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a half space by full wave inversion of the the response
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Abstract

The elastodynamic inverse problem treated herein can be illustrated by the simple acoustic
inverse problem first studied by (Colladon, 1827): retrieve the speed of sound (C) in a liquid
from the time (T) it takes an acoustic pulse to travel the distance (D) from the point of its
emission to the point of its reception in the liquid. The solution of Colladon’s problem is
obviously C=D/T, and that of the related problem of the retrieval of the position of the source
from T is D=CT. The type of questions we address in the present investigation, in which the
liquid is a solid occupying a half space, T a complete signal rather than the instant at which it
attains its maximum, and C a set of five parameters, are: how precise is the retrieval of C when
D is known only approximately and how precise is the retrieval of D when C is plagued with
error?
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1 General introduction

We address herein the (inverse) problem of the retrieval of the source location and the material
parameters of a homogeneous, isotropic, hysteretically-damped solid medium occupying a half
space. The retrieval is accomplished by processing simulated (or measured, in any case, known)
temporal response (the data) at a location on the (flat) bounding surface.

In the geophysical context (Tarantola,1986; Sacks & Symes, 1987; Aki & Richards, 1980), such
problems concern earthquake (and underground nuclear explosion (Ringdal & Kennett, 2001))
source localization (Billings et al., 1994; Thurber & Rabinowitz, 2000; Michelini & Lomax, 2004);
Valentine & Woodhouse, 2010) and underground mechanical descriptor retrieval (Tarantola, 1986),
and are often solved (Zhang & Chan, 2003; Lai et al., 2002) by inverting the times of arrival (TOAI)
of body (Kikuchi & Kanamori, 1982) and surface (Xia et al., 1999) waves in the displacement
signal at one or several points on the boundary of the medium. This approach requires the prior
identification of the maxima or minima (or other signatures) of the signal corresponding to these
times of arrival and thus is fraught with ambiguity, especially when body wave and surface wave
times of arrivals are close as at small offsets (Bodet 2005; Foti et al., 2009) or when many surface
waves (e.g., corresponding to generalized Rayleigh modes) contribute in a complex manner to the
time domain response, as when the underlying medium is multilayered (Aki & Richards, 1980; Foti
et al., 2009).

What appears to be less ambiguous is to employ most (or all) of the information in the signal
(or of its spectrum (Mora, 1987; Sun & McMechan, 1992; Pratt, 1999; Virieux & Operto, 2009; De
Barros et al, 2010; Dupuy, 2011)) in the inversion process (full waveform inversion, FWI) rather
than a very small fraction of the signal (as in the TOAI) methods.

We shall determine, in the context of the simplest canonical problem, to what extent a time
domain FWI method enables the retrieval of either the source location or of one of the mechanical
descriptors: (real) mass density, and (complex) Lamé parameters of the medium, when the remain-
ing parameters are not well-known a priori. This type of study was initiated in (Buchanan et al.,
2002; Chotiros, 2002), and continued in such works as (Scotti & Wirgin, 2004; Buchanan et al.,
2011; Dupuy, 2011).

1.1 Statement of the inverse problem

As we shall see hereafter, the data takes the form of a response signal (to a dynamic load, over a
temporal window [td, tf ], sampled at Nt instants) which is a double integral U (over nondimensional
wavenumber ξ and frequency f) depending on certain physical and geometrical scalar parameters
of the scattering structure and of the solicitation. These parameters p1, p2, ...pK , ..., pN form the
set p.

The forward scattering problem is to determine U(p, t) for different combinations of
p1, p2, ..., pN .

Our inverse scattering problem is to recover one or several of the parameters p1, p2, ..., pN from
data pertaining to the signal {U(p, t) ; t ∈ [td, tf ]}. (x1, 0) are the cartesian coordinates of the
position of the receiver on the ground and (0, 0) the position of the emitter, also on the ground, of
the probe signal.

The present study is restricted to the case in which only a single parameter pK of p is retrieved
at a time, the other parameters of p being assumed to be more or less well-known (Aki & Richards,
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1980). Hereafter, we adopt the notation: q := p− pK .
In fact, we are most interested herein in evaluating to what extent the precision of retrieval of

pK depends on the degree of a priori knowledge of the other parameters of p.

1.2 The two models

In order to carry out an inversion of a set of data one must dispose of a model of the physical
process he thinks is able to generate the data. We term this model, the retrieval model, or RM.
The RM is characterized by: 1) the mathematical/numerical ingredient(s) (MNI) and 2) the phys-
ical/geometrical and numerical parameters to which the model appeals. The physical/geometrical
parameters of the RM form the set P, whereas the numerical parameters of the RM can be grouped
into a set which we call N.

When, as in the present study, the (true) data is not the result of a measurement, it must be
generated (simulated), again with the help of a model of the underlying physical process which is
thought to be able to give rise to the true data. We term this model, the data simulation model, or
SM. The SM, like the RM, is characterized by two essential ingredients: the mathematical/numerical
ingredient(s) (MNI) and the physical/geometrical and numerical parameters to which the model
appeals. The physical/geometrical parameters of the SM form none other than the set p, whereas
the numerical parameters of the SM can be grouped into a set which we call n.

1.3 The inverse crime

In the present study, as in many other inverse problem investigations, the MNI of the RM is chosen
to be the same as the MNI of the SM. In this case, when the values of all the parameters of the set
P are strictly equal to their counterparts in the set p and the values of all the parameters of the
set N are strictly equal to their counterparts in the set n, the response computed via the RM will
be identical to the response computed via the SM.

This so-called ’trivial’ result, which is called the ’inverse crime’ in the inverse problem context
(Colton & Kress, 1992), has a corollary (Wirgin, 2004): when the values of all the parameters,
except PK of the set P are strictly equal to their counterparts in the set p and the values of all the
parameters of the set N are strictly equal to their counterparts in the set n, then the inversion will
give rise to at least one solution, PK = pK .

This eventuality is highly improbable in real-life, in that one usually has only a vague idea a
priori of the value of at least one of the parameters of the set p. This is the reason why, in the
present study, we take explicitly in account this imprecision, with the added benefit of avoiding the
inverse crime.

2 Ingredients of the data simulation and retrieval models

As mentioned previously, herein the two models SM and RM are assumed to be identical as to
their mathematical/numerical ingredients (MNI) and the nature and number of involved physi-
cal/geometrical parameters. We now proceed to describe these MNI.
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2.1 The setting

Space is divided into two half spaces: Ω (termed hereafter underground), and R3 \Ω. The medium
M occupying Ω, is a linear, isotropic, homogeneous, hysteretically-damped solid and the medium
occupying R3 \ Ω is the vacumn.

M is associated with: ρ, its mass density and λ, µ, its Lamé constitutive parameters. Due to
the homogeneous, isotropic nature of M , ρ, λ′, λ′′, µ′ and µ′′ are real, scalar constants, with the
understanding that primed quantities are related to the real part and double primed quantitites to
the imaginary part of a complex parameter.

Let G, termed hereafter ground, designate the flat horizontal interface between these two half
spaces and ν be the unit vector normal to G.

Let t be the time, x := (x1, x2, x3) the vector from the origin (located on G) to a generic point
in space, and xm a cartesian coordinate, such that ν = (0, 0, 1). Let U = {Um(x, t) ; m = 1, 2, 3}
designate the displacement in the medium, with spatial derivatives Uk,l := ∂Uk/∂xl.

The medium is solicited by stresses applied on the portion Ga of G. Other than on Ga, the
boundary G is stress-free. In addition, we assume that: (1) Ga is an infinitely long (along x2)
strip located between x1 = −a and x1 = a and (2) the applied stresses are uniform, so that the
stresses and the displacement U depend only on x1 and x3, i.e., the problem is two-dimensional.
Thus, from now on, the focus is on what happens in the sagittal (x1 − x3) plane (see fig.1) and on
the linear traces Γ of G and Γa of Ga. Moreover, the vector x is now understood to evolve in the
sagittal plane, i.e., x = (x1, 0, x3) and all derivatives of displacement with respect to x2 are nil.

Figure 1: Description of the problem in the sagittal plane.

2.2 The boundary value problem

By expanding U in a Fourier integral (with ω the angular frequency):

U(x, t) =

∫ ∞

−∞
u(x, ω) exp(−iωt)dω , (1)
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the Navier equations (Eringen & Suhubi, 1975) become (with the Einstein index summation con-
vention):

(λ+ µ)uk,kl + µul,kk + ρω2ul = 0 , (2)

wherein
λ := λ′ − iωλ′′ , µ := µ′ − iωµ′′ . (3)

The boundary conditions are:

σk3 =

{
σa
k3 ; x ∈ Γa

0 ; x ∈ Γ \ Γa ; k = 1, 2, 3 . (4)

or,

µ(u1,3 + u3,1) =

{
σa
13 ; x ∈ Γa

0 ; x ∈ Γ \ Γa , (5)

µu2,3 =

{
σa
23 ; x ∈ Γa

0 ; x ∈ Γ \ Γa , (6)

λu1,1 + (λ+ 2µ)u3,3 =

{
σa
33 ; x ∈ Γa

0 ; x ∈ Γ \ Γa , (7)

wherein σkl are the components of the space-frequency domain stress tensor.
Finally, the displacement in the solid is subjected to the radiation condition

um(x, ω) ∼ attenuated waves ; x ∈ Ω , x3 → −∞ . (8)

2.3 Material damping and complex body wave velocities

We can rewrite µ and λ as

µ = µ′
(
1− iω

µ′′

µ′

)
, λ = λ′

(
1− iω

λ′′

λ′

)
. (9)

The case of hysteretic damping (Molenkamp & Smith, 1980; Mesgouez, 2005), assumed in this
study, corresponds to

βµ := ω
µ′′

µ′ , βλ := ω
λ′′

λ′ , (10)

whence
µ = µ′ (1− iβµ) , λ = λ′ (1− iβλ) , (11)

wherein βµ and βλ are constants (i.e., with respect to frequency ω). This implies that µ′′

µ′ =
βµ

ω

and/or λ′′

λ′ = βλ
ω , which means that µ′′ and/or µ′ depend on the frequency and λ′′ and/or λ′ depend

on the frequency.
A typical solution of (2) is of the (plane wave) form:

ul(x, ω) = Al(ω) exp(ikmxm) , (12)

wherein

kmkm = k2 =
ω2

c2
, (13)

6



and one finds the three eigenvalues:

c = c1 = c2 =
√

µ/ρ = cS , (14)

c = c3 =
√

(λ+ 2µ)/ρ = cP . (15)

which are recognized to be the velocities of the transverse (shear, Secondary) and longitudinal
(compressional, Primary) bulk waves in the damped solid medium.

These velocities, and in particular, cS , are complex, i.e.,

cS = c′S − ic′′S . (16)

We require
ℜcS = c′S ≥ 0 , (17)

due to the fact that the body wave velocity is positive in an elastic (i.e., non-lossy medium). We
have

kS = k′S + ik′′S =
ω

cS
=

ω

c′S − ic′′S
=

ωc′S + iωc′′S
∥cS∥2

, (18)

from which we see that in order for ℑkS = k′′S ≥ 0, we must have

ℑcS = −c′′S ≤ 0 . (19)

In the same manner we can show that

ℑcP = −c′′P ≤ 0 . (20)

2.4 Plane wave field representations

By employing the Helmholtz decomposition, the gauge condition and the radiation condition to
(2), we obtain the following plane wave representations of the displacement

u1(x, ω) =

∫ ∞

−∞

[
A−

1 (ω, k1)k1E
−
P (x, ω, k1) +A−

2 (ω, k1)k3SE
−
S (x, ω, k1)

]
dk1 , (21)

u2(x, ω) =

∫ ∞

−∞
A−

3 (ω, k1)kSE
−
S (x, ω, k1)dk1 , (22)

u3(x, ω) =

∫ ∞

−∞

[
−A−

1 (ω, k1)k3PE
−
P (x, ω, k1) +A−

2 (ω, k1)k1E
−
S (x, ω, k1)

]
dk1 , (23)

wherein, for k1 ∈ R,

k3P =
√
κ3P =

√
(kP )2 − (k1)2 ;

ℜk3P ≥ 0 , ℑk3P ≥ 0 when ℑκ3P ≥ 0, ℑk3P < 0 when ℑκ3P < 0; for ω ≥ 0 , (24)

k3S =
√
κ3S =

√
(kS)2 − (k1)2 ;

ℜk3S ≥ 0 , ℑk3S ≥ 0 when ℑκ3S ≥ 0, ℑk3S < 0 when ℑκ3S < 0; for ω ≥ 0 , (25)
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and
E−

P := exp[i(k1x1 − k3Px3)] , E−
S := exp[i(k1x1 − k3Sx3)] . (26)

The previous choices of signs of the real and imaginary parts of k3P and k3S for ω ≥ 0 in
(24)-(25) were conventional. The question arises, due to the fact that the time domain response is
a Fourier integral involving negative frequencies as well as zero and positive frequencies, as to what
signs to choose when ω < 0. The answer is provided by the requirement that the physical space
time-domain displacement field uj(x, t) be real, and is easily shown to lead to:

ℜk3P (ω) ≥ 0 , ℑk3P (ω) < 0 when ℑκ3P ≥ 0, ℑk3P ≥ 0 when ℑκ3P < 0; for ω < 0 , (27)

ℜk3S(ω) ≥ 0 , ℑk3S(ω) < 0 when ℑκ3S ≥ 0, ℑk3S ≥ 0 when ℑκ3S < 0; for ω < 0 . (28)

Eqs. (21)-(23) express the fact that 2D fields are composed of:
a) in-(sagittal) plane motion, embodied by a sum of P (for pressure)-polarized and SV (for shear
vertical) -polarized plane waves, and
b) out-of-(sagittal) plane motion, embodied by a sum of SH (for shear horizontal) -polarized plane
waves.

2.5 Application of the boundary conditions to obtain the coefficients of the
plane wave representations of the displacement field

From now on, we restrict the discussion to in-plane motion, so that the introduction of the plane
wave representations into the boundary conditions yields:

A−
1 [−2iµk1k3P ] +A−

2 [iµ(k
2
1 − k23S)] = Sa

13 ; ∀k1 ∈ R , (29)

A−
1 [−iµ(k21 − k23S)] +A−

2 [−2iµ(k1k3S)] = Sa
33 ; ∀k1 ∈ R . (30)

wherein:

Sa
kl(x1, 0, ω, k1) :=

∫ a

−a
σa
kl(x1, 0, ω) exp(−ik1x1)dx1 ; ∀k1 ∈ R . (31)

On account of the uniform strip-like character of the solicitation, we have:

σa
j3(x1, 0, ω) = PjH(ω) ; x1 ∈ [−a, a] , (32)

wherein Pj are prescribed constants, and H(ω) is the spectrum of applied stress, such that

H(−ω) = H(ω) . (33)

It ensues that

Sa
j3(x1, 0, ω, kQξ) = PjH(ω)

∫ a

−a
exp(−ikQξx1)dx1 = 2aPjH(ω)sinc(ξωA) , (34)

wherein sinc(x) := sinx
x and

A :=
a

cQ
, Xj :=

xj
cQ

. (35)
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We now make the change of variables

k1 = kQξ with kQ =
ω

cQ
. (36)

cQ is a reference velocity with no particular characteristics other than

ℜcQ > 0 , ℑcQ = 0 , (37)

and is otherwise arbitrary. Then
k3P,S := kQχP,S , (38)

wherein

χP (ξ) =
√

r2P − ξ2 , χS(ξ) =
√

r2S − ξ2 , (39)

rP =
cQ
cP

, rS =
cQ
cS

, (40)

and we adopt the same sign convention for χP and χS as for kP and kS respectively.
By finally restricting our attention to vertical motion (i.e, u3) in response to vertical stress (i.e.,

only P3 ̸= 0) we obtain (since χP,S(−ξ) = χP,S(ξ)), by solving (29)-(30) for A−
1 and A−

3 :

u3(x, ω) =
4iaP3H(ω)

µ
×∫ ∞

0

[
− χP [ξ

2 − χ2
S ] exp(−iχPωX3) + 2ξ2χP exp(−iχSωX3)

]sinc(ξωA) cos(ξωX1)

4ξ2χPχS + [ξ2 − χ2
S ]
dξ , (41)

which is the space-frequency solution to the forward problem of the prediction of the vertical
component of displacement response to a uniform vertical strip load on the boundary of the half
space.

2.6 Numerical issues concerning the computation of the transfer function

On the ground (which is where the data is collected), (41) tells us that

u3(x1, 0, ω) = H(ω)T (x1, 0, ω) , (42)

wherein T (x1, 0, ω) is the transfer function

T (x1, 0, ω) =

∫ ∞

0

N(x1, 0, ξ, ω)

D(ξ)
dξ , (43)

with

N(x1, 0, ξ, ω = iQ3r
2
SχP (ξ, ω)sinc(ξωA) cos(ξωX1) ,

D(ξ) = 4ξ2χP (ξ, ω)χS(ξ, ω) + [ξ2 − (χS(ξ, ω))
2] , Qj :=

4aPj

µ
. (44)

Various strategies have been devised (Fu, 1947; Apsel & Luco, ,1983; Xu & Mal, 1987; Stam,
1990; Chen & Zhang, 2001; Park & Kausel, 2004; Groby, 2005, Groby & Wirgin 2005; Mesgouez
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& Lefeuve-Mesgouez, 2009) to compute such integrals, many of which take specific account of the
possible (generally-complex) solutions of D(ξ) = 0 (the equation for the Rayleigh mode eigenvalues)
close (all the more so, the smaller is the attenuation in the solid medium) to the real ξ axis, but
herein we make the simpler choice of direct numerical quadrature.

To do this, we first make the approximation

T (x1, 0, ω) ≈
∫ ξf

ξd

N(x1, 0, ξ, ω)

D(ξ)
dξ , (45)

with ξd being close to 0 and ξf being as large as (is economically) possible. The second step is to
replace the integral by any standard numerical quadrature scheme, i.e.,

T (x1, 0, ω) ≈ εξ

Nξ∑
n=1

wn
N(x1, 0, ξn, ω)

D(ξn)
, (46)

wherein, for instance, ξn = ξd + (n − 1)εξ, εξ = (ξf − ξd)/(Nξ − 1) and the wn are the weights
associated with the chosen quadrature scheme.

In fact, we evaluated the rectangular, trapezoidal, Simpson and various Matlab functions, and
finally settled for the Simpson quadrature technique.

The principal problem is then the proper choice of ξd, ξf and Nξ. This was done by sequential
variation of these three numerical parameters until the achievement of stabilization of the computa-
tional result. The optimal set ξ = {ξd, ξf , Nξ} was then the one that first enabled the achievement
of this stabilization.

An alternative to this method is possible when supposedly-accurate reference results (as ob-
tained, for instance, by an adaptive Filon integration scheme (Chen & Zhang, 2001)) are available.
In this case, the choice of optimal numerical parameters is made on the basis of a minimal norm,
the norm being (for instance)

N (x1, 0, ξ) :=

∫ ff

fd

∥Tref (x1, 0, 2πf)− Ttrial(x1, 0, 2πf, ξ)∥2df , (47)

wherein f = ω/2π is the frequency, whereas Tref is the reference solution and Ttrial the solution
with trial numerical parameters ξd, ξf and Nξ.

It is important to underline the fact that in the inverse problem context, it is not crucial to
obtain a perfectly-accurate solution of the forward problem (in fact, one often deliberately adds
noise to ’spoil’ the inverse crime and/or to simulate measurement error), since the same solution is
employed for the simulation of data and for a retrieval model, both of these being fraught, in real-
world situations, with errors of all sorts (noise, uncertainty of various physical and/or geometrical
parameters intervening in: the measurement or simulation of data, and the retrieval model of the
displacement on the ground). Moreover, as shown in (Wirgin, 2004), the success of an inversion
is largely due to the extent to which the retrieval model accounts for all features of the data, and
when the data is simulated, the ideal situation (i.e., in which the inverse crime is committed) is
obtained by employing the same model for the retrieval as the one employed for the simulation of
data, this being true whether this model gives a true picture of reality or not.
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2.7 Vertical component of the displacement signal on the ground for vertical
applied stress

Recall that the relation between the displacement spectrum u(x, ω) and the displacement signal
u(x, t) is

U(x, t) =

∫ ∞

0
[u(x,−ω) exp(iωt) + u(x, ω) exp(−iωt)]dω . (48)

This leads us to inquire as to the expression of u3(x1, 0, ω), which, on account of (41), (33), and
the assumption of hysteretic damping (i.e., rP,S do not depend on ω, making D independent of
the frequency, i.e., the Rayleigh modes are not dispersive in a hysteretically-damped or elastic
medium), reads

u3(x1, 0,−ω) = iQ3H(ω)

∫ ∞

0
r2SχP (ξ,−ω)

sinc(−ξωA) cos(ξωX1)

D(ξ)
dξ , (49)

or, on account of the previous assumptions χP,S(ξ,−ω) = χP,S(ξ, ω),

u3(x1, 0,−ω) = u3(x1, 0, ω) . (50)

Consequently

U3(x1, 0, t) = 2ℜ
∫ ∞

0
u3(x1, 0, ω) exp(−iωt)dω . (51)

The applied stress signal on the boundary can generally be expressed as

σa
33(x1, 0, t) = F(x1)H(t) . (52)

associated with the spectrum
σa
33(x1, 0, ω) = F(x1)H(ω) . (53)

The uniform nature of the applied stress was previously shown to translate to F(x1) = P3=constant.
Here we dwell on H(t) and its Fourier transform.

We choose the truncated sinusoidal impulsive excitation

H(t) = H0 sin(ω0t)[H(t)−H(t− 2t1] , (54)

wherein H0, ω0 and t1 are (chosen) constants and H(t) is the Heaviside function (= 0 for t < 0
and = 1 for t > 0). Since we want the pulse to take the form of a half period of a sinusoid in its
non-vanishing portion, we take

t1 =
π

2ω0
. (55)

Then

σa
33(x1, 0, ω) =

F(x1)H0t1
2πi

exp(iωt1)[sinc((ω + ω0)t1) + sinc((ω − ω0)t1)] , (56)

whence

H(ω) =
H0t1
2πi

exp(iωt1)[sinc((ω + ω0)t1) + sinc((ω − ω0)t1)] . (57)

An example of this type of solicitation signal is given in fig. 2.
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Figure 2: Modulus of the spectrum (top panel) and exact time (middle panel) domain representa-
tions of a half-sinusoidal pulse for which ω0 = 200π rad, t1 = 0.0025 s. The bottom panel depicts
the Fourier integral reconstruction of the pulse from its spectrum.
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2.8 Numerical issues concerning the computation of the response signal

We found in (51) that the response signal takes the form

U3(x1, 0, t) =

∫ ∞

0
U3(x1, 0, f)df , (58)

with ω = 2πf and
U3(x1, 0, f) = 4πℜ[u3(x1, 0, 2πf) exp(−i2πft)] . (59)

Once again, we make the simple choice of direct numerical quadrature by first adopting the
approximation

U3(x1, 0, t) ≈
∫ ff

fd

U3(x1, 0, f)df , (60)

with fd being close to 0 and ff being as large as (is economically) possible. Actually, the choice of
fd and ff is dictated a minima by the requirement that the significant portion of the spectrum of
the excitation signal be accounted for.

The second step is to replace the integral by any standard numerical quadrature scheme, i.e.,

U3(x1, 0, t) ≈ εf

Nf∑
n=1

WnU3(x1, 0, fn) , (61)

wherein, for instance, fn = fd + (n − 1)εf , εf = (ff − fd)/(Nf − 1) and the Wn are the weights
associated with the chosen quadrature scheme.

In fact, we settled for the Simpson quadrature technique and chose fd, ff and Nf as were
previously chosen the numerical parameters in the computation of the transfer function.

Our numerical results for the forward problem space-time domain response were found to be in
qualitative (if not quantitative) agreement with those of (Eringen & Suhubi, 1975; Virieux, 1986;
Pratt, 1990; Jones & Petyt, 1991; Ma & Lee, 2000; Park & Kausel, 2004; Kausel, 2006), and those
obtained by a method described in (Chen & Zhang, 2001).

3 Ingredients and results of the inversion scheme

Recall that the to-be-retrieved parameters are: p1 = ρ, p2 = ℜλ, p3 = ℑλ, p4 = ℜµ, p5 = ℑµ,
p6 = x1. The other parameters, P, t1, f0 = ω/2π and a, relative to the solicitation, are assumed
to be perfectly well-known a priori.

3.1 The cost function

Inversion is the process by which data (input to the process) is analyzed to yield an estimation of
one or more parameters (output of the process) hidden in a usually nonlinear manner in the data.
Herein, the process makes use of a cost (or objective) function.

This cost function gives a measure of the discrepancy between a measured (or simulated) field
and a retrieval model of this field. The measured (or simulated) field (herein the SM) incorporates
true values of p, including those of pK , whereas the retrieval model (RM) field incorporates trial
values, designated by PK , and more-or-less accurate values (with respect to their true counterparts
in the data) of the other pk ; k ̸= K, designated by Pk.
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When, during the variation of PK , the cost function attains a minimum, it is hoped that the
trial value PK be as close as possible to the actual value of the parameter pK .

During the inversion, PK is varied within the interval I in such a way as to approach the
minimum of the cost function. At each step of the inversion (usually for diminishing I), the set
of Pk, including PK , is designated by P. Note that none of the parameters Pk other than PK

are varied during a given inversion. However, comparisons will be made of different inversions to
retrieve pK incorporating different Q := P ∩ PK .

A common cost function is of the least squares variety and is expressed by

κ(PK ,Q) =

∫ tf
td
[U(PK ∪Q, x1, 0, t)− U(p, x1, 0, t)]

2dt∫ tf
td
[U(p, x1, 0, t)]2dt

, (62)

wherein U(p, x1, 0, t) ; t ∈ [td, tf ] is the data field and U(PK ∪Q, x1, O, t) ; t ∈ [td, tf ] the model
field incorporating the trial value PK of the sought-for parameter pK .

Actually, the signal only exists in discretized form, as Nt samples in the window [td, tf ], so as
to lead to the alternate definition of the cost function

κ(PK ,Q) =

∑Nt
n=1[U(PK ∪Q, x1, 0, tn)− U(p, x1, 0, tn)]

2∑Nt
n=1[U(p, x1, 0, tn)]2

. (63)

wherein tn = td + (n− 1)εt and εt = (tf − td)/(Nt − 1).

3.2 Minimization of the cost function

The inverse problem is solved by minimization of the cost function. Assuming that it is the single
parameter pK one wants to reconstruct, whose retrieval model counterpart is PK , and that the
minimum of the cost function is found for PK = p̃K(Q, I),

p̃K(Q, I) = arg min
PK∈I

κ(PK ,Q) . (64)

The arg symbol in front of the min symbol means that the actual value of the minimum of κ
is irrelevant; rather it is the value of PK which produces this minimum that is the item of interest.

This formula suggests that:

• p̃K can be different from the true value pK ; in this case the inversion has been successful, but
has produced a result that is fraught with error,

• p̃K depends on the search interval I := [PKd, PKf ]; if the latter is too narrow, there might not
exist a minimum of κ therein, and if it is too wide, there might exist more than one minima
therein (in which case it is usual, as is done herein, to retain the solution corresponding to
the global minimum) and/or the precision of the retrieved parameter might be too low,

• p̃K depends on Q, which means that differences between the parameter set Q employed in
the retrieval model and the set q of the data simulation model will give rise to differences
between p̃K and pK ; in fact it is of prime interest to see how the discordance between these
two sets affects the precision of the retrieval of pK .

14



A relatively primitive, but nonetheless illustrative, way to carry out the inversion is by plotting
the cost κ on the y-axis versus PK on the x-axis; the value of PK , for which κ is visually found to
be minimum, is p̃K . A more quantitative method is to employ (as is done herein) a minimization
scheme such as bisection to locate this abscissa. To get a more accurate estimation, the procedure
is repeated for smaller intervals I.

It should be stressed that the cost function may possess more than one (relative) minimum
(Ogam et al., 2001) or no minimum, as may be the case in which there is discordance between Q
and q. Moreover, the deepest (global) minimum may turn out not to correspond to the value of
PK closest to pK .

Thus, inversion does not necessarily lead to a solution, nor to a unique solution, nor to the
correct solution.

3.3 More on discordance and retrieval error

Suppose that the parameter Pl ∈ Q is different from its counterpart pl ∈ q. Then the (relative
percent) discordance between the two is:

δl :=

(
Pl − pl

pl

)
× 100 . (65)

We shall be interested in particular in the effect of 10% discordances relative to one or more
parameters on the error of the retrieval of another parameter.

This (relative percent) retrieval error is:

εK =
∣∣∣ p̃K − pK

pK

∣∣∣× 100 , (66)

wherein p̃K is the retrieved value of pk by the inversion scheme.
All the material in the following five subsections applies to the configuration (assumed both in

the data and the retrieval model): a = 0.1, t1 = 0.0025 s, f0 = ω0/2π = 100 rad, td = 0 s, tf = 0.03
s, Nt = 101. The other physical and geometrical parameters relative to the data are given in table
1.

pK parameter value units

p1 ρ 2400 kg/m3

p2 ℜλ 12.3× 109 Pa
p3 ℑλ 0 Pa
p4 ℜµ 4× 109 Pa
p5 ℑµ −0.1× 109 Pa
p6 x1 10 m

Table 1: Parameters of the set p employed in the data simulation model. These parameters will
be retrieved, one at a time, by the inversion process.

Due to the fact that p3 = ℑλ = 0, it was not possible to compute δ3 and ε3. This means that
we were unable to compute the retrieval error of ℑλ.
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3.3.1 Illustration of the inversion process

The following four figures (relative to the the retrieval of ℜµ) illustrate how the inversion process
was carried out, i.e.:
1- generate the data once and for all (red curve in the top panel of the figures);
2- for each P in the choice of I (in this example, for each P1 in the interval [P1d, P1f ], the other Pk

of P being fixed), generate the response functions (black curves in the top panel of the figures);
3- compute the cost function corresponding to each black curve and plot these cost functions as a
function of PK (blue curve);
4- find the position (arg min) of the minimum of the cost function;
5- to increase the resolving power of this minimum position, diminish I, while keeping constant or
increasing the number of P1 in this interval, and repeat operations 2-4 (second to fourth figures);
6- the adopted p̃K is the position of the minimum of the cost function in the last of the four figures.
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Figure 3: First iteration (for wide I) in the inversion process for the retrieval of ℜµ for a single
parameter (ρ) discordance δ1 = −10. Top panel: data (red) and various trial response curves
(black). Bottom panel: cost function corresponding to the various trial responses.

The results of these operations, for various discordances, are given in tables 2-6. Each row in
the tables represents the last in the series of (usually of the order of five) operations for diminishing
I described in the above lines.
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Figure 4: Second iteration (for narrower I) in the inversion process for the retrieval of ℜµ for a
single parameter (ρ) discordance δ1 = −10. Top panel: data (red) and various trial response curves
(black). Bottom panel: cost function corresponding to the various trial responses.
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Figure 5: Third iteration (for even narrower I) in the inversion process for the retrieval of ℜµ for a
single parameter (ρ) discordance δ1 = −10. Top panel: data (red) and various trial response curves
(black). Bottom panel: cost function corresponding to the various trial responses.
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3.3.2 Retrieval error of ρ

Table 2 shows how the precision of the retrieval of ρ depends on the discordances of the other
parameters.

δ2 δ4 δ5 δ6 ε1
-10 0 0 0 0
10 0 0 0 0.3
0 -10 0 0 8.3
0 10 0 0 9.6
0 0 -10 0 0.1
0 0 10 0 0
0 0 0 -10 25.0
0 0 0 10 16.7

Table 2: One discordance δl per inversion, and its effect on the error ε1 of the retrieval of parameter
p1 = ρ. The line δ2 = δ4 = δ5 = δ6 = 0 (with P3 = p3) is not shown in this table, but gave the
expected result ε1 = 0 corresponding to the inverse crime situation.

3.3.3 Retrieval error of ℜλ

Table 3 shows how the precision of the retrieval of ℜλ depends on the discordances of the other
parameters.

δ1 δ4 δ5 δ6 ε2
-10 0 0 0 18.7
10 0 0 0 32.8
0 -10 0 0 69.9
0 10 0 0 45.5
0 0 -10 0 1.6
0 0 10 0 1.6
0 0 0 -10 31.7
0 0 0 10 115.5

Table 3: One discordance δl per inversion, and its effect on the error ε2 of the retrieval of parameter
p2 = ℜλ. The line δ1 = δ4 = δ5 = δ6 = 0 (with P3 = p3) is not shown in this table, but gave the
expected result ε2 = 0 corresponding to the inverse crime situation.
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3.3.4 Retrieval error of ℜµ

Table 4 shows how the precision of the retrieval of ℜµ depends on the discordances of the other
parameters.

δ1 δ2 δ5 δ6 ε4
-10 0 0 0 8.0
10 0 0 0 6.8
0 -10 0 0 0.5
0 10 0 0 0.5
0 0 -10 0 0
0 0 10 0 0
0 0 0 -10 16.0
0 0 0 10 19.4

Table 4: One discordance δl per inversion, and its effect on the error ε4 of the retrieval of parameter
p4 = ℜµ. The line δ1 = δ2 = δ5 = δ6 = 0 (with P3 = p3) is not shown in this table, but gave the
expected result ε4 = 0 corresponding to the inverse crime situation.

3.3.5 Retrieval error of ℑµ

Table 5 shows how the precision of the retrieval of ℑµ depends on the discordances of the other
parameters.

δ1 δ2 δ4 δ6 ε5
-10 0 0 0 35.0
10 0 0 0 190.0
0 -10 0 0 20.0
0 10 0 0 20.0
0 0 -10 0 90.0
0 0 10 0 50.0
0 0 0 -10 500.0
0 0 0 10 25.0

Table 5: One discordance δl per inversion, and its effect on the error ε5 of the retrieval of parameter
p5 = ℑµ. The line δ1 = δ2 = δ4 = δ6 = 0 (with P3 = p3) is not shown in this table, but gave the
expected result ε5 = 0 corresponding to the inverse crime situation.
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3.3.6 Retrieval error of x1

Table 6 shows how the precision of the retrieval of x1 depends on the discordances of the other
parameters.

δ1 δ2 δ4 δ5 ε6
-10 0 0 0 5.4
10 0 0 0 4.7
0 -10 0 0 0.3
0 10 0 0 0.2
0 0 -10 0 4.6
0 0 10 0 4.6
0 0 0 -10 0
0 0 0 10 0

Table 6: One discordance δl per inversion, and its effect on the error ε6 of the retrieval of parameter
p6 = x1. The line δ1 = δ2 = δ4 = δ5 = 0 (with P3 = p3) is not shown in this table, but gave the
expected result ε1 = 0 corresponding to the inverse crime situation.

3.3.7 Comments on the tables relative to the retrieval errors resulting from the dis-
cordances

What these tables reveal are that:
a) the retrieval errors of the various constitutive parameters are far from negligible, even for a
discordance of a single parameter that is as small as 10%;
b) the retrieval errors of ρ, ℜλ, ℜµ,ℑµ are generally largest for model discordance pertaining to
x1;
c) the retrieval errors of ℜλ are largest for ℜµ model discordances and somewhat smaller for ρ
model discordances;
d) the sensitivity of the retrieval of the other parameters to discordance of ℑµ is weak; this is
probably related to the fact that the retrieval error of ℑµ is very large for most model discordances;
e) the retrieval error of x1 is acceptably small for all model discordances.

4 Conclusion

The data, which is processed in the inversion scheme, was obtained by numerical simulation. The
underlying physical-mathematical model thereof is a supposedly-rigorous solution (expressed by a
double integral) of the boundary value problem of continuum elastodynamics in a linear, homoge-
neous, isotropic hysteretically-damped solid occupying a half space and solicited by a strip load on
its boundary.

The retrieval model employed the same supposedly rigorous physical-mathematical solution, as
well as its numerical translation.

The numerics were of a very basic variety in both the data simulation and retrieval models:
Simpson quadrature for the first (ξ) integral and Simpson quadrature for the second (f) integral.
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Thus, the inverse crime was committed when all the entries in the set P of parameters of the
retrieval model were identical to their counterparts in the set p of the data simulation model.

However, in real life, this situation is nearly impossible to attain, due to an imprecise a priori
knowledge of at least one of the not-to-be-retrieved parameters in P, and it is this imprecision
which leads to a retrieval error in the other parameter(s). In fact, it was observed that parameter
discordance was the cause of the occasional occurrence, during the inversion, of more than one
minima in the cost function. We always chose the solution corresponding to the global minimum,
but this procedure is admittedly ambiguous. It would be interesting to find out if these local
minima disappear when more (and perhaps of a different nature) data is processed in the inversion
scheme.

This imprecision, for a ±10% discordance between a given entry in P and its counterpart in
p, was evaluated for the retrieval, one at a time, of the five mechanical descriptors and single
geometrical descriptor of the source position.

The retrieval errors of the various constitutive parameters were found to be far from negligible,
even for a discordance of a single parameter that is as small as 10%; this finding means that inver-
sion results pertaining to mechanical parameter retrieval should be treated with caution, especially
if no mention is made of the underlying imprecision of the parameters that are fixed a priori (and
considered to be ”known”) during the inversion. Note that if the chosen (rather small 10%, consid-
ering that parameter uncertainty can easily attain 100% for certain parameters in field practice)
discordance had been larger, the message this investigation conveys would have been less vivid.

It was shown that the retrieval errors of the mechanical descriptors are largest for discordance of
the source position x1 and that it is nearly-impossible to obtain a reliable retrieval of the imaginary
part of ℑµ for ±10% discordance of any of the other mechanical descriptors or of x1.

On the other hand, it was shown that a ±10% discordance of the mechanical descriptors resulted
in reasonably-small error in the retrieval of x1, which is an encouraging result for source location
retrieval (although it will have to be substantiated for more complex environments than the one
considered herein (Michelini & Lomax, 2004)).

If more than one parameters are subject to ±10% discordances, and/or the discordances are
larger than the ones considered herein, it is expected that the error of the retrieved mechanical
parameters will be unacceptably large. It might be possible to reduce these errors by processing
more (and perhaps of a different nature) data.

In this connection, it would be of great interest to replace the simulation model by one that is
fundamentally different, at least as concerns its numerical aspects (e.g., resolve the time domain
boundary value problem in direct manner by a finite difference or finite element scheme such as is in
(Virieux, 1986) or (Mesgouez, 2005)). The reason for doing this would be to show that discordances
between the numerical aspects of the RM and SM lead to retrieval errors that are of similar nature
to those resulting from discordances between P of the RM and p of the SM. Moreover, retrieval
errors would supposedly exist resulting from a discordance between the prediction of the RM and
real data (even if the latter is generated in a laboratory environment).

A natural extension of this study is to generalize the solicitation to include a horizontal com-
ponent, and to collect and incorporate horizontal displacement component response in the data
sample which is analyzed during the inversion. Moreover, it might be useful, as in field practice, to
collect and process data at multiple receiver locations on the ground.

A necessary generalization of this investigation is the retrieval of the viscoelastic parameters of a
layer (or multilayer structure) overlying a homogeneous viscoelastic half space and the treatment of
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the corresponding axisymmetric problem (i.e, a uniform circular patch solicitation on the ground).
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