk+1 : g ∈ NG(Sℓ−k−1)
©

inside N1 ∩ · · · ∩ Nk and find a definable subgroup Bk+1 of N1 ∩ · · · ∩ Nk which is normalised by
NG(Sℓ−k−1) and commensurable with Ck+1. Let Dk+1 be the group Bk+1Sℓ−k−1/Zk. It is a finite
extension of the definable group Bk+1/Zk, hence definable, and commensurable with Ck+1/Zk. Let
Zk+1 be the preimage in G of the FC-centre of Dk+1. We claim that Zk+1 contains Sℓ−k−1: if
not, then there is some element g of Sℓ−k−1 \ Zk+1, thus (Bk+1Sℓ−k−1)/(Bk+1Sℓ−k−1) ∩ CG(ḡ) is
infinite, so Ck+1/Ck+1 ∩CG(ḡ) is also infinite, hence g cannot belong to Sℓ−k−1. This completes the
induction. �

Corollary 4.11. In a group having a simple theory, a definable FC-soluble subgroup H has an
FC-series whose members are normal definable subgroups of H.

Proof. We apply Theorem 4.10 to H inside H. �

Note that Proposition 4.5 shows in particular that an FC-nilpotent group having a simple theory
has a definable nilpotent subgroup of finite index. For an FC-soluble group, we have the following:

Corollary 4.12. In a group G having a simple theory, let H be a definable (using parameters in the
set A) FC-soluble subgroup of length ℓ. Then H has a definable (using parameters in A) subgroup
S of finite index which is 2ℓ-soluble.

Proof. Let H = H0 Q H1 Q · · · Q Hℓ = {1} be an FC-series for H with every Hi being normal in H.
By Corollary 4.11, we may assume that the subgroups Hi are definable. As each quotient Hi/Hi+1

is FC, it follows from Theorem 4.1 that the centralisers of every element ḡ of Hi/Hi+1 have a finite
and bounded index in Hi/Hi+1. By Theorem 2.5, the quotient group [Hi,Hi]Hi+1/Hi+1 is finite.
As H normalises the finite set [Hi,Hi]Hi+1/Hi+1, the centraliser of [Hi,Hi]Hi+1/Hi+1 has a finite
index in H. As it is definable using parameters in A, it must contain H0

A. Thus we have
î

[Hi,Hi],H
0
A

ó

6 Hi+1.
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For any subgroup K of G, let us write K(0) = K and K(k+1) = [K(k),K(k)]. With i equal to 0,

the above shows that (H0
A)

(2) is a subgroup of H1. Let us show inductively in n ≤ ℓ that (H0
A)

(2k)

is a subgroup of Hk. Assume that this is done until the step n. Then we have
Ä

H0
A

ä(2n+2)
=

[

î

H0
A)

(2n), (H0
A)

(2n)
ó

,
î

H0
A)

(2n), (H0
A)

(2n)
ó

]

6
î

[Hn,Hn],H
0
A

ó

6 Hn+1.

This shows that the derived subgroup (H0
A)

(2ℓ) is trivial. Because solubility of derived length 2ℓ is
expressible by a first order formula, going to an ℵ0-saturated extension of H, using the Compactness
Theorem and coming back to H, we find a subgroup X of finite index in H which is soluble of
derived length at most 2ℓ and definable using parameters in A. �

Corollary 4.13. In a group G having a simple theory, let S be a soluble subgroup of derived length
ℓ. There is a definable (using parameters in S) soluble subgroup E, which is virtually 2ℓ-soluble, and
contains S. Moreover, E is normalised by any element of NG(S).

Proof. By Theorem 4.10 and Corollary 4.11, there is a definable FC-soluble subgroup H of derived
length ℓ which contains S, has a definable FC-series, and is normalised by NG(S). By Corollary 4.12,
the group H has a definable subgroup of finite index which is 2ℓ-soluble, hence H has a normal such
subgroup, which we call F . Let R be the soluble radical of H, which is generated by all the normal
soluble subgroups of H. It is a soluble, and a characteristic subgroup of H. In particular, it is
normalised by NG(H), hence by NG(S). As S and R are both soluble and because S normalises R,
the product S ·R is soluble. As R contains F , the subgroup S ·R is the union of finitely many cosets
of F , hence definable, and virtually 2ℓ-soluble. �

Corollary 4.14. In a group G having a simple theory, let S be a normal soluble subgroup of derived
length ℓ. There is a definable (using parameters in S) normal subgroup enveloping S which is 3ℓ-
soluble and virtually 2ℓ-soluble.

Proof. Corollary 4.13 provides us with a definable normal virtually 2ℓ-soluble subgroup E of G which
contains S. So there is a definable soluble subgroup R of derived length at most 2ℓ such that S/S∩R
is finite. It follows that S ·R is the union of finitely many cosets of R, hence a definable subgroup.
Because R normalises S, the product S · R is also soluble of derived length at most ℓ+ 2ℓ. �

5. Type-definable envelopes

In a stable structure with no group law given a priori, under a certain geometric configuration,
one can build a non-trivial group G (see [Pil96, chapter 5]). G is not necessarily defined by one
formula but rather by infinitely many. In the case of a simple theory T , an analoguous result is
established in [BTW] (see also [PKM] for a different approach). It is an open question whether,
in T , a group H that is the conjunction of infinitely many definable sets is the conjunction of
definable groups. Should that be true, Theorem 4.2 and Theorem 4.10 would immediately yield
that a nilpotent subgroup of H is contained in a type-definable virtually nilpotent subgroup, and a
soluble subgroup of H is contained in a type-definable soluble one. These are the results that we
establish in this section.

Throughout the section, we fix an infinite non-countable cardinal κ, a simple theory T , and a
κ-saturated model M of T . A set is called bounded if its cardinality is strictly less than κ. We call
an n-type any bounded set π(x1, . . . , xn) of consistent formulas in n variables x1, . . . , xn. As M is
κ-saturated, we may identify any partial n-type over a bounded set of parameters with the set of its
realisations in Mn. We say that G is a type-definable group in M if there is

(1) a 1-type π(x), such that G is the subset of M whose elements satisfy every formula in π, and
(2) a definable subset D of M containing G, and a definable composition law × from D ×D to

M such that (G,×) is a group.

As noticed in [Poi87], assuming the group law × and the set D to be type-definable instead of
definable is equivalent by a compactness argument.

For the development of a suitable version of Theorems 4.2 and 4.10 for type-definable groups, we
introduce new definitions. Let G be any group. We call G a BC group if for every g in G, the
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conjugacy class gG is bounded, or equivalently if the centraliser CG(g) has a bounded index in G.
These BC groups were first considered by Tomkinson [Tom], who calls them κC groups, and then
independently by Wagner [Wag00], who calls them almost nilpotent groups of class one. Let H be
a subgroup of G. Following [Wag00, p. 119] with adapted notation and terminology, we define the
BC-centraliser of H in G by:

BCG(H) =
¶

g ∈ G : H/CH(g) is bounded
©

.

If N is a normal subgroup of H, we extend this definition by putting

BCG(H/N) =
¶

g ∈ G : H
¿

CH
Ä

{gN}
ä

is bounded
©

.

The BC-centre of G is defined by:
BC(G) = BCG(G).

Then, we define the nth BC-centre of G by the following induction on n:

BC0(G) = {1} and BCn+1(G) = BCG
Ä

G/BCn(G)
ä

.

Finally, the BC-normaliser of H in G is defined by:

BNG(H) =
¶

g ∈ G : Hg/H ∩Hg and H/H ∩Hg are bounded
©

.

If G is a type-definable group in M and H a relatively definable subgroup of G, then G/H
is bounded if and only if it is finite by the Compactness Theorem and saturation hypothesis. As
CK(g) is relatively definable in K for any type definable subgroup K of G, it follows that BCG(K) =
FCG(K). It is show in [Wag00, Proposition 4.4.10] that for a type-definable subgroup K of G, the
groups BCG(K), BNG(K) and BCn(K) are type-definable. For a relatively definable subgroup of
G, with a proof similar to Theorem 4.1 we get:

Theorem 5.1. Let G be a type-definable group in M and H a relatively definable subgroup of G
(using parameters in the set A). Then one has BC(H) = FC(H), BNG(H) = FNG(H) and
BCn(H) = FCn(H) and all those subgroups are relatively definable in G (using parameters in A).

A group is called hyperdefinable in M if it is a quotient group of the form G/H where G is a
type-definable group in M and H a type-definable normal subgroup of G. Neumann’s Theorem 2.5
for FC-groups has an analogue for BC-groups, at least in a group having a simple theory:

Lemma 5.2. Let G be a hyperdefinable group in M . If G is a BC group, then its derived subgroup
G′ is bounded.

Proof. We denote by G00 the intersection of all the hyperdefinable subgroups of G that have a
bounded index in G using types without parameters. By [Wag00, Proposition 4.4.10.3], the group
î

BC(G), G00
ó

is bounded. As G is a BC group, BC(G) equals G, so [G,G00] is bounded. We denote

the latter by S. Let I be a transversal for G00 in G. Let g and h be in G, and let g = kx and h = ℓy
where k and ℓ belong to I and x and y belong to G00. Applying commutator identities, we have

[g, h] = [kx, ℓy] = [kx, y] · [kx, ℓ]y = [kx, y] ·
Ä

[k, ℓ]x · [x, ℓ]
äy
.

This yields

[g, h] = [kx, y] · (xy)−1 · [k, ℓ] · xy · [x, ℓ]y

= [kx, y] ·
î

xy, [k, ℓ]−1
ó

· [k, ℓ] · [x, ℓ]y

and

[g, h] ∈ S2 · I4 · S.

But G00 has a bounded index in G by [Wag00, Proposition 4.4.5], so I is bounded. As S is also
bounded, the generating set of [G,G] is bounded. �

Definition 5.3 (from Wagner [Wag00]). A group is called BC-nilpotent if one of the following
equivalent facts holds:
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(1) There is a BC-central series of finite length, i.e. a sequence of normal subgroups of G

{1} = H0 6 H1 6 · · · 6 Hn = G

such that Hi+1/Hi is included in the BC-centre of G/Hi for every i in {0, . . . , n− 1}.
(2) The sequence of iterated BC-centres ends on G after n steps. We call the least such n the

BC class of G, or simply its class when there is no ambiguity.

Definition 5.4. A group G is called BC-soluble if there exists a normal BC-series of finite length,
i.e. a finite sequence of normal subgroups G0, G1, . . . , Gℓ of G such that

G = G0 Q G1 Q · · · Q Gℓ = {1}

and such that Gi/Gi+1 is a BC group for all i. We call the least such natural number ℓ the BC
length of G, or simply its length.

We cite the version of Theorem 3.7 suitable for type-definable groups.

Theorem 5.5 (Descending chain condition ‘up to finite index’ adapted from [Wag00, Theorem 4.2.12]).
Let ϕ(x, y) be a formula and let G be a type-definable group in M . Let H1,H2, . . . be a family of
subgroups of G defined respectively by ϕ(G, a1), ϕ(G, a2) . . . . If G1 > G2 > G3 > · · · is a descending
chain of subgroups of G such that every Gi is the intersection of finitely many Hj, then there exists
a natural number n such that Gm has a finite index in Gn for all m > n.

The proofs of the following two theorems follow those of Theorems 4.2 and 4.10 using Theorem 5.1,
and Theorem 5.5 instead of Theorem 4.1 and Theorem 3.7.

Theorem 5.6. Let G be a type-definable group in M and let N be an FC-nilpotent subgroup of
class n. Then N is enveloped by a relatively definable (with parameters in N) FC-nilpotent subgroup
F of class n. Moreover, F is normalised by any element of NG(N).

Theorem 5.7. Let G be a type-definable group in M and let S be an FC-soluble subgroup of
length ℓ. Then S is enveloped by a relatively definable (with parameters in S) FC-soluble subgroup
R of length ℓ, the members of whose FC series are relatively definable subgroups. Moreover, R is
normalised by any element of NG(S).

Proposition 5.8. Let G be a type-definable group in M . If G is BC-nilpotent of class n, then G
has a relatively definable subgroup of finite index which is 2n-nilpotent.

Proof. We denote by G00 the intersection of all the type-definable subgroups of H using no param-
eters and which have a bounded index in G. By [Wag00, Proposition 4.4.10.3], the subgroup G00 is
nilpotent of nilpotency class at most 2n. This is witnessed by a partial (2n+1)-type saying that the
commutator of every 2n+1 elements of G00 is trivial. By the Compactness Theorem, there is a defin-
able set X containing G such that the group law is defined over the product of any 22n+1 elements of
X (who may lie outside X though). By the Compactness Theorem again, there is a definable subset
Y of X containing G00, the commutator of every 2n + 1 elements of which is trivial. By definition
of G00, the set Y contains a type-definable subgroup of G that has a bounded index in G. It follows
that a finite number of translates of Y by elements g1, . . . , gm of G cover G. This implies that the
group 〈Y ∩G〉 equals (h1Y ∪· · ·∪hpY )∩G for some finite subset {h1, . . . , hp} of {g1, . . . , gm}. Thus,
〈Y ∩G〉 is relatively definable in G, has a finite index in G, and is 2n-nilpotent. �

Corollary 5.9. Let G be a type-definable group in M and let N be a nilpotent subgroup of class n.
There is a type-definable (with parameters in N) nilpotent subgroup F of G which is virtually 2n-
nilpotent, and a finite number of translates of which cover N . The group F is normalised by NG(N).

Proof. Same proof as for Corollary 4.6. Note that the transfer argument in Corollary 4.6 is not
needed here as M is already assumed to be sufficiently saturated. �

Corollary 5.10. Let G be a type-definable group in M and let N be a normal nilpotent subgroup of
nilpotency class n. There is a type-definable (with parameters in N) normal 3n-nilpotent subgroup
enveloping N .
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Proof. Corollary 5.9 provides a type-definable nilpotent subgroup F of G such that the quotient
N/N ∩F is finite. It follows that the core

⋂

g∈N F
g is a finite intersection of conjugates of H, hence

type-definable, 2n-nilpotent (as a subgroup of F ), and normalised by N . Let us call it FN . By
Fitting’s Lemma, the group N · FN is nilpotent of class at most n + 2n. Note that N/N ∩ FN
is finite, so N · FN is a finite extension of FN , hence type-definable. The group (N · FN )G is as
desired. �

We end with tackling the soluble subgroups. From Theorem 5.7, we deduce:

Corollary 5.11. Let G be a type-definable group in M . If G is FC-soluble, then it has an FC-series
whose members are relatively definable normal subgroups of G.

Proposition 5.12. Let H be a type-definable group inM and G a type-definable BC-soluble subgroup
of length ℓ. Then G has a type-definable normal subgroup S of finite index which is 2ℓ-soluble.

Proof. Let G = G0 Q G1 Q · · · Q Gℓ = {1} be a BC series for G such that every Gi is normal
in G. By Corollary 5.11, we may assume that the subgroups Gi are type-definable. Without loss
of generality, we may also assume that the types defining each Gi use no parameters (or add a
bounded number of parameters in the language). As each quotient Gi/Gi+1 is BC, the centralisers
of every element h̄ of Gi/Gi+1 have a bounded index in Gi/Gi+1. By Lemma 5.2, the quotient
group [Gi, Gi]Gi+1/Gi+1 is bounded. As G normalises the group [Gi, Gi]Gi+1/Gi+1, the centraliser
of [Gi, Gi]Gi+1/Gi+1 has a bounded index in G. As it is definable without parameters, it must
contain G00. Thus, for all i 6 n− 1, we have

î

[Gi, Gi], G
00
ó

6 Gi+1.

With i equal to 0, this shows that (G00)(2) is a subgroup of G1. Let us show inductively on n 6 ℓ

that (G00)(2n) is a subgroup of Gn. Assume that this is done until the step n. Then we have

Ä

G00
ä(2n+2)

=
[

î

G00)(2n), (G00)(2n)
ó

,
î

G00)(2n), (G00)(2n)
ó

]

6
î

[Gn, Gn], G
00
ó

6 Gn+1.

This shows that the derived subgroup (G00)(2ℓ) is trivial. By a compactness argument, as in the
nilpotent case, we find a type-definable subgroup E of G of finite index which is soluble of derived
length no greater than 2ℓ. The G-core of E meets our requirement. �

Corollary 5.13. Let G be a type-definable group in M and let S be a soluble subgroup of derived
length ℓ. There is a type-definable (with parameters in S) soluble subgroup R, which is virtually
2ℓ-soluble, and contains S. The group R is normalised by NG(S).

Corollary 5.14. Let G be a type-definable group in M and let S be a normal soluble subgroup
of derived length ℓ. There is a type-definable (with parameters in S) normal subgroup of G which
envelopes S, is 3ℓ-soluble, and virtually 2ℓ-soluble.

Appendix. On infinite extra-special p-groups

A referee pointed out that the theory of an infinite extra-special p-group being supersimple of
SU-rank 1 follows indeed from Proposition 3.11 and Lemma 4.1 of [MS]. We provide an elementary
alternative proof below, which ensures that the upper bound provided in Proposition 4.5, Corol-
lary 4.6 and Corollary 4.13 are in some sense optimal.

Definition 5.15 (Hall, Higman [HH]). For an odd prime p, a group G is called an infinite extra-
special p-group if G is infinite, gp = 1 for every g in G, the centre of G is cyclic of order p and
equals G′.

Note that theses axioms are expressible in first order logic. This axiomatises a complete theory
according to [Fel]. We denote by V an infinite vector space over a finite field F equipped with a
non-degenerate skew-symmetric bilinear form [ , ].



DEFINABLE ENVELOPES IN GROUPS HAVING A SIMPLE THEORY 16

Lemma 5.16. Let (λ1, . . . , λn) be in Fn. If a1, . . . , an are linearly independent in V , then the
solution set of the equations [x, a1] = λ1, . . . , [x, an] = λn is an affine subspace of V whose underlying
vector space has codimension n in V .

Proof. As the bilinear form is non-degenerate, the linear forms mapping x to [x, ai] are linearly
independent. �

Lemma 5.17. The theory of V in the language of F -vector-spaces together with a binary function
symbol [ , ] (where F is identified with a given subspace of V ) is complete and eliminates quantifiers.

Proof. We may without loss of generality add the elements of F to the language. If T is the theory
of V , let A and B be two models of T . Let a1, . . . , an be elements of A, let b1, . . . , bn be elements
of B such that there exist a local isomorphism σ between a1, . . . , an and b1, . . . , bn ; that is, σ is
a bijection between (a1, . . . , an) and (b1, . . . , bn) such that for all atomic formula ϕ(x1, . . . , xn) in
n variables, ϕ(a1, . . . , an) holds in A if and only if ϕ(b1, . . . , bn) holds in B. If an+1 belongs to
A, we show that σ can be extended to a local isomorphism having domain {a1, . . . , an+1}. This is
enough by [Poi85, Fraïssé, théorème 2.02]. We may replace a1, . . . , an by a basis of Span(a1, . . . , an)
and assume without loss of generality that a1, . . . , an are linearly independent. It follows that
b1, . . . , bn also are linearly independent. There exist scalars λ1, . . . , λn such that [an+1, ai] = λi for
all i 6 n. If an+1 belongs to Span(a1, . . . , an), then an+1 = µ1a1 + · · · + µnan, and we choose
σ(an+1) = µ1b1 + · · · + µnbn. If not, by Lemma 5.16 we can choose some bn+1 in B satisfying the
equations [x, b1] = λ1, . . . , [x, bn] = λn and we put σ(an+1) = bn+1. Note that extending σ to an
isomorphism of V itself can be done using Witt’s Lemma [Asc, p. 81]. �

Corollary 5.18. The theory of V is ℵ0-categorical, i.e. it has only one model of countable cardi-
nality, up to isomorphism.

Proof. The same proof produces a back and forth between any two countable structures having the
same theory as V . �

Lemma 5.19. The theory of V is supersimple of SU-rank 1.

Proof. By Lemma 5.17, any formula φ(x1, . . . , xℓ, a1, . . . , am, λ1, . . . , λn) in ℓ variables is a boolean
combination of formulas of the form xi = aj , xi = xj, [xi, xj ] = λk or [x, ai] = λj . Note that
[x, a] 6= λj is equivalent to the finite disjunction

∨

λ∈F\{λi}[x, a] = λ. If φ is a k-dividing formula
over A for some k > 2, then either it is algebraic, or it is implied by a formula of the form [x, a] = λ.
In the second case, [x, a] = λ is k-dividing over A. Then there is an A-indiscernible sequence
a1, a2 . . . such that the conjunction

∧

i∈{1,...,k}[x, ai] = λ is inconsistent. By Lemma 5.16, this means
that a1, . . . , ak are linearly dependent over F . By indiscernibilty of a1, a2 . . . , as F is finite, the type
of a is algebraic over A, a contradiction. Hence the only forking formulas are algebraic ones. It
follows that a non-algebraic ℓ-type can only fork once. �

Lemma 5.20. Let V be an infinite vector space over the finite field Fp with p elements, equipped
with a skew-symmetric bilinear non-degenerate form. Then V interprets an infinite extra-special
p-group.

Proof. One defines G as follows. G is the set of all pairs V × Fp with product

(u, a) ∗ (v, b) =
Ä

u+ v, a+ b+ [u, v]
ä

.

There is no difficulty to check that G satisfies the axioms of Definition 5.15. �

Note that reciprocally, an infinite extra-special p-group interprets an infinite vector space over Fp
equipped with a skew-symmetric bilinear non-degenerate form.

Corollary 5.21. An infinite extra-special p-group is supersimple of SU-rank 1 (and ℵ0-categorical).

ℵ0-categoricity of infinite extra-special p-groups was first established in [Fel].
The example of extra-special p-groups shows that in Proposition 4.5 and Corollary 4.6, the bound

2n cannot be lowered to n. Neither can the bound 2ℓ be replaced by ℓ in Corollary 4.13. More
precisely:
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Corollary 5.22. Let G be an infinite extra-special p-group. The theory of G is simple. G has an
infinite abelian subgroup. If A is an infinite abelian subgroup of G, then there is no abelian definable
subgroup of G containing A.

Proof. We first claim that no subgroup of finite index in G is abelian. If not, then G has an abelian
normal subgroup H having finite index. Let g1, . . . gp be a transversal for H. Because G is FC, the
group CH(g1)∩· · ·∩CH(gp) has a finite index in H, hence is infinite. But it is included in the centre
of G, a contradiction.

To build an infinite abelian subgroup of G, we pick a element g1 of G \ Z(G). As G is FC, any
centraliser CG(g) has a finite index, hence is not abelian by the previous claim. We inductively
build countably many pairwise distinct elements g1, g2, . . . such that for all i > 1, the element gi+1

belongs to CG(gi) \ Z
Ä

CG(gi)
ä

. The group 〈g1, g2, . . . 〉 is abelian.

The last point is shown in [Plo] using group theoretic methods. We may also use the supersim-
plicity of G: let A be an infinite abelian subgroup of G, and assume that H is a definable abelian
subgroup containing A. The SU-rank of H equals 1, so G/H has SU-rank zero. It follows that H
has a finite index in G, but can not be abelian by the first claim. �
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