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DEFINABLE ENVELOPES IN GROUPS WITH SIMPLE THEORY

CÉDRIC MILLIET

Abstract. Let G be a group with simple theory. For any nilpotent subgroup
N of class n, there is a definable nilpotent group E of class at most 2n finitely
many translates of which cover N . The group E is definable with parameters
in N . If S a soluble subgroup of G of derived length l, there is a definable
soluble group F of derived length at most 2l finitely many translates of which
cover S. The group F is definable with parameters in S.

1. Introduction

When studying a group, a model theorist focuses on sets which are definable by
formulae. It happens regularly that in a definable group G, he finds a subgroup
H of particular interest, having a given property P such as abelianity, nilpotency,
solubility etc. He tries then to find a definable group containing H also having
property P . We call an envelope of H any group containing H . Finding a definable
envelope of H with P is possible in some cases :

Let us call MC any group satisfying the minimum condition on centralisers :
every strictly monotone chain of centralisers has finite length in an MC group.
As stable groups are MC, an abelian subgroup of a stable group is contained in
a definable abelian group (the centre of its centralizer for instance). Poizat [11]
showed that if G is stable, every nilpotent subgroup of G is contained in a definable
nilpotent subgroup of same nilpotency class, and every soluble subgroup of G is
contained in a definable soluble one of same derived length. If G is a dependent
group, for any subgroup H of G which is abelian (respectively nilpotent of class
n, or normal and soluble of derived length n), Shelah [13] and Aldama [1] have
found a definable group E containing H which is also abelian (resp. nilpotent of
class n, or normal and soluble of derived length n). The parameters needed to
define E may be in a saturated extension of the ambient group though. In a recent
paper, Altınel and Baginski have extended one of Poizat’s result to the class of MC
groups, showing that any nilpotent subgroup of an MC group is enveloped by a
definable nilpotent one of same nilpotency class [2].

Another important class of groups extending stable ones is the class of group
having a simple theory. The previous results however do not hold in general if G
has merely a simple theory. For instance if G is an infinite extra-special p-group,
i.e. if every g in G has order p, if the centre of G is cyclic of order p and equals
G′. Such a group has a simple theory (actually supersimple of SU -rank 1, see
Annexe). If p > 2, it is nilpotent of class 2, and obviously has infinite abelian
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subgroups. If G had an infinite definable abelian subgroup, that abelian group
would have SU -rank 1, hence would be of finite index in G, a contradiction. So
every of its definable abelian subgroups is finite (this is shown in [9] using group
theoretic methods). However, if G is any group with simple theory, it has been
shown in [6] that an abelian subgroup of G is always contained in a definable group
H having a normal finite subgroup N such that H/N is abelian (we call such a
group H finite-by-abelian). A group is FC if every of its elements has finitely
many conjugates. Finite-by-abelian groups are FC groups. When we were looking
for the narrowest possible definable group which envelope an abelian, nilpotent or
soluble subgroup of a group having simple theory, it turned out that the problem
was conceptually simpler in a more general setting involving FC, FC-nilpotent and
FC-soluble groups instead of abelian, nilpotent and soluble ones.

2. Preliminaries on FC-nilpotency and FC-solubility

A group G is an FC-group if every of its conjugacy classes is finite, or equivalently
if the centraliser of any element in G has finite index in G. Let G be any group
and H a subgroup of G. Following Haimo in [5], we may define

- the FC-centraliser of H in G :

FCG(H) = {g ∈ G : H/CH(g) is finite}

If N is a normal subgroup of H , we extend the definition by puting

FCG(H/N) = {g ∈ G : H/CH({gN}) is finite}

- the FC-centre of G :

FC(G) = FCG(G)

- the nth FC-centre of G by the following induction on n :

FC0(G) = {1} and FCn+1(G) = FCG

(

G/FCn(G)
)

- the FC-normaliser of H in G :

FNG(H) = {g ∈ G : Hg/H ∩Hg and H/H ∩Hg are finite}

These are all subgroups of G. The chain FC1(G) ≤ · · · ≤ FCn(G) is an ascend-
ing chain of characteristic subgroups of G (in particular, FCn(G) is normal in G
and its inductive definition makes sense).

Lemma 2.1. Let G be a group, g an element of this group, H a subgroup of G, N
a subgroup of H and n any natural number.

(1) H normalises FCG(H).
(2) If N and H are normal in G, then CG({gN}) is a subgroup of CG({gH}).
(3) H ∩ FCn(G) is a subgroup of FCn(H)
(4) If N is a finite normal subgroup of H, then FCG(H/N) equals FCG(H).

Proof. Let h be in H . As CH(gh) equals CH(g)h, if H/CH(g) is finite then so is
H/CH(gh). It follows that H normalises FCG(H).

If h centralises {gN}, then gh is in N , hence in H so h centralises {gH}.
If h is in H ∩FC(G), then G/CG(h) is finite. As H/CH(h) embeds in G/CG(h),

the element h belongs to FC(H) as well. Now suppose that FCn(G) ∩H is a sub-
group of FCn(H) and let h be in FCn+1(G)∩H . It follows that G/CG({hFCn(G)})
is finite, so H/CH({hFCn(G)}) is finite. As h is in H , the group CH

(

{hFCn(G)})
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equals CH({h(FCn(G) ∩ H)}). By induction hypothesis and point 2, the group
H/CH({hFCn(H)}) must be finite which provides that h is in FCn+1(H).

By point 2, the group FCG(H) is a subgroup of FCG(H/N). If x is in the latter,
there is a group F of finite index in H which centralises the finite set {xN}. So xF

is finite, and so is xH . �

Definition 2.2 ((Haimo [5])). A group is FC-nilpotent if one of the following
equivalent facts holds :

(1) There is an FC-central series of finite length, i.e. a sequence of normal
subgroups of G

{1} = H0 ≤ H1 ≤ · · · ≤ Hn = G

such that Hi+1/Hi is in the FC-centre of G/Hi for every i in {0, . . . , n−1}.
(2) The sequence of iterated FC-centres ends on G after n steps. We call the

FC-class of G, or simply its class, the least such n.

Definition 2.3 ((Duguid, McLain [3])). A group G is FC-soluble if there exists
a normal FC-series of finite length, i.e. a finite sequence of normal subgroups
G0, G1, . . . , Gn of G such that

G0 = G D G1 D · · · D Gn = {1}

and such that Gi/Gi+1 is an FC-group for all i. We call the least such natural
number n the FC-solubility class of G, or its class.

Remark 2.4. For a group G, the requirement to have a finite abelian series or a finite
abelian series whose members are normal in G are equivalent. This may not be true
anymore in the case of an FC-series. We have modified the original definition in
[3] and we do require here that the FC-series of G consist of subgroups which are
normal in G.

FC-nilpotent groups are FC-soluble. FC-nilpotent group of class 1 and FC-
soluble group of class 1 coincide with FC-groups. Finite groups and nilpotent ones
are FC-nilpotent. Soluble groups are FC-soluble. Recall from [7, Theorem 3.1] :

Theorem 2.5 ((Neumann)). Let G be an FC-group whose conjugacy classes are
finite and bounded. Then the derived group G′ is finite.

A group homorphism f from G onto H maps a finite conjugacy G-class to a
finite conjugacy H-class, and that the preimage by f of a finite set is finite pro-
viding that f has finite kernel. It follows that a direct image of an FC-group by a
group homomorphism is an FC-group, as well as is a preimage of an FC-group by
group homomorphism having finite kernel. As a corollary, FC-nilpotency (and FC-
solubility) is preserved under direct images of group homomorphisms, and under
preimages of group homomorphisms having finite kernel. In particular, subgroups
and quotient groups of FC-nilpotent (resp. FC-soluble) groups are FC-nilpotent
(resp. FC-soluble).

Proposition 2.6. Let G be any group.

(1) If G is FC-nilpotent and infinite, then FC(G) is infinite.
(2) FCn(G) is FC-nilpotent of class at most n.

Proof. If FC(G) is finite, then FC2(G) equals FC(G) by Lemma 2.1.4, so G is
finite.

The group FCn(G) is a subgroup of FCn

(

FCn(G)
)

by Lemma 2.1.3. �
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3. Groups with simple theory

For more details about this section, we refer the curious reader to [12, Shelah],
[8, Pillay] and [15, 16, Wagner]. In a given theory, let f(x) and φ(x, y) be any
formula. Let k be a natural number. We define the Dφ,k-rank of f inductively by :

D(f, φ, k) ≥ 0 if f is consistent.
D(f, φ, k) ≥ n + 1 if there is a sequence a0, a1, . . . such that D(f(x) ∧
φ(x, ai), φ, k) is at least n for all i, and the formulae φ(x, a0), φ(x, a1), . . .
are k-inconsistent.

If X is a set defined by a formula f , we may write D(X,φ, k) for D(f, φ, k). Note
that D(f, φ, k) takes three arguments. A basic induction shows that it is increasing
in the first one (with respect to logical implication), decreasing in the second, and
increasing in the third (with respect to the natural order on N). The following
lemma is easy to verify.

Lemma 3.1. Let a be a finite tuple of parameter. For any formula f(x, a), the
sentence "D(f(x, a), φ, k) is at least n" is a type-definable condition on a.

Definition 3.2 ((Shelah [12])). A complete theory is simple if the Dφ,k-rank of
any of its formulae is a natural number, for every formula φ and natural number k.
A structure is simple if its first order theory is so.

Lemma 3.3 ((Shelah [12])). Let X and Y be two definable subsets of some struc-
ture. The rank D(X ∪ Y, φ, k) is the maximum of D(X,φ, k) and D(Y, φ, k).

Proof. Basic induction on D(X ∪ Y, φ, k). �

If φ(x, y) is any formula, and g a function symbol. We write g−1φ(x, y) for the
formula (∃z)(x = g(z)∧φ(z, y)). In a group, we write zφ(x, y) or simply zφ for the
formula φ(z−1x, y) where z is thought of as a new parameter variable of arity 1.
We take the opportunity to stress on the following crucial lemma that the author
could not find anywhere in the litterature :

Lemma 3.4. In any structure, let X and Y be two definable subsets, and g a
definable map from X to Y .

(1) If g is surjective, then D(X, g−1φ, k) ≥ D(Y, φ, k).
(2) If g has fibres of size at most n, then D(X, g−1φ, k) ≤ D(Y, φ, kn).

Proof. We proceed by induction on D(Y, φ, k). If Y is consistent, so is X . If
D(Y, φ, k) is at least n + 1, there are formulae φ(x, a1), φ(x, a2), . . . which are k-
inconsitent, with each Y ∩ φ(x, ai) having Dφ,k-rank at least n. By induction
hypothesis, their preimages by g witness that X has D-rank at least n+ 1.

For point 2, there is no harm in assuming that g is onto. If X is consistent, then
so is Y . We go on inductively and suppose that D(X, g−1φ, k) is at least m + 1.
This provides us with k-inconsistent sets X0, X1, . . . defined by φ(g(x), a0), . . . with
D(X ∧ Xi, g

−1φ, k) at least m. By induction hypothesis, as g is onto, D(Y ∧
g(Xi), φ, kn) is at least m. Let I be a subset of N of cardinal kn and suppose there
is some y in

⋂

i∈I g(Xi). Let x1, . . . , xp be the list of all preimages of y by g. Every
xi belongs to say ni distinct sets among (Xi)i∈I , and we also have n1+· · ·+np ≥ |I|.
As p is at most n, at least one ni must be greater or equal than k, a contradiction
with X0, X1, . . . being k-inconsistent. This shows that the sets g(X0), g(X1), . . .
are kn-inconsistent, and that D(Y, φ, kn) is at least m+ 1. �
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It is worth mentioning that one could weaken the definability assumption on g in
the previous lemma and only require that images and preimages by g of uniformly
definable sets be uniformly definable. In particular, one could take g to be an
automorphism of the structure. As our proofs on groups heavily relies on passing
to quotient groups, we recall that simplicity is preserved when modding out by a
definable equivalence relation.

Corollary 3.5 ((Shelah)). Let M be a simple structure and E a definable equiva-
lence relation on M . Then the disjoint union of M and M/E is a simple structure.
(the language considered is the language on M extended by a predicate for M/E
and a function for the canonical surjection from M to M/E).

Proof. Note that as E is definable in M , the new language does not induce new
formulae on M , so M is simple in the extended language. By Lemma 3.3, it is
enough to show that M/E is simple. If φ(x, y) is any formula, we write φE(x, y)
for the formula (∃z)(xEz ∧ φ(z, y)). By Lemma 3.4.1 applied to the canonical
surjection from M to M/E, the rank D(M,φ, k) is at least D(M/E, φE , k), so
M/E is simple. �

Proposition 3.6 ((Pillay [16, Lemma 4.1.15])). Let G be a group with simple
theory, and let H be a definable subgroup of G. The index G/H is finite if and
only if H and G have the same Dzφ,k-rank for every natural number k and formula
φ(x, y).

Proof. Every coset of H has the same Dzφ,k-rank by Lemma 3.4. If G is covered
by finitely many cosets of H , then G and H have same Dzφ,k-rank by Lemma 3.3.
Reciprocally, if G is covered by infinitely many (pairwise disjoint) cosets of H , we
take for φ(x, y) the formula defining H and obviously have that D(G, zφ, 2) is at
least D(H, zφ, 2) + 1. �

Theorem 3.7 ((Wagner [16, Theorem 4.2.12])). In a group with simple theory,
let f(x, y) be a fixed formula and let H1, H2, . . . be a family of subgroups defined
respectively by formulae f(x, a1), f(x, a2) . . . . If G1, G2, . . . is a descending chain
of finite intersections of Hi, there exists a natural number n such that Gm has finite
index in Gn for all m ≥ n.

Two subgroups of a given group G are commensurable if the index of their inter-
section is finite in both of them. Commensurability is an equivalence relation on
the set of subgroups of G. A family of subgroups of G is uniformly commensurable
if they are pairwise commensurable and if the correspondent family of finite indexes
is bounded by some natural number. The following result appears in [14].

Theorem 3.8 ((Schlichting)). Let G be a group and H a family of uniformly com-
mensurable subgroups. There exists a subgroup N of G commensurable with mem-
bers of H and invariant under the action of the automorphisms group of G stabilising
the family H setwise. The inclusions

⋂

H∈H ⊂ N ⊂ H4 hold. Moreover, N is a fi-
nite extension of a finite intersection of elements in H. In particular, if H consists
of definable groups then N is also definable.
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4. Definable envelopes

Proposition 4.1. In a group G with simple theory, let H be a definable subgroup
(with parameters in A). The FC-centraliser, FC-normaliser and iterated FC-
centers of H are type-definable subgroups (with parameters in A). If G is sufficiently
saturated, then those groups are definable.

Proof. We proove the proposition for FC(H) only. From Lemma 3.1 and Propo-
sition 3.6, it follows immediately that FC(H) is a type definable group. If the
structure is staturated, one can identify type-definable sets over A and consistent
types over A. On the one hand, FC(H) is closed for the topology generated by
formulae over A. On the other hand, the condition "H/CH(g) equals n" is an
A-definable condition in g, so FC(H) is a union of open sets. By compactness,
finitely many of these open sets must cover FC(H). �

Theorem 4.2. Let G be a group with simple theory and N a subgroup of G. If N
is FC-nilpotent of class n, then it is contained in a definable FC-nilpotent group
of class n.

Proof. We may replace the ambient group G by a saturated extension and assume
without loss of generality that G is sufficiently saturated. By Proposition 4.1, the
FC-centralisers, FC-normaliser and iterated FC-centres of definable subgroups of
G are definable. We build inductively a decreasing chain of definable subgroups
B1 ≥ · · · ≥ Bn such that for every i in {1, . . . , n}

(1) Bi contains N .
(2) FCi(Bi) contains FCi(N).

Let a1, . . . , ap be elements in FC(N) such that CG(a1, . . . , ap, a) has finite index
in CG(a1, . . . , ap, a) for any a in FC(N). They do exist by Theorem 3.7. We
call C1 the group CG(a1, . . . , ap). Note that N/CN(ai) is finite for every ai, so
N/N ∩C1 is also finite. For every g in N , the group Cg

1 equals CG(a
g
1, . . . , a

g
p). As

N normalises FC(N), the groups Cg
1 and C1 are commensurable by minimality of

C1. It follows that the FC-normaliser of C1 contains N . As it is definable, the
familly of N -conjugates of C1 must be uniformly commensurable. We may apply
Theorem 3.8 to the set {Cg

1 : g ∈ N} and find some definable D1 commensurable
with C1 which is normalised by N . As N/N ∩ C1 is finite, N/N ∩ D1 is finite
too, so the group N · D1 is a finite union of cosets of D1, hence definable. We
define B1 to be N ·D1, and claim that its FC-centre contains FC(N) : if g is in
B1 \ FC(B1), then B1/B1 ∩ CG(g) is infinite. But B1 and C1 are commensurable
so C1/C1 ∩ CG(g) is infinite too and g cannot be in FC(N) by minimality of C1.
This complete the first step.

Now assume that B1, . . . , Bk−1 are build. The groupBk−1 normalises FCk−1(Bk−1)
by Lemma 2.1.1 so Bk−1/FCk−1(Bk−1) is a group. Note that the disjoint union of
G and Bk−1/FCk−1(Bk−1) is a simple structure by Corollary 3.5 so we may apply
the chain condition in G taking parameters in Bk−1/FCk−1(Bk−1). For any b in
Bk−1, we write b̄ for the class of b in the quotient group Bk−1/FCk−1(Bk−1). Let
b1, . . . , bm be elements of FCk(N) such that CBk−1

(b̄1, . . . , b̄m, b̄) has finite index in

CBk−1
(b̄1, . . . , b̄m) for any b in FCk(N). Let us call Ck the group CBk−1

(b̄1, . . . , b̄m).
The quotient N/CN ({biFCk−1(N)}) is finite for every bi, and FCk−1(Bk−1) con-
tains FCk−1(N) by induction hypothesis so N/CN({biFCk−1(Bk−1)}) is also finite
by Lemma 2.1 2. It follows that N/CN (b̄1, . . . , b̄m) hence N/N ∩ Ck is finite.
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We may once again show that the groups in {Cg
k : g ∈ N} are uniformly com-

mensurable, apply Theorem 3.8 to the set of N -conjugates of Ck and find some
definable group Dk normalised by N and commensurable with Ck. We call Bk

the definable group N ·Dk, which is a subgroup of Bk−1. To finish the proof, we
just need to show that FCk(Bk) contains FCk(N). If g is in Bk \ FCk(Bk), then
Bk/Bk∩CG({gFCk−1(Bk)}) is infinite. As Bk is a subgroup of Bk−1, Lemma 2.1.3
yields

FCk−1(Bk−1) ∩Bk ≤ FCk−1(Bk)

So the group Bk/Bk ∩CG

(

{g(FCk−1(Bk−1) ∩Bk)}
)

is infinite too. Note that as g
is Bk, we have

Bk ∩ CG

(

{g(FCk−1(Bk−1) ∩Bk)}
)

= Bk ∩CG

(

{gFCk−1(Bk−1}
)

= Bk ∩ CG(ḡ)

It follows that Bk/Bk ∩ CG(ḡ) is infinite. As Bk and Ck are commensurable, the
quotient Ck/Ck ∩ CG(ḡ) is infinite too, so g is not in FCk(N) by minimality of
Ck. This completes the inductive construction of the groups Bi. It follows that
FCn(Bn) is a definable FC-nilpotent subgroup of class at most n which contains
FCn(N), hence N . �

Remark 4.3. It may be desirable to have a closer look at the parameters necessary
to define the definable envelope of N in the previous proof. Note that we had
to go to a saturated extension of the ambient group. However, the only places
where we may have used parameters from this monster model is when applying
Schlichting’s Theorem, the first time being to the set {Cg

1 : g ∈ N} where C1 is
N -definable which provides a finite extension D1 of a N -definable group. But the
set {Cg

1 : g ∈ N} is stabilised setwise (and even pointwise) by the automorphisms
of the structure fixing N pointwise. By Sclichting’s Theorem again, the group D1

is N -invariant, hence N -definable. It follows that every definable group considered
in the proof is in fact definable with parameters in N : once we have found our
definable envelope in the monster model, we can compute it in the original group.

In [16] Wagner has defined a notion of "almost" nilpotent group suitable for
groups hyperdefinable in a simple theory and showed that the hyperdefinable con-
nected component of a hyperdefinable almost nilpotent group of class n is nilpotent
of class at most 2n. If G is a definable group, we write G0

A for the intersection of
all A-definable subgroups of G of finite index.

Proposition 4.4. In a group with simple theory, if H is an A-definable FC-
nilpotent subgroup of class n, then H0

A is nilpotent of class at most 2n.

Proof. We follow the proof of [16, Proposition 4.4.10.3]. �

Corollary 4.5. In a group with simple theory, let N be a nilpotent subgroup of
class n. There is a definable (with parameters in N) nilpotent group of class at
most 2n finitely many translates of which cover N .

Proof. We may assume that the ambient group is sufficiently saturated. By Theo-
rem 4.2, there is H an N -definable FC-nilpotent group of class n containing N . By
Proposition 4.4, the group H0

N is nilpotent of class at most 2n. This is witnessed by
the formula saying that the commutator of every 2n+1 elements is trivial. As H0

N

is the intersection of N -definable groups, it follows by compactness and saturation
that there is an N -definable group of finite index in H which is nilpotent of class
at most 2n. �
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Corollary 4.6. In a group with simple theory, let N be a nilpotent normal subgroup
of class n. There is a definable normal nilpotent group of class at most 3n containing
N .

Proof. Corollary 4.5 provides an N -definable nilpotent group H such that the quo-
tient N/N ∩H is finite. It follows that ∩g∈NHg is N -definable, nilpotent of class
at most 2n (as a subgroup of H) and normalised by N . Let us call it HN . By
Fitting’s Lemma, the group N ·HN is nilpotent of class at most n+2n. Note that
N ·HN is a finite extension of HN , hence N -definable. The group (N ·HN )G is as
desired. �

Corollary 4.7. In a group simple with simple theory, if there is an infinite nilpotent
subgroup, there is an infinite definable finite-by-abelian subgroup.

Proof. We may assume that the group is saturated. By Corollary 4.5, there is an
infinite definable FC-nilpotent group. Its FC-centre is definable by Proposition 4.1,
hence finite-by-abelian by Theorem 2.5, and infinite by Proposition 2.6. �

We go on with the soluble case. It was shown laboriously in [6, Corollary 5.12]
that a soluble subgroup of class n in a group with simple theory is enveloped by a
definable FC-soluble group of class 2n− 1. We give a better version here.

Theorem 4.8. Let G be a group with simple theory, and let S be a subgroup of G.
If S is FC-soluble of class n, then it is contained in a definable FC-soluble group
of class n the members of whose FC series are definable subgroups.

Proof. We may again assume that the ambient group is sufficiently saturated so
that the FC-normalisers, FC-centers and FC-centralisers of definable groups are
definable. Let S D S1 D · · · D Sn = {1} be an FC-series for S. Recall that every
Si is normal in S. We set Z0 equal to the trivial group and inductively build an
ascending chain of definable subgroups Z1 E Z2 E · · · E Zn such that for every i
in {1, . . . , n}

(1) Zi is normal in Zn

(2) Zi contains Sn−i

(3) S normalises Zi

(4) Zi/Zi−1 is an FC group.

By Theorem 3.7, let a1, . . . , ap be elements in Sn−1 such that CG(a1, . . . , ap, a) has
finite index in CG(a1, . . . , ap) for all a in Sn−1. As Sn−1 is an FC group, the group
Sn−1/Sn−1 ∩ C1 is finite. Let g be in S. As g normalises Sn−1, the group Cg

1 is a
centraliser of elements in Sn−1, hence is commensurable with C1 by minimality of
C1. As before, the set {Cg

1 : g ∈ S} consists of uniformly commensurable groups.
By Theorem 3.8, there is a definable group B1 commensurable to C1 and normalised
by S. The group B1 · Sn−1 is definable and commensurable to B1. Let us call it
D1. Let Z1 be its FC-centre, and N1 the normaliser of Z1. We show that Z1

contains Sn−1 : if g is in D1 \ FC(D1), then D1/D1 ∩ CG(g) is infinite, and so is
C1/C1 ∩ CG(g). By minimality of C1, the element g is not in Sn−1.

Now assume that Z1, . . . , Zk are build and let Ni be the normaliser of Zi for
each i. Note that N1 ∩ · · · ∩ Nk contains S. For any b in NG(Zk) we write b̄ for
the class of b in the quotient group NG(Zk)/Zk. Let b1, . . . , bp be a maximal set of
elements in Sn−k−1 such that N1 ∩ · · · ∩Nk ∩CG(b̄1, . . . , b̄p) is minimal up to finite
index. Let us call Ck+1 the group N1 ∩ · · · ∩ Nk ∩ CG(b̄1, . . . , b̄p). By induction



DEFINABLE ENVELOPES IN GROUPS WITH SIMPLE THEORY 9

hypothesis, the group Zk contains Sn−k so ZkSn−k−1Zk is an FC goup. It follows
that (ZkSn−k−1/Zk) ∩ (Ck+1/Zk) has finite index in ZkSn−k−1/Zk. If g is in S, it
normalises Sn−k−1 so Cg

k+1 and Ck+1 are commensurable by minimality of Ck+1.

We apply Theorem 3.8 to the set {Cg
k+1 : g ∈ S} and find a definable group Bk+1

normalised by S and commensurable with Ck+1. The group Bk+1 is a subgroup of
N1 ∩ · · · ∩Nk. Let Dk+1 be the group Bk+1Sn−k−1/Zk. It is a finite extension of a
definable group hence definable, and commensurable with Ck+1/Zk. Let Zk+1 be
the preimage in G of the FC-centre of Dk+1. We claim that Zk+1 contains Sn−k−1

: if g is in (Bk+1Sn−k−1) \ Zk+1, then (Bk+1Sn−k−1)/(Bk+1Sn−k−1) ∩ CG(ḡ) is
infinite, so Ck+1/Ck+1 ∩ CG(ḡ) is also infinite, hence g is cannot be in Sn−k−1.
This completes the induction. �

Corollary 4.9. In a group with simple theory, a definable FC-soluble group has
an FC-series whose members are definable subgroups.

Proof. Let G be this group. We apply Theorem 4.8 to G inside G. �

Note that [16, Proposition 4.4.10.3] shows in particular that a definable FC-
nilpotent group in a simple theory has a nilpotent definable subgroup of finite
index. For definable FC-soluble groups, we have the following :

Corollary 4.10. In a simple theory, let G be a definable (with parameters in A)
FC-soluble group of class n. Then G has a definable (with parameters in A) sub-
group of finite index which is soluble of class at most 2n.

Proof. Without loss of generality, we may suppose that the ambient group is suffi-
ciently saturated. Let G0 D G1 D · · · D Gn be an FC series for G with every Gi

normal in G. By Corollary 4.9, we may assume that the subgroups Gi are defin-
able. As each quotient Gi/Gi+1 is FC, it follows by Proposition 4.1 and saturation
that the centraliser of every ḡ in Gi/Gi+1 has finite bounded index in Gi/Gi+1.
By Theorem 2.5, the quotient group [Gi, Gi]/Gi+1 is finite. Let G0 stand for the
intersection of the A-definable subgroups of G of finite index. As G normalises the
finite set [Gi, Gi]/Gi+1, the centraliser of [Gi, Gi]/Gi+1 has finite index in G. As it
is A-definable, it must contain G0. Thus we have

[[Gi, Gi], G
0] ≤ Gi+1

With i equals 0, this shows that (G0)(2) is a subgroup of G1. Let us show
inductively on k, that (G0)(2k) is a subgroup of Gk. Assume that this is done until
the step p. Then we have

G(2p+2) = [[(G0)(2p), (G0)(2p)], [(G0)(2p), (G0)(2p)]] ≤ [[Gp, Gp], G
0] ≤ Gp+1

This shows that the derived group (G0)(2n) is trivial. By compactness, we find an
A-definable subgroup of finite index in G which is soluble of class at most 2n. �

Corollary 4.11. In a group with simple theory, let H be a soluble subgroup of class
n. There is a definable (with parameters in H) soluble group of class at most 2n
finitely many translates of which cover H.

Proof. By Theorem 4.8 and Corollary 4.9, there is K a definable FC-soluble group
of class n containing H with a definable FC series. By Corollary 4.10, the group
K has a definable subgroup of finite index which is soluble of class at most 2n. �
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Corollary 4.12. In a group with simple theory, let H be a normal soluble subgroup
of class n. There is a definable (with parameters in H) normal soluble group of class
at most 3n containing H.

Proof. Corollary 4.11 provides a definable soluble K with H/H∩K finite. It follows
that ∩h∈HKh is definable, soluble of class at most 2n (as a subgroup of K) and
normalised by H . Call it KH . Being the product of two normal soluble subgroups,
the group H ·KH is also soluble, of class at most n+ 2n. The group (H ·KH)G is
as desired. �

Annexe. On infinite extra-special p-groups

It seems to be well known among model theorists that infinite extra-special p-
groups are supersimple of SU -rank 1. As we could not find any reference for that,
we provide a proof here.

Definition 4.13. For a natural number p > 2, a group G is an infinite extra-special
p-group if G is infinite, if gp = 1 for every g in G, if the centre of G is cyclic of
order p and equals G′.

Note that this axiomatisation is expressible in first order logic and gives a com-
plete theory according to [4, Felgner]. We call V an infinite vector space over a
finite field F equiped with a non-degenerate skew-symmetric bilinear form [ , ].

Lemma 4.14. Let (λ1, . . . , λn) be in Fn. If a1, . . . , an are linearly independent in
V , then the solution set of

∧

i∈{1,...,n}[x, ai] = λi is an affine subspace of V whose
underlying vector space has codimension n in V .

Proof. As the bilinear form is non-degenerate, the linear forms mapping x to [x, ai]
are linearly independent. �

Lemma 4.15. The theory of V is complete and eliminates quantifiers.

Proof. If T is the theory of V , let A and B be two models of T and σ a local
isomorphism between a1, . . . , an and b1, . . . , bn. If an+1 is in A, we show that σ can
be extended to a local isomorphism of domain {a1, . . . , an+1}. This is enough by
[10, Fraïssé, théorème 2.02]. There are scalars λ1, . . . , λn such that [an+1, ai] = λi

for all i ≤ n. We may replace a1, . . . , an by a basis of Span(a1, . . . , an) and assume
without loss of generality that a1, . . . , an are linearly independent. It follows that
b1, . . . , bn also are linearly independent. If an+1 belongs to Span(a1, . . . , an), then
an+1 = λ1a1 + · · · + λnan and we choose σ(an+1) = λ1b1 + · · · + λnbn. If not, by
Lemma 4.14 we can choose some bn+1 in B satisfying

∧

i∈{1,...,n}[x, bi] = λi and

put σ(an+1) = bn+1. �

Corollary 4.16. V is ℵ0-categorical.

Proof. The same proof produces a back and forth between any two countable struc-
tures having same theory as V . �

Lemma 4.17. V is supersimple of SU -rank 1.

Proof. By Lemma 4.15, any non algebraic formula is a finite disjunction of for-
mulae φ(x, a, λ) of the form "[x, a] = λ". If [x, a] = λ k-divides over A for some
k ≥ 2, there is an A-indiscernible sequence a1, a2 . . . such that the conjunction
∧

i∈{1,...,k} φ(x, ai, λi) is inconsistent. By Lemma 4.14 this means that a1, . . . , ak



DEFINABLE ENVELOPES IN GROUPS WITH SIMPLE THEORY 11

are linearly dependent over F . By indiscernabilty, as F is finite, the type of a is
algebraic over A, a contradiction. Hence the only forking formulae are algebraic
ones. It follows that non-algebraic types can only fork once. �

Lemma 4.18. Let V be an infinite vector space over the finite field Fp with p
elements, equiped with a skew-symmetric bilinear non-degenerate form. Then V
interprets an infinite extra-special p-groups.

Proof. One defines G as follows. G is the set of all pairs V × Fp with product

(u, a) ∗ (v, b) = (u+ v, a+ b+ [u, v])

�

Note that reciprocally, an infinite extra-special p-groups interprets an infinite
vector space over Fp, equiped with a skew-symmetric bilinear non-degenerate form.

Corollary 4.19. An infinite extra-special p-groups is supersimple of SU -rank 1
(and ℵ0-categorical).

ℵ0-categoricity of infinite extra-special p-groups has been first established in [4,
Felgner].
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