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Abstract. In this article, the detection of a fault on the inner race of a roller 

bearing is presented as a problem of optimal estimation of a hidden fault, via 

measures delivered by a vibration sensor. First, we propose a linear model for 

the transmission of a vibratory signal to the sensor s diaphragm. The impact of 

shocks due to the default is represented by a stochastic drift term whose values 

are in a discrete set. To determine the state of the roller bearing, we estimate the 

value of this term using deterministic particle filtering.  

Keywords: Deterministic Particle filtering, diagnosis. 

1   Introduction 

The diagnosis of the rotating machines became a stake major for industry, in 

particular aeronautical, petrochemical, pharmaceutical, specialty chemicals or iron 

and steel, because of the gigantic costs generated by a catastrophic failure and 

consequences: economic, safety and environmental and on the public image of the 

company impact. 

In this study, we are interested with a detection of a failure on the inner race of a 

roller bearing on a turbo reactor. Many sensors are given at different bearings on the 

reactor except on the suspected one. Hence we have a partial observation of the state 

of the roller from the sensors. 

The physical model used is developed in [1]. The state variables we consider are 

respectively the displacement and the speed of the vibration sensor s diaphragm. We 

observe the second variable across a propagation factor α, high level noise context. 

Under a state representation, this is close to an optimal filtering problem. 

Our aim is to estimate the hypothesis of there being a fault and subsequence level 

deterioration. 
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2   State representation of the problem 

Let y(t) be the response of the sensor s diaphragm to an excitation h(t). The 

vibratory signal next to it is [1]: y(t) = ed(t) * h(t), for t>0, with ( ) cT

t

rd ette
−
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ωr is the resonance pulsation, Tc is the time-constant of the sensor and * the 

convolution product. This obeys to the differential equation: 
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Let ( ) ( ) ( )[ ]TtytytX &= , be the displacement and the speed vector, z(t) the signal 

measured. For a healthy bearing, the membrane of the sensor receives the noises in 

the neighbourhood of the sensor, which one summarizes with a continuous Gaussian 

white noise w(t) with intensity Q(t). Then we have: 

( ) ( ) ( )
( ) ( ) ( )




+=

+=

tvtHXtz

tBwtAXtX&

 

(2.1) 

[ ]0
0

21

10

22

2 α
ωω =








=

















−













+−= HB

TT

A
r

cc

r
 

v(t) represents the measurement noise. It is assumed that v(t) can be described as 

white noise where R is the variance matrix. α is a factor of propagation in the sensor s 

diaphragm: 0 < α <1. 

In the case of a fault on the inner race, an impulse is generated when each element 

of the roller comes into contact with the fault. The sensor s diaphragm receives in 

addition to w(t) a discontinuous component: ( ) ( )∑ −=
n

dshock nTtUth δ.   

Td and U are respectively the period of the fault and the load applied at the contact 

point. Td is assumed to be deterministic and known. We choose the sampling period 

Te so that: Td = 72.Te In this case ( )thshock  is reduced to a maximum of a single 

shock in the period Te. Consequently, the fault introduces a stochastic drift term in the 

second state equation each time k is a multiple of 72. 

U depends of the deterioration level of the bearing roller; its value grows slowly in 

time. Hence, we consider it stochastic with values in a discrete set 

{ }Nuuuu ,,,, 321 K=ℑ . The filtering model is still linear Gaussian verifying: 
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Discrete equations. The measurements z are collected at discrete times, it s more 

natural to deal with the discrete time system: 
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where δ represents the Kronecker symbol (i.e. δa,b = 1 if a = b δa,b = 0 otherwise). 

3   Roller bearing diagnosis 

The deterioration of a roller bearing is a slow phenomenon, except in case of 

deficient conditions of use. We suppose that the value U is constant on a limited time 

interval. So a diagnosis of roller bearing comes down to estimating the possibility of 

shock occurrence and its amplitude U. The evolution of the amplitude U value is 

defined by the transition matrix Ptr. An element p(i,j) of the matrix Ptr defines the 

probability of the change from Ui to Uj. The diagonal elements are more important 

than the others. The probability of a change is lower then the probability of remaining 

in the same state and the probability of going backward to a faultless case is close to 

0. Hence Ptr is a triangular matrix. The diagnosis of the state of the bearing is 

equivalent to estimate the parameter U, the measurements zk on the trajectory from 0 

to k. 

4   Particle filtering principle: 

General model:  

Consider x(t) a Markov process, partially observed by y(t), 

This system can be linear, non linear, Gaussian, Dirac...To apply particle filtering 

we must be able to: 

1°) simulate the noise: 
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2°) Calculate explicitly: 

 
( )tt xyp |  

At the step (t-1), we represent the conditional probability by a Dirac measures sum: 
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At t, we calculate recursively this probability on two steps: 

 

Prediction: Monte-Carlo dynamic Simulation: 
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are sorted  independently with respect  to: 
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This step represents the signal x(t) time evolution, 

Correction: By Bayes Formulae: 
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Hence,  
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This step represents the observation signal y(t) time evolution, 

Redistribution:  

Sort the N new particles  
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with respect to the multinomial density: 
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That we summarize in the schema (4.1) 

This technique generates some numerical problems:  

 

− N must be high number, 
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− The distribution may come with a reduced particle number support... 

 

(...A revoir ....) 

 
 

5 Deterministic particle filtering  

 
Principle: 

 

The state space is represented via an N inter-dependent evolving meshing (N is 

constant) with respect to the observations. We privilege the most a posteriori probable 

areas in the state space. From the N initial conditions well chosen  (particles), we 

systematically explore the tree structure generated by the system dynamic, with a 

minimal M discret points of the state noise. This gives N*M possible particles. 

To hold the cardinal N constant, we select the N particles which have the 

greatest likelihood, with respect to the observations; which reduces calculation time 

and memory space. 

 

 

 

General algorithm: 
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1°) Particle support initialization by N initials particles, 

2°) Deterministic branching: with respect to the dynamic model and discret noise 

3°) Local prediction of the nominal state trajectory:   

4°) Local correction with respect to the nominal state trajectory:  

5°) Weighting: likelihood calculus for every particle 

6°) Deterministic selection of the N particles which have the greatest likelihood 

7°) The best estimation is:  
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6   Deterministic Particle filtering applied to diagnosis 

Let fix U at the value kU , least estimate of U, in (2.3). The problem is hence 

linear and Gaussian. 

6.1   The linear Gaussian component estimation  

The optimal estimation of X is performed by the Kalman filter equations: 

Prediction step: 

a priori estimate   
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(6.1) 

Correction step: 

a posteriori estimate  
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6.2   Default detection/estimation 

To perform the diagnosis problem, we have to estimate the parameter U. This will 

be accomplished by the particle filtering techniques. 

Every step k, we realise N deterministic draws in the set { }Nuuuu ,,,, 321 K=ℑ . 

The N realisations (i.e. Particles) will be used in the equation (2.3) to generate N 

different trajectories. For every particle iU , we calculate the  likelihood of the 

trajectory : [ ]( ) [ ]( )( )kkkkkkk ZUXpZUXVV ;0;0 ,ln, == . The optimal estimate of U 

is: ( )




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U
k VU

i

maxarg , with respect to (6.1) and (6.2). 

7   Estimation/detection algorithm 

At every step k, let explore all the U values in the set { }Nuuuu ,,,, 321 K=ℑ . The 

aim is to determinate the value maximising the likelihood Vk. 

7.1   Initialisation 

With N initial particles which are filled according to some probability measure, the 

initial likelihoods are: ( )( )00
ln XpV

i =  for I = 1 to N. 

7.2   Prediction/correction of the Gaussian component X 

For every particle iU , N Kalman filters are engaged to perform the estimate 

i

kk
X

1−  corresponding to every U value, from the formulas (6.1), (6.2). 

5.3   Evolution of the Gaussian component X, new particles 

At the step k+1, for every initial condition i

kk
X , we pull M particles in the set 

{ }Nuuuu ,,,, 321 K=ℑ , which gives M*N particles and M*N trajectories from (2.3). 

74   Likelihood ratio 

Equations (4.1), (4.2) give a priori estimates of X and P. The innovation process 

leads to the calculus of Vk. The system in (2.3) is a Markov process with independent 

noises, hence Vk can be derived recursively by the formulas, for i= 1 to M*N: 
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7.5   Estimation/ detection of U 

The value of U, defining the deterioration level of the roller bearing is: 

( )



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
= k

U
k VU

i

maxarg , with respect to (4.1) and (4.2)  

7.6   Redistribution 

For the next iteration, we must sort N from M*N particles, whose have the best 

likelihood ratio. The algorithm will branch to 5.2. 

8   Simulations and results   

The system equations have been simulated on Matlab, with the following 

numerical values: ωr = 7039.88, Tc = 0.00029, α = 1, Te = 0.000025, Td = 0.0018, 

wk XN(0, qk), qk = 0.25, vk XN(0, rk), rk = 0.1, for all k u 0, ( )000 , QXNX ≈ , 

P0 = Q0 = diag(0,0.25), [ ]TX 0100 = , X0, wk and vk are assumed independents, N 

and M are fixed at 5 and { }607101041037125.0=ℑ , Ptr = [995 3 2 0.1 0.1;1 

994 3 2 0.1;0.1 1 995 3 1;0.1 1 1 995 3;0.1 0.1 1 3 996 ]*1e-3.  

Case 1: the fault is assumed constant. 
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We fix the real fault at an arbitrary value U in the interval [0.01, 10000]. The 

algorithm converges to the nearest value in ℑ  after only 15 iterations. 

 

Fig. 1. Succession of shocks for a faulty roller bearing, real and estimated speed.  

 

Fig. 2. Real (blue) and estimated (green) speed, Zoom of Fig 1.  

Case 2: the fault amplitude takes value in the set realℑ  = {0.1 45 450 570 950} 

different from ℑ  ={0.125 37 410 1010 607}, the set of U particles values. 
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Fig. 3. Real (green) and estimated (red) default value.  

7   Conclusion 

In this study, the linear model proposed for the transmission of a vibratory signal to 

the sensor has made possible the representation of the roller bearing diagnosis by a 

hybrid system. The discrete parameter U represents exactly here the level of the 

suspected deterioration. This leaves a non linear filtering problem that we solve using 

deterministic particle filtering in two situations: 1°) the fault is constant, 2°) the 

deterioration is time varying in a discrete set of values. 
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