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Abstract.  

 

We propose in this paper an original technique to predict global radiation using a hybrid ARMA/ANN 

model and data issued from a numerical weather prediction model (ALADIN). We particularly look at 

the Multi-Layer Perceptron. After optimizing our architecture with ALADIN and endogenous data 

previously made stationary and using an innovative pre-input layer selection method, we combined it 

to an ARMA model from a rule based on the analysis of hourly data series. This model has been used 

to forecast the hourly global radiation for five places in Mediterranean area. Our technique 

outperforms classical models for all the places. The nRMSE for our hybrid model ANN/ARMA is 

14.9% compared to 26.2% for the naïve persistence predictor. Note that in the stand alone ANN case 

the nRMSE is 18.4%. Finally, in order to discuss the reliability of the forecaster outputs, a 

complementary study concerning the confidence interval of each prediction is proposed  

Keywords: Time Series forecasting, hybrid, Artificial Neural Networks, ARMA, Stationarity  

  



NOMENCLATURE 

Time series generalities 

 

ANN nomenclature 

xt /  ̂  
Time series measure and prediction at 

time t 
B

1   
 set, values of the biases of the hidden 

nodes 

Xt /  ̂  
Global time series measure and prediction 

at time t (Wh/m²) 
B²   

 set, value of the output node bias 

      Angular frequencies of a signal (s
-1

) H Number of hidden nodes 

Rt 

Time series calculated from global 

radiation and representing the cloud cover 

occurrence 

In Number of endogenous input nodes 

a(t)/b(t) 
Continuous functions representing the 

amplitude of the global radiation (Wh/m²) 
f/g 

Activation function of the output and 

hidden layer 

     
  values of the weight between input nodes 

j and hidden nodes i 

fn Regression model group   
 

 
weight values between hidden node i and 

output node 

     Residue of regression at time t+1 t 
   wieghts optimization for the Levenberg-

Marquard algorithm 

E[X(t)] 

Expected value of X(t); the first moment of 

X(t) is the average, and the second the 

variance 

J Jacobian matrix 

h) 

Covariance between two variables without 

time dependence 

 

I Identity matrix 

Time series preprocessing 

 
 ( ) Error prediction vector 

  
 ( ) 

Corrected extraterrestrial solar radiation 

coefficient at time t [Wh/m²] 
  Specific algorithm parameter 

Hgh 
Clear sky global horizontal radiation [Wh 

/m²] 
endo

e
 e lags endogenous for ANN 

 Global total atmospheric optical depth  ̂( )   

ALADIN forecast of the nebulosity at 

time t and n, the number of nebulosity 

lag in ANN input [octas] 

b
 

Fitting parameter of the Solis clear sky 

model 
 ̂( )   

ALADIN forecast of the pressure at time 

t and ps, the number of pressure lag in 

ANN input [Pa] 

h
 

Solar elevation angle at time t (rad)  ̂( )   

ALADIN forecast of the temperature at 

time t and tp, the number of temperature 

lag in ANN input [°C] 

     Clear sky index at time t 

  ̂( ) , rp 

ALADIN forecast of the rain 

precipitation at time t and rp, the number 

of precipitation lag in ANN input [mm] 
    

  
Clear sky index with seasonal adjustments 

at time t and related to i (period number; 

    
    

number of year, or days) and j (number of 

measures per period). 

H 

 

In 

Number of hidden nodes in the MLP 

 

Number  of input nodes in the MLP 

 

    Moving average of CSI at time t Linear regression 

   
Periodic coefficients at time t W

LR 

 

  
  set representing a vector of the linear 

regression coefficients 

 

Statistical tests 

 
Y Vector with the CSI*(t+1) values 

VCX Variation coefficient (%) S’ 
Matrix with concatenated endogenous 

and exogenous data 



 

Fc Fisher statistic 
ARMA model 

 

Vp , p 
Variance of the period, and p number of 

measures per period 
p , q Order of ARMA(p,q) 

VR , N 
Variance of the residue and N the number 

of period 
L Lag operator 

NbH 
Number of hours of prediction contained 

during one year (365x9=3285) 
ii

are the parameters of the AR model 

and  the parameters of the MA model 

CI(t) , 

CI*(t) 

Confidence interval for the time t of 

prediction. The star is related to the yearly 

average 

  

 

1. Introduction 

Solar radiation is one of the principal energy sources, occupying a very important role in some 

engineering applications as production of electricity, heat and cold [1-4]. The process of converting 

sunlight to electricity without combustion creates power without pollution. It is certainly one of the 

most interesting themes in solar energy area. To use ideally this technology, it is necessary to 

understand and create efficient prediction models like done for example in Mueller et al, 2004, Mellit 

et al, 2005 and Mubiru et al, 2008 [5-7]. Insolation is defined as the solar radiation striking a surface at 

a certain time and place and is typically expressed in kilowatt hours per meter square (kWh/m²) [8,9]. 

Many factors determine how much sunlight is available at a given location. We can mention the 

atmospheric conditions, the Earth’s position in relation to the sun, and the site obstructions [4,9]. 

Atmospheric conditions that can also affect the amount of radiation received on the Earth’s surface are 

the quantity of air molecules, water vapor, dust, ozone and carbon dioxide, the cloud cover, the air 

pollution, the dust storms, the volcanic eruptions, etc. [5,10]. There is an interest to control the solar 

radiation prediction, as for example to identify the most optimal locations for developing solar power 

project or to maintain the grid stability in solar and conventional power management. Note that, in 

Europe, the White Paper on Energy (established in 1997) set a target (not yet achieved) of 12% of 

electricity production from renewable energies by 2010. The new European guidelines (in press) set a 

new target to 20% by 2020. The issues of the solar energy prediction are very important and mobilize 

a lot of research teams around the world and particularly in the Mediterranean area [3,7,11-13]. In 

practice, the global radiation (or insolation) forecasting is the name given to the process used to 



predict the amount of solar energy available in the current and near terms. A lot of methods have been 

developed by experts around the world [6,14,15]. Often the Times Series (TS) mathematical 

formalism is necessary. It is described by sets of numbers that measures the status of some activity 

over time [16]. In primary studies [1,13,17] we have demonstrated that an optimized multi-layer 

perceptron (MLP) with endogenous input made stationary and exogenous inputs (meteorological data) 

can forecast the global solar radiation time series with acceptable errors. This prediction model has 

been compared to other prediction methods (ARMA, k-NN, Markov Chains, etc.) and we have 

concluded that ANN and ARMA were similar. Following these studies and in order to see if we can 

significantly improve our results, we decided to add weather forecast (instead of exogenous data 

previously used) as new inputs of our mode. We assumed that Numerical Weather Prediction (NWP) 

simulations tools compute data patterns essential for determining solar radiation. These weather 

forecast data present two advantages: firstly they are becoming more and more available through the 

internet and secondly the models provide spatially distributed data which are very relevant to the 

regional scale studies. Thanks to an agreement with Météo-France, which is the French meteorological 

organization (http://france.meteofrance.com), we had the opportunity to freely access to some of the 

forecasts of the French operational limited area model ALADIN [18-20]. ALADIN 

(http://www.cnrm.meteo.fr/aladin) is a hydrostatic model developed by Météo-France in collaboration 

with the European Centre for Medium Range Weather Forecasts (ECMWF). It is the result of a project 

launched in 1990 by Météo-France with the aim of developing a limited area model and today 15 

countries are participating in the common work. We propose in this paper an original technique to 

predict hourly global radiation time series using meteorological forecasts from the ALADIN NWP 

model. After optimizing our MLP with ALADIN forecast data and endogenous data previously made 

stationary with an ad-hoc method, we combine it to an Auto-Regressive and Moving Average 

(ARMA) model from rules based on the analysis of hourly data series. Finally we present all 

forecasting results with confidence intervals in order to give more complete information to a final user, 

such as a power manager.  



The paper is organized as follow. Section 2 describes the data we have used: radiation time series 

measured from meteorological stations and forecast data computed by the ALADIN numerical 

weather model. After recalling the principles of time series forecasting and the need to make stationary 

a time series, we present in section 3 the forecasting models (ARMA and ANN) that have allowed us 

to build our original hybrid method, and the variables selection approach used. The section 4 includes 

final results and experiences conducted during this study and showing that forecasting results can 

significantly be improved by selecting ANN or ARMA models according to their performances. The 

reliability of the predictions is also considered by computing the confidence intervals. The section 5 

concludes and suggests perspectives.  

2. Radiation time series and Numerical Weather Prediction 

forecast data  

In this study we have used two types of data: radiation time series and meteorological forecasts from 

the ALADIN NWP model. In order to verify the robustness of our approach we chose to apply our 

methodology on five distinct stations located in Mediterranean coastal area. Figure 1 shows the 

location in Mediterranean area of the five weather stations studied.  

 

 

Figure 1. The five studied stations marked in the Mediterranean sea: Ajaccio, Bastia, Montpellier, 

Marseille and Nice. 

 



Concerning endogenous data, the radiation time series (Wh.m
-2

) are measured at coastal 

meteorological stations maintained by the French meteorological organization: Météo-France. We 

selected Ajaccio (41°5’N and 8°5’E, seaside, 4 m asl), Bastia (42°3’N, 9°3’E , 10 m asl), Montpellier 

(43.6°N and 3.9°E, 2 m asl), Marseille (43.4°N and 5.2°E, 5 m asl) and Nice (43.6°N and 7.2°E, 2 m 

asl). These stations are equipped with pyranometers (CM 11 from Kipp & Zonen) and standard 

meteorological sensors (pressure, nebulosity, etc.). The choice of these particular places is explained 

by their closed geographical and orographical configurations. All stations are located near the 

Mediterranean Sea with and mountains. This specific geographical configuration makes nebulosity 

difficult to forecast. Mediterranean climate is characterized by hot summers with abundant sunshine 

and mild, dry and clear winters. The data representing the global horizontal solar radiation were 

measured on an hourly basis from October 2002 to December 2008 (more than 6 years). The first four 

years have been used to setup our models and the last two years to test them. Note that in the presented 

study, only the hours between 8:00AM and 04:00PM (true solar time) are considered. The others 

hours are not interesting from energetically point of view and their predictions are complicated 

because it is very difficult to make stationary the measures of sunrise and sunset (stationarity scheme 

detailed in the next section). A first treatment allows us to clean the series of non-typical points related 

to sensor maintenances or absence of measurement. Less than 4 % of measurements were missing and 

replaced by the hourly average for the given hour.  

The second types of data we decided to use are the meteorological forecasts from the ALADIN NWP 

model. Météo-France proposed us a free access to some of the forecasts issued from their numerical 

weather prediction model called ALADIN-France. This model is a bi-spectral limited area, based on 

the assimilation of daily measurements, and driven using, for boundary data, the outputs of the 

ARPEGE (acronym of “Action de Recherche Petite Echelle Grande Echelle”) global model providing 

also by French meteorological services. The model evolves in average every six months because the 

ALADIN code follows the ARPEGE one in its permanent evolution and we are actually on the 37
th
 

cycle. For a better description of the model and its parameterization, the interested reader may refer 

e.g. to [18-20]. The French NWP system is organized around the production of analyses at 00, 06, 12 



and 18UTC, and the range of the forecast is 54 hours. The horizontal resolution of ALADIN-France is 

approximately 9.5 Km, with 60 levels vertically. These data are those used actually, that is to say in 

the 37
th
 cycles. The ALADIN model has more than twenty outputs available at a high temporal 

resolution of one hour but not the global radiation. These values are computed in all points of the 

computing grid with mesh size of 9.5 Km. Considering these facts we had three major choices to do. 

First we had to select the forecast parameters to add as an input of our model. In a second time we had 

to choose the grid points for our five locations, and finally we add to select the analyses (between 00, 

06, 12 and 18UTC) and ranges (1 to 54h) of the forecasts to take into account. For the ALADIN 

output, we based our choice on preceding works [17] in which we analyzed the benefit of taken into 

account exogenous variables. In these studies we made some computations about the correlation 

between the global radiation and a lot of exogenous meteorological parameters. Among the 23 

ALADIN possible outputs we chose those which seem to have a straight link to solar radiation [17]. 

These data are pressure (P, Pa), nebulosity (N, Octas), rain precipitations (RP, mm) and temperature 

(T, °C). The second choice was on the selection of the grid points. We decided to simply use a 

proximity criterion and we chose the points of the ALADIN computational grid nearer to our five 

selected stations. We decided to take into account the analyses closer to the sunrise: we select the 

06AM analyze with a 12 hours head forecast horizon. This couple of analyze and range allows us to 

cover, with a unique ALADIN extraction per day, the central hours we consider, that is to say 8:00AM 

to 4:00PM. However, we are aware that some of our choices can be discussed: first the periodic 

changes in the ALDIN model (more of ten cycles) may affect the training capability of the ANN, 

secondly an explicit help of a professional forecaster may comfort us in the choice of NWP model 

parameters, we will return to these restrictions in our conclusion.  

3. Forecasting models 

This section details the prerequisites that have enabled us to build our prediction model. After 

recalling the principles of time series forecasting and the need to make stationary a time series and 



how to validate it, we present the ARMA and ANN models. To conclude this section we present our 

final prediction model as a combination of ARMA and ANN models.  

a. Time series analysis, need of stationarity and validation  

There are different approaches to model Time Series (TS) [16]: ARMA [15,21], ANN [22,23], are the 

ones we studied and which are the most effective based on our previous works. However the common 

base of all these models seems to be that a TS xt can be defined by a linear or non-linear model called 

fn (see Equation 1 where t = n,n-1,…,p+1,p with n, the number of observations and p the number of 

parameters ; n   p) [24,28].  

       (                )               (Eq 1) 

To estimate the    model, a stationarity hypothesis is often necessary. This condition usually implies a 

stable process [23-26]. This notion is directly linked to the fact that whether certain feature such as 

mean or variance change over time or remain constant. In fact, the time series is called weak-sense or 

weakly stationary if the first and the second moments are time invariant. In other word, if the first 

moment is constant and if the covariance is not time dependent like show on equation 2 [27-29]. 

 [  ]   ( )     and    [       ]   [(    )(      )]   ( )       (Eq 2) 

Note that an equivalent stationarity criterion must be fond with the simple correlation coefficient 

(corr). The relation linking the two parameters is    [       ]      [       ]    .A stronger 

criterion is that the whole distribution (not only the mean and the variance) of the process does not 

depend on the time. The probability distribution F of the stochastic process xt is invariant under a shift 

in time. In this case the series is called strict stationary [26], the two moments shown in the Equation 2 

are stationary, but an other condition is also necessary (Equation 3). 

 (        )   (           )       (Eq 3) 

The stationarity hypothesis is an important tool in classic time series analysis. As it is primordial for 

the ARMA method, this rule stays also correct for neural network studies [29]. In fact, all artificial 



networks are considered like functions approximation tools on a compact subset of   . Moreover 

standard MLP (with at least 1 hidden layer) are asymptotically stationary, it converges to its stationary 

distribution, (i.e.          ). Moreover, this kind of network can approximate any continuous and 

multivariate function. They cannot show “explosive” behavior or growing variance with time [21,30]. 

In practice a varying process may be considered to be close to stationary if it varies slowly and it is the 

modeling condition to use the MLP. Note that, the network can be trained to mimic a non-stationary 

process on a finite time interval. But the out-of-sample or prediction performance will be poor. Indeed, 

the network inherently cannot capture some important features of the process. Without pre-process, 

ANN and ARMA can be unappealing for many of the non-stationary problems encountered in practice 

[31]. One way to overcome this problem is to transform a non-stationary series into a stationary 

(weakly or stronger if possible) one and then model the remainder by a stationary process.  

In our case, we have developed a sophisticated method to make the global radiation stationary (Xt, 

modeling of cycles). The original series has two periodicities (angular frequency    and   ) very 

difficult to overcome (Equation 4) because the amplitude a(t), b(t) and    the cloud occurrence, have 

not simple expressions. Without the last term, this equation represents a clear sky estimation. 

   ( ( )    (    )   ( )    (    ))          (Eq 4) 

The first periodicity is a classic yearly seasonality which can be erased with a ratio to trend: 

multiplicative scheme induced by the nature of the global radiation series on the Equation 5. In 

previous studies [13], we have demonstrated that the clear sky index obtained with Solis model [5,32] 

is the more reliable for our locations. As the second daily seasonality is often not completely erased 

after this operation, then we use a method of seasonal correction (corrected for seasonal variance) 

based on the moving average [27,28]. The chosen method is essentially interesting for the case of a 

deterministic nature of the series seasonality (true for the global radiation series) but not for the 

stochastic seasonality [33]. The steps we follow to make the series stationary are as following: 

1-use of Solis model to establish the clear sky model of the considered location : 



   ( )    
 ( )    (

  

    ( ( ))
)      ( ( ))      (Eq 5) 

  2-calculate the ratio to trend to overcome the periodicity, the result is the clear sky 

index CSI : 

           ( )          (Eq 6) 

  3-calculate the moving average (MM(t)) considering that 2.      is equal to the 

periodicity of the series. In the case of a 9 hours periodicity,    corresponds to 4 hours 

    〈    〉  [         ]        (Eq 7) 

  4-operate a new ratio to trend with the moving average. The new coefficient are called 

the periodic coefficients C(t) : 

                    (Eq 8) 

  5-Compute of the average over one year E[  ] (done on 365x9=3285 values because 

only 9 hours per day have been considered)  

  6-Compute of the new stationary series     ( )  

    
        [  ] (modulo 3285 hours)      (Eq 9) 

The Figure 2 shows the stationarity methodology concerning the global radiation time series 

prediction. 
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Figure 2 : Scheme of the stationarity methodology 

 

To validate the stationary processing, we have chosen two tools. The first is the variation coefficient of 

the series (    √ [(    ) ]  [  ]    )⁄ . Although this tool is easy to use, it is only dedicated 

to the cross comparison. It is not an absolute criterion allowing to distinguish the stationary and non-

stationary process. To overcome this problem, there are a lot of available non-stationary tests: variance 

test of Fisher, unit root, Dickey-Fuller, KPSS, just to name a few. For more details, the reader can 

refer to Hamilton, 1994, Pollock, 1999 and Bourbounais, 2008 [27,29,31]. The quality of each method 

seems equivalent and some tests are not adapted to the seasonal case but to the extra-seasonality trends 

or differency stationary. We have chosen a very classic statistic test based on variance analysis: the 

Fisher test detailed by Bourbounais in 2008 (variance ratio to period by residue). This test involves a 

TS without trend as it is the case for the insolation. As matter of fact its annual average value is 

relatively constant at long term. In case of the periodic effect is significant, we can consider that the 

TS has a seasonal component. This test is proposed for the seasonality of the TS: daily and yearly 



phenomena. Before to perform this test it is necessary to construct a new scheme of the series, 

so       
             , with                (a and b are respectively related to the daily and yearly 

seasonality), where                                                           (    )  The test is 

constructed from the null hypothesis H0 meaning no periodic influence in the TS, and the alternative 

hypothesis H1 meaning TS with periodic influence. While details can be found in [27], principle of the 

Fisher test is described by the following equations: 

 1-Compute of the “empirical” Fisher statistic        ⁄  (Vp the variance on period on the 

Equation 10 and VR the residue variance on the Equation 11). p is the number of measures per period 

and N the number of periods. 

   
 

   
 ∑   (

 
   〈      

 〉  〈      
 〉   )       (Eq 10) 
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For the a time series (daily effect) the parameter N=6 and p=3285, for the b series (yearly effect), 

N=6*365=2190 and p=9 (not 24 hours because only the hour between 8:00AM and 04:00PM are 

considered). 

 2-determination of the critical Fisher value for the degree of freedom v1 = (p-1) et v2 = (N-

1).(p-1) and the = 0,05, so the value corresponding to: 

      

                     (Eq 13) 

 3-If           the H0 hypothesis is rejected and H1 is accepted. If The Fc calculated from the 

data is greater than the critical value of F distribution for desired false-rejection probability (0.05), 



the TS is described as seasonal. Furthermore, we can estimate than, more the Fc coefficient is 

important, and more the seasonality component is important.  

In section dedicated to the experiments we will present the results obtained for the variation coefficient 

and the Fisher test on our CSI stationary processing with and without periodic coefficients for the five 

places studied.  

b. ARMA 

The ARMA method is certainly the most used with the prediction problems [29,34,27]. The ARIMA 

techniques are especially reference estimators in the prediction of global radiation field. It is a 

stochastic process coupling autoregressive component (AR) to a moving average component (MA). 

This kind of model is commonly called ARMA (p, q) and is defined with p and q parameters 

(Equation 14). 

(  ∑    
 
     )    (  ∑    

 
     )  ( )       (Eq 14) 

Where, xt is a time series, φ and θ are the parameters of the autoregressive and moving average part, L 

is the lag operator and is an error term distributed as a Gaussian white noise. The optimization of 

these parameters must be made depending on the type of the series studied. In the presented study, we 

chose to use Matlab© software and the Yule-Yalker fitting method [29]. The criterion adopted to 

consider when an ARMA model ‘fits’ to the global radiation time series is the normalized root mean 

square error described by the Equation 15 [35]. 

      √ [(   ̂)
 
]  √ [  ]        (Eq 15) 

The prediction error is generated by the prediction of two years of radiation not used during the 

ARMA parameters calculation step. Several experiments are needed to obtain the best model. Residual 

auto-correlogram tests have been computed to verify that the error term is a white noise. Before to use 

this method of forecasting, the global radiation time series is made stationary with the method 

described in the section 3-a (clear sky index with seasonal adjustment) and then, centered and reduced. 



The models after optimization are very simple, the ARMA(1,0) for Ajaccio, Bastia, Montpellier and 

Nice or ARMA(2,0) for Marseille are successful. In the case of the ARMA(2,0) the prediction can be 

expressed by the Equation 16. 

 ̂(   )  ∑     (   )   (   ) 
         (Eq 16)  

c. Neural network and time series forecasting  

Although a large range of different architecture of ANNs is available [36,37], MultiLayer Perceptron 

(MLP) remains the most popular [38,39]. In particular, feed-forward MLP networks with two layers 

(one hidden layer and one output layer) are often used for modeling and forecasting time series. 

Several studies [33,40,41] have validated this approach based on ANN for the non-linear modeling of 

time series. To forecast the time series, a fixed number p of past values are set as inputs of the MLP, 

the output is the prediction of the future value [42,43]. Considering the initial time series equation 

(Equation 1), we can transform this formula to the non-linear case of one hidden layer MPL with b 

related to the biases, f and g to the activation function of the output and hidden layer, and to the 

weights. The number of hidden nodes (H) and the number of the input node (In) allow to detail this 

transformation. (Equation 17):  

   ̂     (∑   
 
     

    )       (Eq 17) 

    (∑         
  
      

    
 )     

In the presented study, the MLP has been computed with the Matlab© software and its Neural 

Network toolbox. The characteristics chosen and related to previous work are the following: one 

hidden layer, the activation functions are the continuously and differentiable hyperbolic tangent 

(hidden) and linear (output), the Levenberg-Marquardt learning algorithm with a max fail parameter 

before stopping training equal to 5. This algorithm is an approximation to the Newton’s method [40] 

and is represented by the Equation 18 (J() is the jacobian matrix,   ( ) this transposed and e() the 

error between the N simulations and the N measures). 
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In our case the parameter m takes the value 0.1 and 0.001 when the error, respectively, decreases or 

increases. Inputs are normalized on {-0.9,0.9} because the truncated interval gives better results than 

the full interval for the conditions of this study. Training, validation and testing data sets were 

respectively set to 80%, 20% and 0% (Matlab parameters). These phases concern the four first years 

and the global solar radiation test forecasting the two last years. The prediction methodology used in 

this paper is presented on the Figure 3. The pre-input layer consists on endogenous data of radiation 

and meteorological forecasts (exogenous) from the ALADIN numerical weather prediction model. We 

can see the possibility to select only the interesting data in the input layer among endogenous data of 

radiation and exogenous data from ALADIN model. 
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Figure 3 : Scheme of the prediction methodology based on MLP model and NWP model 

 

The input variables selection step is one of the key tasks of ANN optimization. We proposed to base 

the input selection on the use of a regression model. The methodology used by our team in the past 

was to compute all the coefficients of correlation between exogenous data at time t, t-1, etc. and the 

clear sky index at time t+1. We encounter problems related to the difficulty to find a significant limit 

to this coefficient. To work around the apparent classical student T-test permissiveness and to respect 

the parsimony principle, we fixed empirically a limit not really justified theoretically. In the presented 

paper, we proposed a pre-input layer selection method in order to choose from a pool of available data. 

We have used the parsimony principle and limited the approach to 10 lags for the endogenous case 

and 2 lags for the each ALADIN output parameters. These 18 data in total are grouped in the pre-input 

Layer and are shown on the scheme of the Figure 2. This method also uses the statistical Student T-

test to guide the choice but this time it is applied on the coefficients of a multiple linear regression. 

Note that concerning the ALADIN data, we consider that the physical signification of the lags upper 

than one are not very relevant because they are predictions of anterior time steps and not measures. In 

first we generate a regression model for the 18 pre-inputs nodes. There are 10 endogenous nodes (In = 

10), and 2 for each meteorological variable called the total number of exogenous nodes is 8). The 

Equation 19 shows the simplest case of 10 endogenous nodes and Me nodes of exogenous parameter E 

[25]:  

    (   )     ̂ (   )   (   )    

                      ∑   
    

          ∑      
    

                      (Eq 19) 

This equation can be expressed by matrix form like shown in the Equation 20 or in the developed form 

in the Equation 21. Y is a vector with the elements     (   ), S’ a matrix with concatenated 

endogenous and exogenous data and     a vector with all the adjustable parameters of the regression. 

For the estimation of this model the is NT data in the measurement history. 
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The optimization corresponds to solve this equation to find correct values of linear regression weights. 

The least square method is used. The classical estimator is defined by   ̂   (     )        (    is 

the transpose of the matrix   ). The dimension of the vector W
LR

 is 19 (10 variables for the insolation, 

8 for exogenous data, and 1 for the regression constant). The next step is to verify if some weights 

(related to each variable CSI*, N, RP, P and T called Xi for 1<i<12) are not significantly different from 

zero. We use a Student T-test for all coefficients. The statistic used (tj) corresponds to      
       (j 

is the standard deviation of the parameter j). It is often easier to interpret it with the notation    

  
   √  (    

 ) (  is the error of prediction). The weight is not statistically equal to zero if ti is higher 

than the value 1.96 (large sample with 5% alpha level). Note that this test can be replaced by an 

equivalent one, based on the confidence interval of the weight considered (  
   [  

            
   

     ]). If the sign of the two limits are different, then we can assimilate the weight j to zero. This is 

equivalent to search the sign of the produce of the two limits defined by      ((  
        )  (  

   

     ))      ((  
  )    

   
 )). The value must be strictly positive in order to consider j different 

to zero. The variables with an associate weight equal to zero are the lest correlated with the insolation 

at the lag t+1. It is the criterion chosen to select (or not) the variable in the input layer of the neural 



network. In fact our pre-input layer selection method can be resumed by the following rule:       
   

           
      . The application of this rule allows reducing the dimension of the input layer.  

After this step, it is necessary to optimize the number of hidden nodes. The technique used is relatively 

standard; it consists to try several configurations by varying the number of nodes. In previous 

experiments [13], we have seen that often the number of hidden nodes must be comparable to the 

number of input nodes. After optimization (choice of input and hidden nodes, activation function, etc.) 

the output of the network can be expressed by the following expression (Equation 22) with 

 ̂  ̂   ̂      ̂ and by the number of prediction of each meteorological data use (respectively p, n, rp 

and t). These predictions done with the model ALADIN depend on latitude, longitude, orography, 

temperature, humidity, etc. [18]. 
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   ) (Eq 22) 

Note that some elements of the Matrix W
1
 (    

 ) are equal to zero after the methodology related to the 

linear regression presented previously. The computing time is about 5 minutes with a Core i5 3.20GHz 

and 8Go of RAM. This computing time includes the clear sky generation, the seasonal adjustment, the 

statistical test, the ANN training and the average prediction computed for five ANNs with different 

initializing.  

d. Hybrid methodology 

As in primary studies we have demonstrated that performances of ARMA and MLP were similar (in 

univariate case), we decide to investigate the possible contribution of a hybrid methodology 

combining Solis model and seasonal adjustments,  ARMA and ANN models with ALADIN forecast 

data. The idea of hybrid methodology was born from the observation of some cases, where the model 

ARMA, the model ANN and in generally the single predictors are not really efficient. It will be the 

case if an important accuracy is required or when the priorization (during a benchmark) of predictors 



is impossible. The solution to combining methods to understand and model the dynamic of the signal 

is then considered: it’s the base of the data mining technics. Among the predictors hybridization, we 

can mention the ARMA-MLP [44,45], the fuzzy inferences-MLP [22], the wavelet-MLP [46], 

the Markov-MLP [7]  or Bayes-MLP [47]. Our choice is oriented to the ARMA-PMC 

(multivariate) method with time series made stationary. Concerning this model, we have used the 

classical approach shown previously but the predictor is now formed by two sub-predictors. There is a 

multitude of possible arrangement to construct it. We have opted to a model selection based on the 

transition linear/non-linear of the global radiation process. Linearity test exists (Lagrange multipliers), 

but are not really efficient when the two phenomena are concomitant in the same series. Our 

hypothesis is very simple, it consists to consider that when the nebulosity is low, the series is of linear 

character and the days with an important cloud occurrence, the series is of non-linear character. Thus, 

for the linear approach we use ARMA and for the non-linear approach, we select the PMC estimation. 

The validation of the hypothesis is done in an in-press article not yet published.. For Zhang [45] a 

hybrid model having both linear and nonlinear modeling abilities could be a good alternative for 

predicting time series data. By combining different models, different aspects of the underlying patterns 

may be captured. To construct the model selection we could only considered the day position in the 

year: during the winter months PMC would be selected and ARMA during the summer months. In this 

case, we would be considered a selection by rigid seasonality. This approach will not consider the 

sunny day in winter or the cloudy days in summer (although they are few). Consequently, we decided 

to design a methodology based on a not rigid, not repetitive and not well-marked seasonality. The new 

model is constructed as a stochastic model, which depends solely on the mistake made the previous 

hour. If the ARMA method was better at time t, (equivalent to sunny period, and indirectly to a linear 

phenomenon) then it will be still ARMA at t+1 else it will be the MLP. We can summarize this 

method with the following rule (Equation 23) where is the residue of the prediction: 

   |    ( )|    |    ( )|         ̂(   )   ̂  (   )       ̂(   )   ̂   (   )
 
(Eq 23) 

The Figure 4 details the process followed by the hybrid methodology. 



 

Figure 4: Scheme of the hybrid method forecasting (the L-box is the lag or backshift operator) 

 

The next section presents, results obtained using this hybrid model on the five places located in 

Mediterranean area presented in section 2.  

4. Experiments, results and discussion 

This section includes all the experiments and results conducted during this study. The first part of this 

section is dedicated to the stationary efficiency of our preprocessing methodology. The second part 

shows intermediate results on MLP trained with endogenous and ALADIN forecast data. Finally we 

presents results obtained with the hybrid model presented in the previous section.  

a. Experiences about series makes Stationary  

As we have seen previously in section 3.a, the different methods dedicated to the time series 

forecasting have to be used with stationary time series. It should be emphasized that if the available 

data are nonstationary, they must be made stationary before applied to ARMA or ANN model. Based 

on this observation, it is necessary to study stationary methods and to see if it should be interesting in 

the case of the global radiation time series forecasting. The two tested processes, the clear sky index 

(CSI) and the CSI with use of seasonal correction and periodic coefficients (CSI
*
) are compared to the 

original series without treatment. To know if the preprocessing makes the series stationary, we use 

criterions like the variation coefficient (VCX) considered as a dispersion rate and the Fisher T-test 

related to the daily and yearly stationarity. The values given on the Table 1 are established after a 



normalization process between {-0.9,0.9}. According to the Fisher Table, we found that threshold of 

the F-Test is     
       in the  

  Ajaccio Bastia Montpellier Marseille Nice 

Original 

series 

VC -3.45 -2.48 -3.36 -3.62 -3.21 

Fc(yearly)  12.99 12.44 11.12 15.07 13.72 

Fc(daily) 6.81 1.01 7.02 6.53 7.27 

CSI 

VC -0.40 -0.4 -0.37 -0.38 -0.42 

Fc(yearly)  3.25 3.05 3.39 4.08 3.44 

Fc(daily) 2.06 2.07 2.07 2.07 2.08 

CSI
*
 

VC -0.09 -0.08 -1.42 -0.76 -1.2 

Fc(yearly)  0.83 0.87 0.72 0.70 0.81 

Fc(daily) 2.05 2.04 1.41 1.80 1.52 

Table 1: Stationary efficiency of CSI and CSI
*
preprocessing for the five cities studied. Bold values 

signify that the stationarity is effective.  

 

The VCX parameter is not the more interesting as a stationarity criterion but it is very simple to use. 

The two other parameters show that the CSI
* 

processing is the most efficient. There is only one case 

where the Fc is not minimal with the CSI
*
 (Bastia, Fc(daily)=2.04). Indeed, with this method, 8 of 10 

parameters (two parameters by city) are lower than the Fisher thresholds. Note that with the others 

cases, only one empirical Fisher parameter indicates a quasi-stationarity in Bastia (Fc(daily)=1.01). It is 

certainly because on this location the weather is very unstable, generating a very noisy global radiation 

time series. On the Figure 5, we can see the impact of the CSI and CSI
* 

preprocessing on a global 

radiation time series for the difficult Bastia case study. We obtained similar results for the four other 

locations.  

 
Original TS 



 
CSI 

 
CSI

*
 

Figure 5: Effects of the stationarity processing on the Bastia time series during 365 days (oct 2002-

oct 2003). The CSI
*
and the CSI are normalized. 

 

While the CSI
* 
processing seems the most interesting, the CSI seems graphically give the first moment 

constant (average fixed around the year ~-0.4), but let the second central moment about the mean of 

the series with periodicity (variance more important during winter than summer). We can see that the 

curve related to the CSI
*
 process seems the most non-seasonal, contrary to the CSI process. In winter 

the standard deviation has not increased. The results presented in the next section will argue if the 

stationarity of the series increases the prediction quality.  

b. Results with MLP and ALADIN forecast data  

This subpart proposes to analyze the impact of adding data from the ALADIN numerical model to a 

MLP. We have chosen to compare it with four other models (see Table 2). The first model which is 

considered as the reference is based on ARMA, the second is an endogenous MLP with our clear sky 

index preprocessing (CSI), the third is an endogenous MLP with CSI and seasonal correction (CSI
*
), 

and the last is an MLP with ALADIN forecast data. In the following, we adopt a canonical form to 

present the MLP architecture obtained after optimization steps: (endo
e
, RP

rp
 N

n
,P

p
,T

t
) x H x S, where e, 

winter 



rp, n, p and t are the numbers of neurons activated in relation with endogenous data, precipitation, 

nebulosity, pressure and temperature, H and S are the number of hidden and output nodes. The exact 

description of the compared methods is:  

I. ARMA+PC : The best ARMA model with the CSI
* 
preprocessing;  

II. ANN : The best endogenous MLP with the CSI preprocessing. Optimizations have been done with 

a standard method based on the interpretation of PACF partial autocorrelation factor [17];  

III. ANN+PC: The best MLP with CSI
* 

preprocessing. Optimizations have been done with a standard 

method based on the autocorrelation factor and cross-correlation; 

IV. ANN+ALADIN: An optimized MLP with the CSI preprocessing and pre-input layer selection 

method using ALADIN forecast data in input;  

V. ANN+ALADIN+PC: Same as previous but with CSI
* 
preprocessing. 

 Models Annual Winter Spring Summer Autumn 

A
ja

cc
io

 

Persistence 25.1 34.7 25.2 21.4 33.9 

I. ARMA(1,0) 19.4 29.4 17.7 14.3 26.8 

II. ANN  
(Endo

1-10
)x15x1 

20.3 27.2 20.4 13.7 24.1 

III. ANN+ PC 
(Endo

1,2,3,4
)x15x1 

18.6 25.3 18.4 12.2 24.2 

IV. ANN +ALADIN 
(Endo

1,2,5,6,10
PR

1,2
N

1,2
T

1,2
)x15x1 

19.0 26.8 19.1 12.3 23.0 

V. ANN +ALADIN+PC 
(Endo

1;5,9,10
PR

1,2
N

1
P

1,2
T

1,2
) x15x1 

17.8 24.9 18.1 11.7 22.0 

B
a

st
ia

 

Persistence 27.1 35.0 27.1 22.6 34.4 

I.  ARMA(1,0) 21.1 26.7 20.3 15.8 26.9 

II.  ANN  
(Endo

1-10
)x10x1 

22.8 27.3 23.4 16.1 25.7 

III.  ANN+PC 
(Endo

1,2,3,4
)x15x1 

20.8 24.9 21.4 14.9 24.9 

IV.  ANN +ALADIN 
(Endo

1:3,8:10
PR

1
N

1,2
P

1,2
T

1,2
) 

21.3 25.8 21.7 15.1 24.0 

V.  ANN +ALADIN+PC 
(Endo

1:3,5
PR

1,2
N

1,2
P

1,2
T

1,2
) 

19.9 24.4 20.5 14.2 23.3 

M
o
n

tp
el

li
e

r 

Persistence 26.9 32.6 25.9 24.6 33.2 

I. ARMA(1,0) 20.1 23.5 18.7 15.5 21.9 

II.  ANN  
(Endo

1-10
)x10x1 

20.8 22.4 20.2 17.9 19.3 



III.  ANN+PC 
(Endo

1,2,3
)x15x1 

19.3 20.4 18.8 16.0 19.8 

IV.  ANN +ALADIN 
(Endo

1:3,6:10
Pr

1,2
N

1,2
P

1,2
T

1,2
) 

19.3 20.3 18.6 16.8 18.1 

V.  ANN +ALADIN+PC 
(Endo

1,5,10
Pr

1,2
N

1,2
P

1,2
T

1,2
) 

18.6 20.1 17.9 15.5 19.2 

M
a

rs
ei

ll
e 

Persistence 25.3 32.9 25.3 20.0 32.3 

I.  ARMA(2,0) 18.9 23.9 19.0 11.8 21.4 

II.  ANN  
(Endo

1-10
)x10x1 

19.0 22.5 20.7 11.3 18.8 

III.  ANN+PC 
(Endo

1,2,3,4
)x15x1 

16.9 20.6 17.8 10.5 17.1 

IV.  ANN +ALADIN 
(Endo

1,2,6:10
PR

1,2
N

1,2
P

1,2
T

1
) 

17.4 20.4 18.5 10.4 16.4 

V.  ANN +ALADIN+PC 
(Endo

1,3,7
PR

1,2
N

1,2
P

1,2
T

1,2
) 

16.3 19.6 16.6 10.3 16.4 

N
ic

e 

Persistence 26.4 32.1 24.5 21.1 37.1 

I.  ARMA(1,0) 20.7 23.5 17.6 12.4 37.5 

II.  ANN  
(Endo

1-10
)x10x1 

20.9 21.7 18.8 11.7 32.3 

III.  ANN+PC 
(Endo

1,2,3
)x15x1 

20.1 20.5 19.1 11.4 30.9 

IV.  ANN +ALADIN 
(Endo

1,3,7:10
PR

1
N

1
P

1,2
T

1,2
) 

20.1 20.4 18.1 11.4 32.3 

V.  ANN +ALADIN+PC 
(Endo

1:5
PR

1,2
N

1,2
P

1,2
T

1,2
) 

19.4 19.9 18.6 11.0 30.1 

Table 2: Comparison between five forecasting methods for the five cities studied. The error is the 

nRMSE and best results are in bold. 

 

If we analyze the annual error, the methodology V, based on the utilization of an optimized MLP with 

ALADIN forecasting data and seasonal adjustment with periodic coefficients (CSI
* 

preprocessing) is 

the most relevant. If we analyze seasonally the errors, we find only four cases (Ajaccio, Bastia and 

Nice during spring and Montpellier during summer) which have a better forecaster: ARMA method. 

For the other cases, the ARMA method seems equivalent to the ANN method without pretreatment 

(method II) but is worse than the ANN when the stationary of the series is the same (method III). 

While the distinct adding of CSI
*
 preprocessing (method III ; error is 13.0%) and ALADIN forecast 

data (method IV error is 13.2%) to the ANN model improves the prediction, their combined adding 

(method V) potentiates this effect. Because the sun light is abundant and there is low occurrence of 

clouds, the summer season is the most favorable to prediction.  



c. Results with the hybrid methodology  

This subpart proposes to present results of the hybrid method (see the Table 3) defined in section 3.d. 

The ARMA and MLP models used are those presented in the previous section: models I and V. This 

methodology is based on the prediction of “ARMA” and “ANN” with ALADIN data, clear sky index 

and seasonal adjustments. The ratio ARMA/ANN represents the numbers of hourly ARMA 

simulations versus ANN simulations We can observe that the distribution of predictor use is 1/3 for 

ARMA and 2/3 for ANN. This observation confirms the results previously presented. In summer, the 

error is for the first time lower than 10% (Marseille). All the seasons and cities benefit of the use of 

this method coupling ARMA and ANN. The summer is the season where the gain is the less 

significant, certainly because it is the season where the stand-alone methodologies (ANN and ARMA)  

 Ratio 

ARMA/ANN 
Annual Winter Spring Summer Autumn 

Ajaccio  2592/3978 14.9 19.4 15.5 11.0 17.0 

Bastia  2557/4013 16.5 19.5 17.5 13.2 17.9 

Montpellier 2348/4222 14.7 15.7 15.2 13.4 15.5 

Marseille 2124/4446 13.4 16.6 14.8 9.3 13.8 

Nice 2301/4269 15.3 16.6 15.3 10.3 26.2 

Table 3 : Annual and seasonal results for the hybrid ARMA/ANN model 

 

Ultimately, We can see that all the methodologies proposed in this paper have decreased the prediction 

error. In average on the five cities, the total nRMSE decrease of 11.3% against a naïve persistence 

predictor which has a average nRMSE equal to 26.2%. A step very interesting is the mixing between 

the ANN and ARMA, but do not forget that this result is only true with the type of ANN and ARMA 

considered. In the Figure 6, we can see the matching between measure and simulation (hybrid method 

presented previously) for all the cities. We can presume that there is a strong correlation between the 

two quantities. Except to Bastia, the cloudy periods (like the 71°-81° hour interval) seem correctly 

predicted. Concerning the case of Bastia, the model is not able to anticipate the nebulosity, and 

improvements are certainly necessary. 



5. 
 

 

 

 



 

Figure 6: Comparison between measured and simulated global radiation done with the hybrid 

methodology ”ARMA” and “ANN+ALADIN+PC+CSI”.The 250 hours shown  corresponding to half-

February to half-March 2008) 

 

a. Evaluation of the prediction relevance 

Considering that the prediction methodology proposed here is mainly designed for a power manager, it 

is necessary to couple the forecasted value to a confidence interval. The presented study proposes to 

compute it during the training step of the MLP, and then to use it during the prediction. The simulator 

gives for each hour two parameters: the h+1 horizon global radiation and a parameter representing the 

confidence we can give to this value. Before to compute this parameter it is necessary to explain the 

parameter CI(t) represented in the equation 24. In fact it is the absolute residue error of the prediction 

during the training sample. The training set includes 4 years, and each year includes 365x9=3285 

hours, so 4x3285 elements. Then an hourly average is done allowing to transform this CI(t) series to a 

new series CI*(t) like described in the equation 25. 

  ( )  | ( )|    [        ]       (Eq 24) 

   ( )  (
 

 
)  ∑   (  (   )     )) 

      [      ]    (Eq 25) 

This index is necessary to judge the relevance of the prediction. For example, the Figure 7 shows for 

Ajaccio the prediction and the confidence interval (average ± CI). Three models are evaluated: the 

ANN with only endogenous data, the ANN with ALADIN and the periodic coefficients and the hybrid 

model “ARMA” with “ANN+ ALADIN+PC”. The period considered is one of the most complicated 

to forecast. It corresponds to the winter with a lot of cloudy days. It is interesting to see that the simple 



model endogenous ANN describes well the radiation, however, there are some outliers points (15
th
 or 

41
th
 hour), with a confidence interval not significant. In the second curve related to the 

ANN+ALADIN+PC, the error is most regular, the atypical points seems non-existent. The third curve 

(both of ANN and ARMA) is visually the most interesting, despite that the confidence interval is yet 

incorrect for some points. In fact, with the hybrid method (ARMA+ANN), the ANN forecast is 

preponderant during the cloudy days; the ARMA predictions are used only during the sunny days. So 

the two last methods presented are relatively similar for the month considered. 

6.  

 

 



Figure 7: Prediction marked with confidence interval of the global radiation in Ajaccio during the 50
th

 

first hours of January 2007. The line is related to the measure. 

7. Conclusion 

We proposed in this paper an original technique to predict hourly global radiation time series using 

meteorological forecasts from a numerical weather prediction model. We optimized a Multi-Layer 

Perceptron (MLP) with ALADIN forecast data and endogenous data previously made stationary. We 

have used an innovative pre-input layer selection method and we have combined our optimized MLP 

to an Auto-Regressive and Moving Average (ARMA) model from a rule based on the analysis of 

hourly data series. This model has been successfully used to forecast the hourly global horizontal 

radiation for five places in Mediterranean area. In addition, this paper has allowed determining a 

stationarity process (method and control) for the global radiation time series. This step is primordial to 

correctly forecast the future values of insolation (annual average nRMSE gain over the five locations 

equals to 1.7%). The use of ALADIN forecasting data as an input of a MLP has shown a really great 

interest to improve the prediction (average nRMSE gain of 0.7%). These results could certainly be 

improved by a better comprehension of the complexity of the model and collaboration with a 

professional forecaster of Meteo-France who could help us in selection of data especially concerning 

the runs to consider. In last, the use of a hybrid method coupling ANN and ARMA predictors decrease 

much the prediction error (average nRMSE gain to 3.5%). If we compare the results with a standard 

model like persistence method (a typically naïve predictor) the nRMSE error is reduce by about 

11.3%. The detail of the prediction error decrease following the different steps of the forecasting 

methodology is done on the Figure 8. The Last important point treated in this paper is the proposition 

of using confidence intervals in order to estimate the reliability of the prediction. The perceptive of 

this work are related the demonstration of the generalization of our model. We would show that the 

superior performance of this model is not likely to be a consequence of data mining (or data 

snooping). In fact, it should be sure that the model constructed in this way is not of limited practical 

value. 



ANN without stationary process
nRMSE=20.8% (±1.2%)

ANN with CSI and seasonal adjustments
nRMSE=19.1% (±1.3%)

-1.7%

ANN with CSI, seasonal adjustments and 
ALADIN modeling

nRMSE=18.4% (±1.2%)

-0.7%

-3.5%

Both of ANN (precedent case) and ARMA 
nRMSE=14.9% (±0.9%)

Persistence
nRMSE=26.2% (±0.8%)

-5.4%

 

Figure 8: Prediction error decrease following the different steps of the forecasting methodology  

 

Concerning the practical and policy implication of the results shown here, the conclusions are 

certainly compatible with the deployment prerogatives of renewable energy.  

Because of the intermittent nature of some energy sources (like PV or wind energy), they are included 

in a limited way in power systems. This limitation ensures the electrical grid stability. There are two 

methodologies to overcome this limitation problem: the storage of the overflow to redistribute it 

adequately and the prediction of the energy sources. This last solution allows to use at the right time 

other energy productions not dependent on weather, so to avoid a drop of the electrical current or 

maybe a black-out. The main problem of the management is the dispatch between these two energy 

types. This study deals with the one hour forecasting horizon. It is certainly the most important 

horizon for an electrical manager because it corresponds to the starting delay of some conventional 

energy sources like diesel engines or gas turbines for power generation. Actually the industrially 

prediction of the global radiation is often done with a simple persistence. Even if, the predictor is 



effective in sunny days, the present study shows that more successful forecasters exist. This result is 

especially interesting in the insular case (or generally to overcome the isolation problem), where the 

interconnection is limited and where the energy autonomy must be considered at medium or long-

term.  

In future studies, it would be very relevant to study an approach for solar irradiance forecasting 24 

hours ahead using several MLP connected, to decrease the time step and to test the methodology on a 

real PV module. In addition, an important work will be to simplify the model while keeping an 

acceptable prediction. Indeed, even if our method is attractive, it could be complex and costly to 

implement for an electric power manager in grid stability context of power supply mixing renewable 

and conventional energy.  
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Figure 4: Scheme of the hybrid method forecasting (the L-box is the lag or backshift operator) 

Figure 5: Effects of the stationarity processing on the Bastia time series during 365 days (oct 2002-

oct 2003). The CSI
*
 and the CSI are normalized. 

Figure 6: Comparison between measured and simulated global radiation done with the hybrid 

methodology ”ARMA” and “ANN+ALADIN+PC+CSI”.The 250 hours shown  corresponding to half-

February to half-March 2008) 

Figure 7: Prediction marked with confidence interval of the global radiation in Ajaccio during the 50
th
 

first hours of January 2007. The line is related to the measure. 

Figure 8: Prediction error decrease following the different steps of the forecasting methodology 
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