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Abstract

Accuracy is critical if we are to trust the simulation’s predictions. In settings such as fluid-structure

interaction it is all the more important to obtain reliable results to understand, for example, the impact

of pathologies on blood flows in the cardiovascular system. In [1] we have proposed a framework for

high order (in space and time) fluid structure interaction in 2D using an efficient high order ALE map

construction which is described in [2]. In the first part of the paper, we propose a new high order ALE

construction which allows for any type — not only vertical as in [2] — of not too large displacements

that applies to 2D as well as 3D. This construction relies on a first order approximation and a correction

step that recovers the high order accuracy. In the second part of the paper we present an update of our

fluid-structure interaction framework.

Keywords: High order methods, Arbitrary Lagrangian Eulerian transformation, Fluid-Structure

Interaction

1. Introduction

Over the last few years, we have been working on building a mathematical and computational frame-

work for high order fluid-structure interaction, see [1–6], in 2D and 3D, on simplices and hypercubes,

with a wide range of applications and in particular, bio-mechanics (e.g. blood flows in arteries). In this

paper we present the progress made since our last publications [1, 2] as well as a brief overview of the

framework we have built so far.

The paper is organized in the following way: first, we introduce some notations and present a brief

overview of the status of [6] in section 1.2 (which will be described in another publication). In section 2

we state our latest advances in one of our central ingredients to achieve high order fluid-structure in-

teraction, namely the Arbitrary Lagrangian-Eulerian framework. Next, the fluid and structure models

are presented, associated with their respective discretisation and solution methods. These methods are
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validated based on the benchmark [7]. In the last section, we propose a fluid-structure interaction solver,

combination of the tools presented throughout the paper. The solver is validated by the benchmark [7]

and some 3D preliminary results are presented.

1.1. Notations

Given an elementary simplex domain K∗ ⊂ Rd, d = 1, 2, 3, and a positive integer N , let us de-

note by PN (K∗) the space of polynomials of total degree less of equal than N , defined in K∗. We

fix a reference element, K̂, and consider a transformation ϕK∗ : K̂ −→ K∗, called the geometrical

transformation.

We consider now two domains, Ω∗ and Ω ⊂ Rd, d = 1, 2, 3, which we later refer as the reference

and the computational domains, respectively. We further assume that the reference domain has a straight

edge/face mesh associated with it, T ∗, ie, ϕK∗ ∈ P1(K̂), ∀K∗ ∈ T ∗. Furthermore we admit that the

mesh T ∗ covers exactly the domain Ω∗, i.e., Ω∗ =
⋃

K∗∈T ∗ K∗.

We denote PN
c,h(Ω∗), PN

c,h(Ω∗) the spaces of piecewise scalar, respectively vectorial, polynomial of

total degree N , continuous functions in Ω∗, and PN
td,h(Ω∗) the space of piecewise polynomial of total

degree N , totally discontinuous functions in Ω∗.

Finally let us denote by η : ∂Ω∗ −→ ∂Ω a displacement function. Through η, we classify three

subsets of the boundary: (i) Γ∗M , the portion of the boundary that moves according to the displacement

η, (ii) Γ∗F , the portion of the boundary that stays fixed (ie, η(s) = s, ∀s ∈ Γ∗F ) and (iii) Γ∗N , the part

of the boundary on which we do not prescribe a displacement. The image of each subset, Γ∗M , Γ∗F and

Γ∗N by η is denoted by ΓM ,ΓF and ΓN , respectively. These three sets do not overlap and they verify

∂Ω∗ = Γ∗M ∪ Γ∗F ∪ Γ∗N . Denote T ∗,b = {K∗ ∈ T ∗ : ∂K∗ ∩ Γ∗M 6= ∅} the set of elements K∗ sharing a

face with the boundary of Ω∗.

1.2. Computational framework for Galerkin methods

Our computational framework builds upon Feel++ [6] which allows for arbitrary order cG and dG

Galerkin methods (finite element, spectral elements, ...) in 1D, 2D and 3D on simplices and hypercubes.

The computational domain can also be high order, that is to say, the geometrical transformation of each

element K of the mesh is a polynomial of degree greater than one. These high order meshes can be gen-

erated by Gmsh [8] — up to order five in 2D and order four in 3D. — High order approximations come

at a cost both in terms of implementation and computational points of view. The former is addressed by a

very generic framework based on modern C++ programming (meta-programming, expression templates,

...) and a language mimicing the mathematical language. The latter is addressed by a careful implemen-

tation and optimisation. One of the optimisations that allows to have a huge gain in computational effort

is to straighten all the high order elements except for the boundary faces of the computational mesh.

This is achieved by moving all the nodes associated to the high order transformation to the position
2



these nodes would have if a first order geometrical transformation were applied. This procedure can be

formalized in the following operator

ηstraightening
K (ϕN

K(x∗)) =
(
ϕ1

K(x∗)−ϕN
K(x∗)

)
−
(
ϕ1

K∩Γ(x∗)−ϕN
K∩Γ(x∗)

)
(1)

where x∗ is any point in K∗ and ϕ1
K(x∗) and ϕN

K(x∗) its images by the geometrical transformation

of order one and order N , respectively. On one hand, the first two terms ensure that for all K not

intersecting Γ, the order one and N transformations produce the same image. On the other hand, the last

two terms are 0 unless the image of x∗ in on Γ and, in this case, we don’t move the high order image

of x∗. This allows to have straight internal elements and elements touching the boundary to remain

high order. When applying numerical integration, specific quadratures are considered when dealing

with internal elements or elements sharing a face with the boundary. The performances, thanks to this

transformation, are similar to the ones obtained with first order meshes. However, it needs to be used

with care as it can generate folded meshes.

2. High order ALE

We now turn to our high order Arbitrary Lagrangian-Eulerian (ALE) framework. A fundamental

piece in performing simulations in the ALE framework is the transformation that maps the reference

configuration onto the computational domain, at each timestep. This is called ALE map. In Pena and

Prud’homme [1], the authors propose a high order ALE map that allows for an accurate description of

the boundary of the computational domain, while inducing a straight edges in the interior elements of

the computational domain’s mesh. However, this construction has the disadvantage of relying upon the

Gordon-Hall transformations, see Gordon-Hall [9, 10], which makes it (implementation-wise) intrincate

to extend to three dimensional domains.

To overcome this difficulty, we replace the stage based on Gordon-Hall transformations, by the

solution of a local differential problem in each element in contact with the curved boundary. We review

here the construction from [1, 2]. The first step is to perform a modified harmonic extension (according

to Masud and Kanchi [11]) of the displacement η to the interior of the reference domain using piecewise

linear polynomial functions. The corresponding ALE transformation, A1, satisfies a discrete element-

weighted Laplace equation.

The second step is a correction performed in each element that touches the curved boundary in order

to build a high order approximation. In each element K∗ ∈ T ∗,b we look for AN
K∗ ∈ [PN (K∗)]d such

that 

∫
K∗

(1 + τ)∇AN
K∗ : ∇z dx = 0, ∀z ∈ [PN (K∗)]d

AN
K∗(x∗) = η(x∗) + x∗ −A1(x∗), ∀x∗ ∈ ∂K∗ ∩ Γ∗M

AN
K∗ = 0, elsewhere on ∂K∗.
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where Γ∗M is the portion of boundary in the reference domain that is curved in the computational domain.

The final ALE map, AN is obtained by adding to A1 the correction AN
K∗ on each element of T ∗,b

AN (x∗) = A1(x∗) +
∑

K∗∈T ∗,b

AN
K∗(x∗) + x∗

Proposition 1 (Properties ofAN ). Under the previous assumptions and by construction,AN ∈ PN
c,h(T ∗,b)

— enjoys optimal approximation properties i.e. the boundary approximation is O
(
hN+1

)
in the L2-

norm — and AN ∈ P 1
c,h(T ∗\T ∗,b).

2.1. The Harmonic extension and Winslow smoother

In both papers [1, 2], the piecewise linear map created in the first step is calculated by performing

a harmonic extension (or modified harmonic extension) of the boundary data. However, if the displace-

ment is too large, these operators can induce meshes that are not valid due to, for instance, mesh folding.

A way to circumvent this problem, that steams from the structure of the proposed ALE map construction,

is to replace the harmonic extension by a more suitable and flexible operator that avoids these issues or

improves the mesh quality. An example of such an operator is the Winslow smoother [12]. From a con-

tinuous point of view, the Winslow smoother enforces that the inverse of the ALE map is harmonic, not

the map itself. This accounts for solving a quasi-linear system of PDE’s, which can be done using fixed

point iterations. In Figure 1 we show the effect of the modified harmonic extension and the Winslow

smoother for the same testcase.

(a) Modified harmonic ALE map (b) Winslow smoother ALE map

Figure 1: Comparison of first order meshes generated by the harmonic extension (left) and Winslow smoother (right) operators

respectively
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2.2. Numerical verification of Proposition 1

We present now some numerical experiments to verify Proposition 1. In order to conduct these

experiments we use (i) Gmsh [8] to build the initial high order meshes in 2D and 3D and visualize the

meshes computed by our methods and (ii) Feel++ [3, 6] which provides the framework for arbitrary

order Galerkin methods to solve the partial differential equations and handle the computational meshes.

Note that the mesh T ∗ used to solve equation (1) is built automatically from the initial high order mesh

through the straightening process.

We consider the reference domain depicted in Figure 2(a) defined by

Ω∗,cy =
{

(x∗, y∗, z∗) ∈ R3 : x∗ ∈ [0, 5] , y∗2 + z∗2 ≤ 0.52
}

(2)

and the associated displacement of its boundary ηcy(x∗) = 0.2 exp(
x∗

5
) sin

(
πx∗

2.5

)
n∗. Figure 2(b)

displays the computational domains colored by the corresponding ALE map.

(a) Cylinder, Ω∗,cy (b) Cylinder, Ωcy = A4(Ω∗,cy)

Figure 2: Reference (left) and computational (right) meshes of order 4 displayed using Gmsh colored by the displacement

2-norm

Finally, Figure 3(a) displays the convergence rate of the quantity ‖AN (x∗)− (x∗ + η(x∗)) ‖[L2(Γ∗
M)]d

which confirms the result of Proposition 1. Figure 3(b) represents the convergence rate with respect to

geometric order N .
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Figure 3: Convergence rate plots of AN,cy with respect to h (left) and convergence rate plots of AN,cy with respect to N

(right).

3. Models and their discretizations methods

We now turn to the structure and fluid models, their associated discretization and solution methods.

In each case, we display some of the results of our strategy applyed to the benchmark [7]. Note that our

fluid solver has also been benchmarked for bi-fluid simulations [13] following the proposal [14].

Two benchmarks presented in [7] are performed to verify our code. The first one corresponds to the

oscillation of an elastic beam only subjected to gravity. We monitor the coordinates of the tip of the

beam. The second is the simulation of a flow in rectangular domain with a rigid obstacle: a flag clamped

to a cylinder. We monitor the lift and drag.

The algebraic systems arising from the discretization proposed in the next sections are solved using

a Newton or quasi-Newton algorithm with a cubic line search method. At each step, the linear solver

applies the GMRES method with a LU preconditioner. The preconditioner is typically built only once

throughout the nonlinear iterations unless the nonlinearity is stiff and the preconditioner needs to be

recalculated. In the quasi-newton instance, the Jacobian can be rebuilt once in a while during the non-

linear iterations or just once, which is often preferred when simulating time-dependent problems. The

underlying framework for the linear and nonlinear solvers is PETSc [15].

3.1. Structure

3.1.1. Models and discretizations

We first introduce the deformation gradient tensor, which allows to measure the solid deformation

from the displacement ηs, Fs = I +∇ηs.
Other useful tensors are the right Cauchy-Green tensor Cs and the Green-Lagrange tensor Es which

can be expressed by Cs = F T
s Fs, Es = 1

2 (Cs − I) where Es has the property to be divided in two

terms, εs (linear) and γs (quadratic)

Es =
1

2

(
∇ηs + (∇ηs)T

)
︸ ︷︷ ︸

εs

+
1

2

(
(∇ηs)T ∇ηs

)
︸ ︷︷ ︸

γs

. (3)
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The simplest model of this type is the elastic linear model, which is valid for small displacements and

deformations. It reads as

ρs
∂2ηs
∂t2

−∇ · (Σs) = fs, Σs = λs (trεs) I + 2µsεs (4)

with λs and µs being the Lamé coefficients.

The next model is the hyper-elastic and compressible model which is valid for large deformations.

The generic balance equation of hyper-elasticity in Lagrangian description is given by

ρs
∂2ηs
∂t2

−∇ · (FsΣs) = fs, Σs = λs (trEs) I + 2µsEs. (5)

where Σs represents the second Piola-Kirchhoff stress tensor.

To take into account the material incompressibility, we use the Hyper-elastic and incompressible

model. The pressure ps acts as a lagrange multiplier to enforce incompressibility. The model reads as

ρs
∂2ηs
∂t2

−∇ · (FsΣs) = fs, detFs = 1, Σs = −ps(detFs)C
−1
s + λs (trEs) I + 2µsEs. (6)

Finally we also make use of a 1D reduced model for thin structures like shells, also known as general-

ized strings, see [5, 16].

For the numerical results presented in the next section we considered a hyper-elastic model for the

structure. We discretized the equations using [PN ]d elements and a continuous approximation in space

while we used the Newmark method to get an order 2 discretization in time.

3.1.2. Benchmark

The results of the CSM3 benchmark from [7] are displayed in Table 1 and the x, y coordinates of

the tip of the beam on the Figure 4. The results are in accordance with the reference values REF.
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Nelement Ndof x
[
×10−3

]
y
[
×10−3

]
REF −14.305± 14.305 [1.0995] −63.607± 65.160 [1.0995]

4199 17536(P2) −14.585± 14.59 [1.0953] −63.981± 65.521 [1.093]

4199 38900(P3) −14.589± 14.594 [1.0953] −63.998± 65.522 [1.093]

1043 17422(P4) −14.591± 14.596 [1.0953] −64.009± 65.521 [1.093]

4199 68662(P4) −14.59± 14.595 [1.0953] −64.003± 65.522 [1.093]

4199 17536(P2) −14.636± 14.64 [1.0969] −63.937± 65.761 [1.0945]

4199 38900(P3) −14.642± 14.646 [1.0969] −63.949± 65.771 [1.0945]

1043 17422(P4) −14.645± 14.649 [1.0961] −63.955± 65.778 [1.0945]

4199 68662(P4) −14.627± 14.629 [1.0947] −63.916± 65.739 [1.0947]

4199 17536(P2) −14.645± 14.645 [1.0966] −64.083± 65.623 [1.0951]

4199 38900(P3) −14.649± 14.65 [1.0966] −64.092± 65.637 [1.0951]

1043 17422(P4) −14.652± 14.653 [1.0966] −64.099± 65.645 [1.0943]

Table 1: Results for CSM3 with ∆t = 0.02,0.01,0.005. Line REF displays the reference values for [7]

8.0 8.5 9.0 9.5 10.0
−0.030

−0.025

−0.020

−0.015

−0.010

−0.005

0.000

0.005
Reference
Compute
Reference
Compute
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Figure 4: Results for CSM3 with ∆t = 0.005. x and y displacement of the point A depending on time

3.2. Fluid

3.2.1. Models and discretization

We mainly use a Newtonian fluid model which neglects shear-thining and viscoelastic effects. The

govern equations are the classical Navier-Stokes equations which read as

ρf
∂uf

∂t
+ ρf (uf · ∇)uf −∇ · σf = ff (7)

∇ · uf = 0 (8)

where uf is the fluid velocity and ρf its density and

σf = −pfI + τf , τf = 2µfDf , Df =
1

2

(
∇uf + (∇uf )T

)
(9)
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where pf is the pressure and µf the fluid viscosity.

The previous equations are discretized using the standard Taylor-Hood element [PN ]d × PN−1 in

space and the BDF of order 2 or 3 discretizations in time. In 2D the geometry is discretized using order

1 to 5 geometric transformations while in 3D from order 1 to 4, see [8].

3.2.2. Benchmark

The results of the CFD3 benchmark from [7] are displayed in Table 3.2.2 for various geometrical

(Ngeo) and velocity/pressureN/N−1 approximations. The results in Table 3.2.2 for a BDF2 scheme and

time step 5×10−3 are in accordance with the REF results. However, we made some extra computations

using a smaller time step ∆t = 0.002 and BDF2/BDF3 schemes and we observe a significant shift

in the Drag and Lift coefficients. This shift is already present with BDF3 and ∆t = 0.005. Several

computations were made using various meshes and discretization for the velocity, pressure and geometry.

BDF2 and BDF3 for ∆t = 0.002 are very much in accordance with the reference results except perhaps

for the mean of the Lift which tells us that we are probably resolving properly the time and spatial scales

while ∆t = 0.005 using BDF2 or BDF3 is not sufficient.

Ngeo Nelement Ndof (N,N − 1) Nbdf Drag Lift

REF 439.45± 5.6183 [4.3956] −11.893± 437.81 [4.3956]

P1 8042 37514(P2/P1) 2 437.47± 5.3750 [4.3457] −9.7865± 437.54 [4.3457]

P2 2334 26706(P3/P2) 2 439.27± 5.1620 [4.3457] −8.887± 429.06 [4.3457]

P2 7970 89790(P3/P2) 2 439.56± 5.2335 [4.3457] −11.719± 425.81 [4.3457]

P1 3509 39843(P3/P2) 2 438.24± 5.5375 [4.3945] −11.024± 433.90 [4.3945]

P1 8042 90582(P3/P2) 2 439.25± 5.6130 [4.3945] −10.988± 437.70 [4.3945]

P2 2334 26706(P3/P2) 2 439.49± 5.5985 [4.3945] −10.534± 441.02 [4.3945]

P2 7970 89790(P3/P2) 2 439.71± 5.6410 [4.3945] −11.375± 438.37 [4.3945]

P3 3499 73440(P4/P3) 3 439.93± 5.8072 [4.4921] −14.511± 440.96 [4.3945]

P4 2314 78168(P5/P4) 2 439.66± 5.6412 [4.3945] −11.329± 438.93 [4.3945]

P3 2340 49389(P4/P3) 2 440.03± 5.7321 [4.3945] −13.25± 439.64 [4.3945]

P3 2334 49266(P4/P3) 3 440.06± 5.7773 [4.3945] −14.092± 440.07 [4.3945]

Table 2: Results for CFD3 with ∆t = 0.01,0.005,0.002. Line REF displays the reference values for [7]

4. Fluid structure interaction

In the fluid-structure interaction context, we chose to write the fluid dynamics equations in the

Arbitrary Lagrangian Eulerian (ALE) framework. It allows to take into account the deformation of
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the fluid domain. We need also to introduce into our model the domain’s velocity of deformation wf ,

see e.g. [1, 2], the fluid equation set now reads in the moving domain Ωt over the time interval I:

ρf
∂uf

∂t

∣∣∣∣
x∗
− divx(2µfDx(uf )) + ρf ((uf −wf ) ·∇x)uf +∇xpf = f , in Ωt × I (10)

divx(uf ) = 0, in Ωt × I (11)

where all differential operators are defined w.r.t. the Eulerian coordinate system, except the ALE time

derivative.

The fluid and the structure are coupled through a partitioned method with an implicit or semi-implicit

scheme, see [1, 5] for more details.

4.1. 2D Benchmark

This final benchmark is a mix of the two previous tests. We remove the gravity and the flag part

(not the cylinder) is now allowed to move. The results are in accordance with the reference values

even though we used a really coarse mesh except for the drag. A complete study using high order

approximation like for the fluid shall be available at the time of Acomen’11.

x
[
×10−3

]
y
[
×10−3

]
Drag Lift

REF −2.69± 2.53 [10.9] 1.48± 34.38 [5.3] 457.3± 22.66 [10.9] 2.22± 149.78 [5.3]

−2.78± 2.69 [10.7] 1.55± 33.87 [5.3] 459.8± 31.06 [10.7] −2.19± 174.45 [5.3]

Table 3: Results for FSI3 with ∆t = 0.01. There are 1226 elements in Ωf and 26211 dofs associated (P4/P3), 260 elements

in Ωs and 2612 dofs associated (P3). The geometry is first order and the BDF scheme for the fluid is order 2. REF values are

found in [7]

4.2. 3D Benchmark

Finally we present a blood flow application in large arteries that has been proposed in [16]. The

geometry is a straight pipe and a pressure pulse of 1.3332 × 104g/
(
cm s2

)
has been imposed at the

inlet boundary during 0.003s. The thin elastic vessel (0.1cm) is clamped at the inlet and outlet. Figure 6

shows the pressure wave propagation for different time steps. We have used a (P2/P1) space for the

fluid and P1 for the structure. The geometry for the fluid and structure is order one. The time scheme

for the fluid is also order 1.

5. Conclusion

We have now a complete high order fluid-structure interaction framework in 2D and 3D. However

much remains to be in various areas. Indeed we need to make a thorough study of our Navier-Stokes

in moving domains framework in terms of approximations — the Arbitrary Lagrangian Eulerian in
10
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Figure 5: Results for FSI3 with ∆t = 0.01.

(a) t=0.0015 (b) t=0.0030

(c) t=0.0045 (d) t=0.0060

Figure 6: Pressure wave in a straight pipe. We show the fluid pressure and the fluid displacement of the pipe is magnified 15

times.
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particular — as well the underlying linear algebra solvers updating the results of our previous paper [2].

We also have to compare various fluid-structure strategies as well as the wide range of space time and

geometry approximations at our disposal to provide a complete overview.
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