
HAL Id: hal-00657608
https://hal.science/hal-00657608v2

Preprint submitted on 21 Sep 2012 (v2), last revised 7 Feb 2014 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Anisotropic Fast-Marching on cartesian grids using
Lattice Basis Reduction

Jean-Marie Mirebeau

To cite this version:
Jean-Marie Mirebeau. Anisotropic Fast-Marching on cartesian grids using Lattice Basis Reduction.
2012. �hal-00657608v2�

https://hal.science/hal-00657608v2
https://hal.archives-ouvertes.fr


Anisotropic Fast-Marching on cartesian grids

using Lattice Basis Reduction

Jean-Marie Mirebeau∗

September 21, 2012

Abstract

We introduce a modification of the Fast Marching Algorithm, which solves the anisotropic
eikonal equation associated to an arbitrary continuous Riemannian metric M, on a two or
three dimensional box domain. The algorithm has a logarithmic complexity in the maxi-
mum anisotropy ratio κ(M) of the Riemannian metric M, which allows to handle extreme
anisotropies for a reduced numerical cost. We establish that the output of the algorithm
converges towards the viscosity solution of continuous problem, as the discretization step
tends to zero. The algorithm is based on the computation at each grid point z of a reduced
basis of the lattice ZZd, with respect to the symmetric positive definite matrixM(z) encoding
the desired anisotropy at this point.

Introduction

The eikonal equation, and its generalization the Hamilton-Jacobi equation, is a Partial Differen-
tial Equation (PDE) which describes an elementary front propagation model: the speed of the
front depends only on the front position and orientation. This PDE is encountered in numerous
applications, such as motion planning control problems [19], modeling of bio-medical phenom-
ena [17], and image analysis [15]. It was also recently used in the context of medical image
analysis [4] for extracting vessels in two dimensional projections or three dimensional scans of
the human body, and for performing virtual endoscopies. This application requires to solve a
highly anisotropic generalized eikonal equation with a high resolution on a cartesian grid, at a
computational cost compatible with user interaction. It is one of the key motivations of this
paper.

This paper is devoted to the construction and the study of a new algorithm, Fast Marching
using Lattice Basis Reduction (FM-LBR), designed to solve the anisotropic eikonal equation
associated to a given Riemannian metric M, and which can handle large or even extreme
anisotropies. The domain must be of dimension two or three, unless the metric has a special
structure, see Point iii at the end of this introduction, and discretized on a cartesian grid.
FM-LBR, as its name indicates, is a variant of the classical Fast Marching algorithm [19, 22],
an efficient method for solving the eikonal equation when the metric is isotropic (proportional
at each point to the identity matrix). Lattice Basis Reduction [14] is a concept from discrete
mathematics, discussed in the first section of this paper, and used in the FM-LBR to produce
local stencils for the discretization of the eikonal equation. Lattice Basis Reduction is involved
here for the first time in the numerical analysis of a PDE to the knowledge of the author. We
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describe the algorithm itself in the second section, where we also analyze its computational cost,
and establish its consistency: the discrete approximations produced by this algorithm converge
towards the viscosity solution of the continuous eikonal equation as the discretization step tends
to zero. We present some numerical experiments in the third section, which confirm the small
numerical cost of the algorithm and show an accuracy competitive in general, an remarkable in
test cases related to the envisioned medical application.

We consider a positive integer d, the dimension, which is fixed throughout this paper. Let us
mention that our algorithm only applies in dimension d ∈ {2, 3}, unless the problem of interest
has a special structure, see Point iii at the end of this introduction. We denote by Ω the periodic
unit box

Ω := (IR/ZZ)d. (1)

The domain Ω coincides with the unit box [−1/2, 1/2]d equipped with periodic boundary con-
ditions. We denote by z+v ∈ Ω, the offset of a point z ∈ Ω by a vector v ∈ IRd. The periodicity
assumption is not essential, as shown in the numerical experiments and discussed in Point ii at
the end of this introduction, but it simplifies the description and the proof of convergence of our
algorithm. We consider a fixed Riemannian metric

M∈ C0(Ω, S+
d )

where S+
d denotes the set of d × d symmetric positive definite matrices. For each u ∈ IRd and

each M ∈ S+
d we denote ‖u‖M :=

√
uTMu. Our objective is to compute (an approximation

of) the viscosity solution D : Ω → IR+, see [11] and Definition 2.9, of the anisotropic eikonal
equation {

‖∇D(z)‖M(z)−1 = 1 for almost every z ∈ Ω \ {0},
D(0) = 0.

(2)

The only element of general theory used in this paper is the uniqueness of the viscosity solution
to the above problem. Another point of view on this problem is provided by the following
characterization [11]: for each z ∈ Ω, the quantity D(z) is the length of the shortest path γ
joining z to the origin. More precisely the solution of the eikonal equation is

D(z) = D(z, 0), (3)

where D(·, ·) denotes the Riemannian distance, defined for all x, y ∈ Ω by

D(x, y) := inf {length(γ); γ ∈ C1([0, 1],Ω), γ(0) = x, γ(1) = y}, (4)

length(γ) :=

∫ 1

0
‖γ′(t)‖M(γ(t))dt. (5)

We define the anisotropy ratio κ(M) of a matrix M ∈ S+
d , and the maximum anisotropy

κ(M) of the Riemannian metric M, as follows (denoting by ‖ · ‖ the standard euclidean norm)

κ(M) := max
‖u‖=‖v‖=1

‖u‖M
‖v‖M

, κ(M) := max
z∈Ω

κ(M(z)). (6)

Note that κ(M) =
√
‖M‖‖M−1‖. The test cases presented in §3 cover both moderate anisotropy

κ(M) ' 5, and “extreme” anisotropy κ(M) ≈ 100, which is relevant in applications to image
segmentation and structure extraction [4].

The periodic box Ω is discretized on a cartesian grid Ωn of step size 1/n

Ωn := {0, 1/n, 2/n, · · · , (n− 1)/n}d ⊂ Ω.
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Figure 1: Some classical stencils used in the discretization of two dimensional (left) or three
dimensional (right) eikonal equations, associated to a Riemannian metricM. A Dijkstra inspired
method, using one of these stencils at a point z ∈ Ωn, will be consistent if eitherM(z) is diagonal,
or κ(M(z)) ≤ κ0 where κ0 = 1, 1 +

√
2, 1, (

√
3 + 1)/2 (from left to right). See Proposition 1.2.

Denoting by N := nd = #(Ωn) the number of grid points, our algorithm has complexity

O(N lnN +N lnκ(M)), (7)

where the constant behind the O(·) notation only depends on the dimension d. In practical
applications one has N >∼ 10 000 and κ(M) <∼ 100, hence the first term dominates in (7), and
the complexity of our algorithm is only O(N lnN).

Let z ∈ Ω and let V ⊂ Ω be a compact neighborhood of z, not containing the origin in its
interior. It follows from the interpretation of D as a path-length distance (3) that

D(z) = min
z′∈∂V

D(z, z′) + D(z′). (8)

Our algorithm, as well as most alternative solvers of the eikonal equation, discretizes this PDE
using an approximation of the right hand side of (8): the Hopf-Lax update operator [19, 5],
earliest references in [9, 6]. Equation (8) is then reinterpreted as a fixed point problem. More
precisely, consider a fixed n ≥ 1 and assume that a small simply connected neighborhood Vn(z)
of each z ∈ Ωn has been constructed under the form of a simplicial mesh (a triangulation if
d = 2, a tetrahedral mesh if d = 3, see Figure 1), with all its vertices in Ωn.

We denote IR+ := IR+ ∪ {+∞}, equipped with the topology of a compact segment, and we
adopt the convention 0 × ∞ = 0. For any discrete map d : Ωn → IR+, the Hopf-Lax update
operator is defined by

Λn(d, z) := min
z′∈∂V

‖z′ − z‖M(z) + IV d(z′), (9)

where z ∈ Ωn is arbitrary, has neighborhood V := Vn(z), and IV denotes the piecewise linear
interpolation operator on this simplicial mesh. The difference z′−z is well defined in (9) because
z and z′ both belong to the small and simply connected set V ⊂ Ω, the stencil of z, which can
be identified to a subset of IRd (this convention will not be recalled systematically in the rest of
the paper). The Hopf-Lax update operator Λn approximates the distance D(z, z′) in (8) by the
local norm ‖z′ − z‖M(z), for z′ ∈ ∂V , and the value D(z′) by linear interpolation of d on the
mesh V . Note that Λn(d, z) depends on d(z′) for all vertices z′ ∈ Ωn ∩ ∂V , on the intersection
of the discretization grid with the stencil boundary.

The discrete approximation dn : Ωn → IR+, of the continuous solution D of the eikonal
equation, is obtained as the solution of the N -dimensional fixed point problem{

Λn(dn, z) = dn(z) for all z ∈ Ωn \ {0},
dn(0) = 0.

(10)
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Numerical solvers of the eikonal equation differ by (i) the construction of the stencils Vn(z),
z ∈ Ωn, and (ii) the approach used to solve the system (10) which is inspired by the algorithms
of Bellmann-Ford or of Dijkstra used in graph theory. The algorithm presented in this paper,
FM-LBR, belongs to the category of Dijkstra inspired algorithms with static stencils, and among
these is the first one to guarantee a uniform upper bound on the stencil cardinality.

• Bellman-Ford inspired algorithms. The discrete fixed point problem (10) is solved
via Gauss-Seidel iteration: the replacement rule d(zk) ← Λn(d, zk) is applied for k =
0, 1, 2, ... to a mutable map δ : Ωn → IR, until a convergence criterion is met. In the
fast sweeping methods, see [21] and references therein, the sequence of points (zk)k≥0

enumerates repeatedly the lines and the columns of Ωn. Alternatively this sequence is
obtained via a priority queue in the Adaptive Gauss-Seidel Iteration (AGSI) of Bornemann
and Rasch [5]. The stencil V (z) of a point z ∈ Ωn is usually the offset by z of a fixed
stencil V given at the origin, such as those illustrated on Figure 1.

Fast sweeping methods have O(λ(M)N) complexity when the metricM is isotropic (pro-
portional to the identity at each point), but this result does not extend to anisotropic
Riemannian metrics, see [26] for the proof and the expression of λ(M). The AGSI has

complexity O(µ(M)N1+ 1
d ), for arbitrary anisotropic Riemannian metrics, where µ(M) is

a non explicit constant which depends on global geometrical features of the metric [5]. The
AGSI is a popular, simple, and quite efficient method, which is included for comparison in
our numerical tests.

• Dijkstra inspired algorithms. The system (10) is solved in a single pass, non-iteratively,
using an ordering of Ωn determined at run-time. This is possible provided the Hopf-Lax
update operator satisfies the so-called “causality property”, see Lemma 2.3, which can be
ensured if the stencil V (z) of each z ∈ Ωn satisfies some geometrical properties depending
onM(z), see Definition 1.1. The different Dijkstra inspired methods are characterized by
the construction of the stencils V (z), which depend on M(z), in contrast with Bellman-
Ford inspired methods which are characterized by the choice of the sequence (zk)k≥0. Solv-
ing the system (10) with a Dijkstra inspired algorithm has complexity O(µ(M)N lnN),
where µ(M) is an upper bound for the cardinality of the stencils (the number of simplices
they are built of).

In the Ordered Upwind Method (OUM) of Sethian and Vladimirsky [19, 25], the sten-
cils are constructed at run-time; their cardinality is bounded by O(κ(M)d) and drops to
O(κ(M)d−1) as N →∞. In contrast, the stencils are constructed during a preprocessing
step and then static in the Monotone Acceptance Ordered Upwind Method (MAOUM)
of Alton and Mitchell [2]; their cardinality is bounded by O(κ(M)d). The FM-LBR in-
troduced in the present work uses an approach similar to the MAOUM, except that the
cardinality of the stencils is O(1), fully independent of the Riemannian metric M. The
complexity estimates are thus O(κ(M)dN lnN) for the OUM and the MAOUM (asymp-
totically O(κ(M)d−1N lnN) for the OUM), and O(N lnN +N lnκ(M)) for our approach,
FM-LBR, where the second term in the complexity accounts for the stencil construction.

The above mentioned algorithms are consistent for the anisotropic eikonal equation associ-
ated to an arbitrary continuous Riemannian metricsM : Ω→ S+

d , in the sense that the discrete
output dn of the algorithm converges to the viscosity solution D of the continuous problem as
n → ∞. Some more specialized variants of the fast marching algorithm are only consistent
for a restricted set of metrics, but can be executed nonetheless with an arbitrary anisotropic
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metric M (In that case the discrete system (10) may not be solved, and the numerical results
are variable, see §3). For instance the original fast marching algorithm [22] is consistent ifM(z)
is proportional to the identity matrix for each z ∈ Ω, and more generally if M(z) is a diagonal
matrix. In addition to these cases of isotropy and axis-aligned anisotropy, some variants [7] are
also consistent if κ(M) ≤ κ0, where κ0 is a given bound, see Figure 1 for some examples in two
and three dimensions. Our numerical experiments include for comparison one of these methods:
Fast Marching using the 8 point stencil (FM-8, center left stencil on Figure 1), which is popular
in applications [4] thanks to its short computation times and despite the lack of convergence
guarantee for arbitrary metrics. Depending on the implementation [16, 19, 22], involving either
a sorted list or a bucket sort, these methods have complexity O(N lnN) or O(Υ(M)N), where

Υ(M) :=
√

max
z∈Ω
‖M(z)‖max

z′∈Ω
‖M(z′)−1‖.

In the applications for which our method is intended, one typically has ln(N) <∼ κ(M) ≤
Υ(M) � N , in such way that the complexity (7) of the proposed method is comparable to
O(N lnN) and smaller than O(Υ(M)N). In summary the algorithm proposed in this paper has
a complexity O(N lnN+N lnκ(M)) which is significantly less than general methods such as the
AGSI, the OUM and the MAOUM, which are consistent for arbitrary Riemannian metrics, and
no more than the complexity of more specialized methods, such as the original fast marching
algorithm.

Our complexity analysis guarantees short and predictable run-times, which is desirable in
applications involving user interaction, e.g. image processing. It does not answer however the
question of accuracy.

Remark 1 (Accuracy and stencil construction). The above compared solvers of the eikonal
equation, the AGSI, the OUM, the MAOUM and our method the FM-LBR, involve different
stencils and thus a different Hopf-Lax update operator Λn. The discrete fixed point problem (10)
therefore depends on the method, and so does its solution dn, which impacts the accuracy of
the scheme. In the special case of a constant Riemannian metric, the theoretical error analysis
presented in [12], shows that the anisotropy ratio κ(M) does not impact the accuracy of FM-
LBR, in an average sense over grid orientations. In contrast one expects the numerical error of
alternative methods to grow proportionally to κ(M), as discussed in [19] and suggested in [12]
by numerical experiments for the AGSI. This error analysis does not extend to general Rieman-
nian metrics, and we do not claim that the proposed algorithm outperforms its alternatives in
terms of accuracy in all applications. The numerical experiments presented in section §3 show
nevertheless that FM-LBR is competitive in this regard.

Let us emphasize that the efficiency of the proposed algorithm, the FM-LBR, comes at the
price of its specialization. We review below its limitations:

i (Finsler metrics) FM-LBR only applies to the anisotropic eikonal equation associated to
a Riemannian metric. The underlying Riemannian structure plays an important role in
our approach, and our algorithm therefore cannot handle more general Hamilton-Jacobi
equations, contrary to the AGSI [5], the OUM [19] and the MAOUM [2] mentioned above.
These approaches allow Finsler metrics in addition to Riemannian metrics, in other words the
local euclidean norm ‖ · ‖M(z) may be replaced for each z ∈ Ω with an arbitrary asymmetric

norm | · |z ∈ C0(IRd, IR+).

Constructing static stencils suitable for Dijkstra inspired algorithms, in the sense that they
guarantee the causality property as in Lemma 2.3 (the stencil is said to be causal), is an
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active subject of research in the case of Finsler metrics. A characterization was obtained
in [23], and a construction proposed in [2, 13]. It was also observed in [18, 19, 1] that the
canonical stencil (Figure 1, left) is causal for a large variety of axis-aligned Finsler metrics,
in such way that the original fast marching algorithm can be applied.

ii (Domain discretization) FM-LBR requires a domain discretized on a cartesian grid. Our
algorithm therefore does not apply to domains provided under the form of general un-
structured meshes, a more difficult setting which has attracted an important research effort
[3, 5, 8, 10, 19]. At the price of a higher technicality of the proof, the specific periodic domain
(1) could however be replaced with a more general smooth bounded domain Ω ⊂ IRd, still
discretized on a grid. In that case the PDE (2) is replaced with{

‖∇D(z)‖M(z)−1 = 1 for almost every z ∈ Ω,

D(z) = f(z) for all z ∈ ∂Ω.
(11)

where the boundary data f needs to satisfy [11] the Lipschitz regularity condition |f(z) −
f(z′)| ≤ length(γ) for any path γ ∈ C1([0, 1],Ω) joining two points z, z′ ∈ ∂Ω. Note that
using the FM-LBR in this context will require the extension of the boundary data to a ghost
layer covering ∂Ω, since this algorithm uses large stencils, of euclidean diameter O(κ(M)/n)
instead of e.g. O(1/n) for the AGSI.

iii (Dimension) FM-LBR applies to arbitrary continuous Riemannian metrics on a two or three
dimensional domain (an extension to four dimensional domains is presented in [12]). The
algorithm can be extended to higher dimension if the Riemannian metric M has a specific
diagonal block structure, with blocks of size 1, 2 or 3, see §2. Such block diagonal structures
are not uncommon in the context of medical imaging, see [4]. They are inherited from the
cartesian product structure of the fast marching domain: Ω = Ω0×Ω1, where Ω0 is a physical
domain of dimension ≤ 3, and Ω1 is an abstract parameter domain of dimension ≤ 2.

We introduce and study in §1 the notion of M -reduced mesh, where M ∈ S+
d is a symmetric

positive definite matrix. The construction of M -reduced meshes of bounded cardinality, using
Lattice Basis Reduction, is the main originality of this paper and the key of the small complexity
of our algorithm the FM-LBR, which uses them as stencils. Following a more classical approach,
we describe in §2 the FM-LBR as a variant of the Fast Marching algorithm using this specific
stencil construction, and we establish the related convergence result. We finally we present some
numerical experiments in §3.

Remark 2 (Computing distances on a surface). Consider a smooth surface S ⊂ IR3 (or more
generally a smooth embedded manifold S ⊂ IRd), equipped with Riemannian metric induced by
the euclidean metric on IR3. In order to compute distances on S, a first possibility is to solve
an isotropic eikonal equation on S, by applying the OUM on a triangulated mesh of S [20], or
the original fast marching algorithm if this triangulation only contains acute triangles. A second
possibility is to use one or several local charts ϕ : Ω → S and to solve an anisotropic eikonal
equation on Ω; grid discretisations are allowed since Ω ⊂ IR2, hence the FM-LBR can be applied,
as well as numerous alternatives. In practice the data usually dictates the choice between these
approaches, since changing from one representation to the other (triangulation or charts) is a
non-trivial and computationally intensive procedure.
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1 Reduced meshes and bases

We introduce in this section the notion of M -reduced meshes, where M ∈ S+
d is a given symmet-

ric positive definite matrix. Anticipating on §2, we motivate their study by their use as static
stencils for Dijkstra inspired eikonal solvers, such as the FM-LBR. Consider an Riemannian
metric M ∈ C0(Ω, S+

d ), and assume that for each z in the grid Ωn a M(z)-reduced mesh T (z)
has been constructed. Denote by Vn(z) the stencil obtained by rescaling and offsetting the mesh
T (z): with obvious notations

Vn(z) = z +
1

n
T (z). (12)

We show in §2 that the discrete fixed point system (10), obtained with these stencils, can
be solved in a single pass, and we establish a convergence result towards the solution of the
continuous eikonal equation, in Theorem 2.2.

A simplex T ⊂ IRd is the convex hull of d+ 1 points v0, · · · , vd ∈ IRd, not lying on a common
hyperplane, which are called the vertices of T . A mesh is a finite collection T of simplices which
satisfy the following conformity condition: for all S, T ∈ T the intersection S ∩ T is the convex
hull of the common vertices of S and T .

Definition 1.1. A M -reduced mesh is a mesh T which satisfies the following properties.

(a) The union of the elements of T is a neighborhood of the origin

(b) The vertices of each simplex T ∈ T lie on the lattice ZZd, and T has volume 1/d!.

(c) For each T ∈ T , one of the vertices of T is the origin 0, and the others denoted by v1, · · · , vd
satisfy for all 1 ≤ i ≤ j ≤ d

vT
i Mvj ≥ 0. (13)

Heuristically Point (a) of Definition 1.1 ensures that the numerical information is propagated
in all directions in the discrete fixed point system (10). Point (b) implies that the non-zero
vertices of any simplex T ∈ T form a basis of ZZd, see Definition 1.4, a property later used to
show that the information does not “fly over” a subset of the grid Ωn. Point (c) is an acuteness
condition related to the celebrated Causality property, see [19], which is a prerequisite for the
Fast Marching algorithm and other one-pass solvers of eikonal or Hamilton-Jacobi equations.

The next proposition gives a simple criterion to show that a given mesh T is M -reduced for
all M ∈ S+

d of sufficiently small anisotropy κ(M).

Proposition 1.2. Let T be a d-dimensional mesh which satisfies the requirements (a) and (b)
of Definition 1.1. Let

κ(T ) :=

√
1 + γ(T )

1− γ(T )
, where γ(T ) := min

T,(u,v)

uTv

‖u‖‖v‖
, (14)

and where the minimum in γ(T ) is taken a non-zero vertices u, v of a common simplex T ∈ T .
The mesh T is M -reduced for any M ∈ S+

d such that κ(M) ≤ κ(T ).

Proof. Let u, v be two non-zero vertices of a common simplex T ∈ T , and let M ∈ S+
d . Let

u′ := u/‖u‖ and let v′ := v/‖v‖. By construction we have

‖u′ + v′‖2 = 2(1 + u′Tv′) ≥ 2(1 + γ(T )), ‖u′ − v′‖2 = 2(1− u′Tv′) ≤ 2(1− γ(T )).
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Let us assume for contradiction that uTMv < 0, which implies that ‖u′ + v′‖M < ‖u′ − v′‖M .
Observing that

κ(M)2 = ‖M‖‖M−1‖ ≥
‖u′ − v′‖2M
‖u′ − v′‖2

‖u′ + v′‖2

‖u′ + v′‖2M
>

1 + γ(T )

1− γ(T )
,

we obtain that κ(M) > κ(T ), which concludes the proof of this proposition.

The meshes illustrated on Figure 1 are easily checked to satisfy requirements (a) and (b) of
Definition 1.1. Requirement (c) clearly holds for diagonal matrices. Evaluating (14), we obtain
κ(T ) = 1, 1 +

√
2, 1, (

√
3 + 1)/2 (from left to right), hence (c) also holds for matrices M ∈ S+

d

of anisotropy κ(M) within this bound. These meshes are therefore M(z)-reduced under the
conditions described in the caption of Figure 1, hence the resulting system of equations (10) can
be solved in one pass by a Dijkstra inspired method.

Remark 1.3 (Block diagonal matrices). Let d1, d2 be positive integers, let M1 ∈ S+
d1

, and let

M2 ∈ S+
d2

. Let T1 be a M1-reduced mesh, and let T2 a M2-reduced mesh. Let d := d1 + d2 and

let T be the d-dimensional mesh defined as follows: for any T1 ∈ T1 of vertices 0 = u1
0, · · ·u1

d1
,

and any T2 ∈ T2 of vertices 0 = u2
0, · · · , u2

d2
, the d-dimensional simplex T of vertices

(0, 0), (u1
1, 0), · · · , (u1

d1 , 0), (0, u2
1), · · · , (0, u2

d2)

belongs to T . Then one easily checks that T is a M -reduced mesh, where M ∈ S+
d denotes the

matrix of diagonal blocks M1 and M2.

We introduce in subsection §1.1 the algebraic notion of M -reduced basis of ZZd, where M ∈
S+
d and 1 ≤ d ≤ 4. We show that the collection of vertices of a M -reduced mesh contains a
M -reduced basis, a property later used in the analysis of our algorithm. We next give in §1.2 an
explicit construction of a M -reduced mesh of bounded cardinality, for each M ∈ S+

d , d ∈ {2, 3}.

1.1 Bases of the lattice ZZd

The results of this section fall in the framework of low-dimensional lattice basis reduction. We
refer to [14] and references therein for an introduction to this rich theory, from which we use
only one result: Theorem 1.5 stated below.

We denote by u1ZZ + · · ·+ ukZZ the sub-lattice of ZZd generated by u1, · · · , uk ∈ ZZd:

u1ZZ + · · ·+ ukZZ := {u1z1 + · · ·+ ukzk; z1, · · · , zk ∈ ZZ}.

If k = 0 then the above sum equals {0} by convention.

Definition 1.4. A basis of ZZd is a d-plet (u1, · · · , ud) of elements of ZZd such that

| det(u1, · · · , ud)| = 1. (15)

Assume that 1 ≤ d ≤ 4. A M -reduced basis of ZZd, where M ∈ S+
d , is a basis (u1, · · · , ud) of ZZd

which satisfies for all 1 ≤ k ≤ d

uk ∈ argmin{‖z‖M ; z ∈ ZZd \ (u1ZZ + · · ·+ uk−1ZZ)}. (16)
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Figure 2: The unit sphere {u; ‖u‖M = 1}, a M -reduced basis (u, v), and the boundary of a
M -reduced mesh constructed as in Proposition 1.9, for some M ∈ S+

2 of anisotropy ratio κ(M)
ranging from 1 to 15, and eigenvector (cos(3π/8), sin(3π/8)) associated to the small eigenvalue.

For instance the canonical basis (e1, · · · , ed) of IRd, is also a basis of ZZd. If M ∈ S+
d is a

diagonal matrix of coefficients (λ1, · · · , λd), and if 0 < λσ(1) ≤ · · · ≤ λσ(d) for some permutation

σ, then (eσ(1), · · · eσ(d)) is a M -reduced basis of ZZd. See Figures 2, 3, 4 and 5 for some examples
of M -reduced bases associated to non-diagonal matrices M .

A M -reduced basis of ZZd contains by definition small vectors with respect to the norm ‖·‖M :
the smallest linearly independent ones with integer coordinates. As a result, the construction
of M -reduced meshes based on M -reduced bases, presented in the next subsection, will produce
small meshes, again with respect to the norm ‖ · ‖M . As a result, the discretization of the
FM-LBR uses small stencils Vn(z) (12) at grid points z ∈ Ωn, in the sense of the local norm
‖ · ‖M(z). Small stencils often the key of good accuracy in the discretization of PDEs. This
observation is the starting point of [12], an error analysis of the FM-LBR, in the case of constant
Riemannian metrics.

The above definition of a M -reduced basis of ZZd is adequate only up to dimension 4, since
in dimension d ≥ 5 there exists matrices M ∈ S+

d such that no basis of ZZd satisfies the relations
(16), see [14] (these relations state that ‖ui‖M equals the i-th Minkowski’s minimum λi(M)).
The proper generalization of Definition 1.4 in dimension d ≥ 5, is Minkowski’s reduction [14].

Theorem 1.5 (Nguyen, Stelhé, 2009). There exists an algorithm which, given a matrix M ∈ S+
d

as input, 1 ≤ d ≤ 4, produces a M -reduced basis of ZZd and has the numerical cost O(1+lnκ(M)).

Proof. The proof is contained in [14], and we only point out here the precise reference within the
paper and the slight differences in notations. The algorithm described in [14] takes as input a
basis (b1, · · · , bd) (here: the canonical basis of IRd) of a lattice L (here: ZZd), and its Gram matrix
with respect to some scalar product (here: the Gram matrix is M). The algorithm outputs a
greedy reduced basis of the lattice L, a notion which coincides with Minkowski’s reduction if
d ≤ 4 (Lemma 4.3.2 in [14]), which itself coincides with Definition 1.4 if d ≤ 4.

The main loop of the iterative algorithm is executed at most the following number of times
(Theorem 6.0.5 in [14]):

O
(

1 + ln max
1≤i≤d

‖bi‖M − ln min
u∈L
‖u‖M

)
,

9



hence O(1 + ln ‖M‖
1
2 − ln ‖M−1‖−

1
2 ) = O(1 + lnκ(M)) times in our setting. The complexity of

each of these iterations is dominated by a closest vector search, described in Theorem 5.0.4 in
[14], which consists of the inversion of a k × k Gram matrix, where 1 ≤ k ≤ d − 1, and a O(1)
exhaustive search. In terms of elementary operations (+,−,×, /) among reals, each iteration of
this algorithm thus has cost O(1), and the overall cost is the number of iterations O(1+lnκ(M)).

Note that an important part of the discussion in [14] is devoted to the special case where
the vectors (b1, · · · , bd) have large integer coefficients, the Gram matrix is computed with re-
spect to the standard euclidean scalar product, and the complexity of an elementary operation
(+,−,×, /) among integers is not O(1) but depends on the size of these integers. This more
subtle notion of complexity, named bit complexity, is not relevant in our setting.

In dimension d = 2, the algorithm mentioned un Theorem 1.5 mimicks the search for the
greatest common divisor of two integers, and is often referred to as Gauss’s algorithm [14]. This
algorithm uses only a pair (u, v) of (mutable) variables in ZZ2, initialized as the canonical basis
of IR2. The pair (u, v) becomes a M -reduced basis at the end of the following loop, which takes
at most O(lnκ(M)) iterations. Round denotes rounding to a closest integer.

Do (u, v) ::= (v, u− Round(uTMv/‖v‖2M ) v), while ‖u‖M > ‖v‖M .

Proposition 1.6. Assume that 1 ≤ d ≤ 4. Let M ∈ S+
d and let (u1, · · · , ud) be a M -reduced

basis of ZZd. Then for all 1 ≤ i ≤ d

‖ui‖ ≤ κ(M), (17)

‖ui‖M ≤ κ(M)‖u1‖M . (18)

For any integer combination z of the elements of the basis distinct from ui, in other words
z = α1u1 + · · ·αi−1ui−1 + αi+1ui+1 + αdud, where α1, · · · , αi−1, αi+1, · · · , αd ∈ ZZ, one has

2|uT
i Mz| ≤ ‖z‖2M . (19)

Proof. We consider a fixed 1 ≤ i ≤ d, and we claim that

‖M−1‖−
1
2 ≤ ‖u1‖M ≤ ‖ui‖M ≤ ‖M‖

1
2 . (20)

The left inequality follows from 1 ≤ ‖u1‖ ≤ ‖M−
1
2 ‖‖u1‖M . The central inequality follows from

the fact that u1 minimizes the norm ‖ · ‖M among all elements of ZZd \ {0}, see Definition 1.4.
Denoting by (e1, · · · , ed) the canonical basis of IRd, we observe comparing dimensions that there

exists 1 ≤ j ≤ d such that ej /∈ u1ZZ+ · · ·+ · · ·ui−1ZZ. Therefore ‖ui‖M ≤ ‖ej‖M ≤ ‖M‖
1
2 using

Definition 1.4, which establishes (20), hence also (18). We obtain (17) combining (20) with the

observation ‖ui‖ ≤ ‖ui‖M‖M−1‖
1
2 .

We next turn to the proof of (19), and for that purpose we remark that ui+ z /∈ u1ZZ + · · ·+
ui−1ZZ. Indeed otherwise ui would be a linear combination of u1, · · · , ui−1, ui+1, · · · , ud, which
contradicts (15). Definition 1.4 thus implies that

‖ui‖2M ≤ ‖ui + z‖2M = ‖ui‖2M + 2uT
i Mz + ‖z‖2M ,

which implies that −2uT
i Mz ≤ ‖z‖2M . We obtain likewise 2uT

i Mz ≤ ‖z‖2M , which concludes the
proof of (19).

10



We say that point z is a vertex of a mesh T , if it is a vertex of one of the simplices T ∈ T .
We introduce a distance d× on the collection S+

d of symmetric positive definite matrices, which
is defined as follows: for all M,N ∈ S+

d

d×(M,N) := sup
u6=0
|ln ‖u‖M − ln ‖u‖N | .

The distance d× allows to compare the norms of vectors multiplicatively, justifying the × sub-
script, in contrast with the classical operator norm which is tailored for additive comparisons.
Indeed denoting α := d×(M,N) and β := ‖M

1
2 −N

1
2 ‖, one has for all u ∈ IR2 such that ‖u‖ = 1

e−α ≤ ‖u‖M/‖u‖N ≤ eα, and − β ≤ ‖u‖M − ‖u‖N ≤ β.

The next lemma establishes a lower bound on the ‖·‖M norm of points outside of a N -reduced
mesh, when the matrices M,N ∈ S+

d are close enough.

Lemma 1.7. Assume that 1 ≤ d ≤ 4. Let M,N ∈ S+
d . Let u1, · · · , ud be an arbitrary M -reduced

basis of ZZd, and let T be a N -reduced mesh. Consider a point z ∈ ZZd which is not a vertex of
T . Then there exists 1 ≤ l ≤ d such that

z ∈ u1ZZ + · · ·+ ulZZ and ‖z‖2M e4d×(M,N) ≥ ‖ul‖2M + ‖u1‖2M .

Proof. Since the union of the elements of T is a neighborhood of the origin, there exists a simplex
T ∈ T and a real λ > 0 such that λz ∈ T . Denoting by v1, · · · , vd the non-zero vertices of T ,
there exists therefore non-negative reals α1, · · · , αd ∈ IR+ such that z = α1v1 + · · ·+αdvd. Since
| det(v1, · · · , vd)| = d!|T | = 1, the coefficient αi is an integer for all 1 ≤ i ≤ d.

Up to reordering the vertices v1, · · · , vd, we may assume that v1, · · · , vk are positive, and
vk+1, · · · , vd are zero, for some 1 ≤ k ≤ d. We denote by l the smallest integer such that
v1, · · · , vk ∈ u1ZZ + · · ·+ ulZZ. By additivity, z ∈ u1ZZ + · · ·+ ulZZ. By assumption there exists
1 ≤ i ≤ k such that vi /∈ u1ZZ + · · · + ul−1ZZ, and thus ‖vi‖M ≥ ‖ul‖M ; other vertices satisfy
‖uj‖M ≥ ‖u1‖M , 1 ≤ j ≤ k, since they are non-zero and have integer coordinates. We thus
obtain

e4d×(M,N)‖z‖2M ≥ e2d×(M,N)‖z‖2N

= e2d×(M,N)

 ∑
1≤i≤k

α2
i ‖vi‖2N + 2

∑
1≤i<j≤k

αiαjv
T
i Nvj


≥ e2d×(M,N)

∑
1≤i≤k

α2
i ‖vi‖2N

≥
∑

1≤i≤k
α2
i ‖vi‖2M

≥ ‖ul‖2M +

 ∑
2≤i≤k

α2
i − 1

 ‖u1‖2M .

We have α2
1 + · · ·+ α2

k ≥ 2 since z is not a vertex of T , which concludes the proof.

The following corollary shows that the vertices of a N -reduced mesh contain a M -reduced
basis, whenever M and N are close enough. This property will be used in the convergence
analysis of the FM-LBR, Lemmas 2.6 and 2.7, to show the connectivity of the graph defined by
the local stencils in the discrete domain. It is is illustrated on Figures 2 and 3: the basis vectors
u, v are always among the vertices of the consecutive mesh, and conversely.
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Figure 3: The unit sphere {u; ‖u‖M = 1}, a M -reduced basis (u, v), and the boundary of
a M -reduced mesh constructed as in Proposition 1.9, for some M ∈ S+

2 of anisotropy ratio
κ(M) = 6, and eigenvector (cos(θ), sin(θ)), θ ∈ [π/4, π/2], associated to the small eigenvalue.

Corollary 1.8. Assume that 1 ≤ d ≤ 4. Let M,N ∈ S+
d be such that

d×(M,N) < ln(1 + κ(M)−2)/4. (21)

Let (u1, · · · , ud) be a M -reduced basis of ZZd, and let T be a N -reduced mesh. Then u1, · · · , ud
and −u1, · · · ,−ud are vertices of T .

Proof. We consider 1 ≤ l ≤ d, and we assume for contradiction that ul (or −ul) is not a vertex
of T . It follows from (21) and (18) that

‖ul‖2Me4d×(M,N) < ‖ul‖2M + κ(M)−2‖ul‖2M ≤ ‖ul‖2M + ‖u1‖2M .

The previous lemma thus implies ul ∈ u1ZZ + · · · + ukZZ for some 1 ≤ k < l. This contradicts
Definition 1.4, and concludes the proof.

1.2 Explicit construction of M-reduced meshes

This subsection is devoted to the explicit construction of a M -reduced mesh of bounded cardi-
nality for any M ∈ S+

d , where d = 2 in Proposition 1.9, and d = 3 in Proposition 1.10. This
construction uses as a starting point a M -reduced basis of ZZd.

Let A be a d× d invertible matrix. For any simplex T we denote A(T ) := {Az; z ∈ T}, and
for any mesh T we denote A(T ) := {A(T ); T ∈ T }.

Proposition 1.9. Let M ∈ S+
2 and let (u1, u2) be a M -reduced basis of ZZ2. Let u := u1 and

let v := εu2, where ε ∈ {−1, 1} is chosen in such way that uTMv ≥ 0. Consider the collection
T of triangles of vertices 0 and one of the following pairs

{u, v}, {v, v − u}, {v − u,−u}

or their opposites (the opposite of the pair {a, b} is {−a,−b}). Then T is a M -reduced mesh.

Proof. We denote by (a),(b),(c) the corresponding points of the Definition 1.1 of M -reduced
meshes.

Consider a matrix A such that Au = (1, 0) and Av = (0, 1). Then the mesh A(T ) does not
depend on u and v, and the reunion of its elements is easily checked to be a neighborhood of
the origin. This immediately implies (a).
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Figure 4: A M -reduced mesh for particular a matrix M ∈ S+
2 , such that κ(M) = 10 (left).

Illustration for the proof of Proposition 1.9 (center left). Connectivity defined by (23) (center
right) and by (25) (right), in Proposition 1.10.

The equality of the determinants

det(u, v) = det(v, v − u) = det(v − u,−u)

shows that all the elements of T have volume 1/2. Since their vertices clearly lie on ZZ2, this
establishes (b).

We have by construction uTMv ≥ 0. Furthermore, applying (19) to the vectors u1 and
z = u2 (resp. u2 and z = u1) we obtain 2|uTMv| ≤ ‖v‖2M and 2|uTMv| ≤ ‖u‖2M , hence

vTM(v − u) = ‖v‖2M − uTMv ≥ 0, (v − u)TM(−u) = ‖u‖2M − uTMv ≥ 0,

which establishes point (c) and concludes the proof.
For a visual illustration of point (c) we suggest the reader to look at Figure 4 (center left),

which displays the image of the mesh T by a linear transformation P such that Pu = (1, 0) and
PTP = M . For any two vectors a, b ∈ IR2, we have aTMb ≥ 0 if and only if the images of a
and b by P form an acute angle. The blue region corresponds to all possible values of v which
satisfy the constraints 2|vTMu| ≤ ‖u‖2M ≤ ‖v‖2M .

Proposition 1.10. Let M ∈ S+
3 and let (u1, u2, u3) be a M -reduced basis of ZZ3. We distinguish

two cases depending on the parity of the number of non-negative scalar products among uT
1 Mu2,

uT
2 Mu3, uT

3 Mu1.

• Odd parity. We denote u := ε1u1, v := ε2u2, w := ε3u3, where ε1, ε2, ε3 ∈ {−1, 1} are
chosen in such way that

uTMv ≥ 0, uTMw ≥ 0, vTMw ≤ 0. (22)

Consider the collection T of tetrahedra of vertices 0 and one of the following triplets

{w, u,w + v} {w,w + v, w + v − u} {w,w + v − u,w − u}
{w,w − u,−v} {w,−v, u− v} {w, u− v, u}
{v, w + v, u} {v, w + v − u,w + v} {v, v − u,w + v − u}
{−u,−v, w − u} {−u,w − u,w + v − u} {−u,w + v − u, v − u}

(23)

or their opposites (the opposite of the triplet {a, b, c} is {−a,−b,−c}). Then T is a M -
reduced mesh.
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• Even parity. We denote u := ε1uσ1, u := ε2uσ2, w := ε3uσ3, where ε1, ε2, ε3 ∈ {−1, 1} and
the permutation σ of {1, 2, 3} are chosen in such way that

vTMw ≥ uTMv ≥ uTMw ≥ 0. (24)

Consider the collection T of tetrahedra of vertices 0 and one of the following triplets

{u, v, w} {w, v, w − u} {w − u, v, v − u}
{w − u, v − u,−u} {w − u,−u,w − v} {w − v,−u,−v}
{w − v,−v, u− v} {w − v, u− v, w − v + u} {w − v + u, u− v, u}
{u,w,w − v + u} {w,w − v, w − v + u} {w,w − u,w − v}

(25)

or their opposites (the opposite of the triplet {a, b, c} is {−a,−b,−c}. Then T is a M -
reduced mesh.

Proof. We denote by (a),(b),(c) the corresponding points of the Definition 1.1 of M -reduced
meshes.

In each case of the parity, if A is a matrix such that Au = (1, 0, 0), Av = (0, 1, 0) and
Aw = (0, 0, 1), then the mesh A(T ) is independent of u, v, w. The union of the elements of this
constant mesh A(T ) is easily seen to be a neighborhood of the origin, see Figure 4, which implies
(a).

The determinant of each triplet of vectors appearing in (23) and (25), is equal to det(u, v, w).
Since |det(u, v, w)| = 1, see (15), the volume of all the constructed simplices is 1/6. Furthermore
their vertices obviously lie on ZZ3, which establishes (b).

We next need to establish (c): the non-negativeness of the scalar products between two
common vertices of any tetrahedron T ∈ T . To avoid notational clutter we denote in this proof

〈u, v〉 := uTMv.

We first remark that the positivity of the scalar products 〈u, v〉, 〈v, v−u〉,〈v−u,−u〉 (associated
to edges which lie in the plane generated by (u, v)) follows as in Proposition 1.9 from the
inequalities 〈u, v〉 ≥ 0, 2|〈u, v〉| ≤ ‖u‖2M and 2|〈u, v〉| ≤ ‖v‖2M . For the other scalar products we
need to distinguish between the two cases of the parity.

Odd parity. It follows from (22) that

〈u, v〉 ≥ 0, 〈u,w〉 ≥ 0, 〈−v, w〉 ≥ 0,
〈u,w + v〉 ≥ 0, 〈w, u− v〉 ≥ 0, 〈w − u,−v〉 ≥ 0.

Applying (19) to z = u we obtain 2|〈u,w〉| ≤ ‖u‖2M , hence 〈−u,w − u〉 = ‖u‖2M − 〈u,w〉 ≥ 0.
Likewise

〈v, w + v〉 ≥ 0, 〈w,w + v〉 ≥ 0, 〈w,w − u〉 ≥ 0

Applying (19) to z = u we obtain 2|〈u, v〉| ≤ ‖u‖2M and 2|〈u,w〉| ≤ ‖u‖2M , which implies
〈−u,w + v − u〉 = ‖u‖2M − 〈u, v〉 − 〈u,w〉 ≥ 0. Likewise

〈v, w + v − u〉 ≥ 0, 〈w,w + v − u〉 ≥ 0.

Applying (19) to z = v − u we obtain 2|〈w, v − u〉| ≤ ‖v − u‖2M , hence 〈v − u,w + v − u〉 =
‖v − u‖2M + 〈w, v − u〉 ≥ 0. Likewise

〈w − u,w + v − u〉 ≥ 0, 〈w + v, w + v − u〉 ≥ 0.

14



u=H1,1,1Lv=H1,0,1L

w=H2,1,1L

Figure 5: The unit sphere {u; ‖u‖M = 1}, a M -reduced basis (u, v, w), and a M -reduced mesh
constructed as in Proposition 1.10, for the symmetric matrix M ∈ S+

3 of eigenvalues 52, 52, 1
(anisotropy ratio κ(M) = 5) and eigenvector (4, 2, 3) associated to the small eigenvalue.

Even parity. From the inequality (24) we obtain

〈v, w〉 ≥ 〈u, v〉 ≥ 〈u,w〉 ≥ 0, 〈v, w − u〉 ≥ 0, 〈−u,w − v〉 ≥ 0.

Applying (19) to z = u we obtain 2|〈u, v〉| ≤ ‖u‖2M , and therefore 〈−u,w − u〉 ≥ 0. Likewise

〈−v, w − v〉 ≥ 0, 〈w,w − u〉 ≥ 0, 〈w,w − v〉 ≥ 0.
〈u,w − v + u〉 ≥ 0, 〈w,w − v + u〉 ≥ 0.

Applying (19) to z = u we obtain 2|〈u, v〉| ≤ ‖u‖2M and 2|〈u,w〉| ≤ ‖u‖2M , which implies
〈v − u,w − u〉 = 〈v, w〉+ (‖uM‖2 − 〈u, v〉 − 〈u,w〉) ≥ 0. Likewise

〈w − u,w − v〉 ≥ 0, 〈w − v, u− v〉 ≥ 0.

Applying (19) to z = u − v we obtain |〈w, u − v〉| ≤ ‖u − v‖2M , hence 〈u − v, w − v + u〉 ≥ 0.
Likewise 〈w − v, w − v + u〉 ≥ 0.

2 The algorithm

We present in this section our modified fast marching algorithm, Fast Marching using Lattice
Basis Reduction (FM-LBR). We estimate its complexity, and we establish its consistency: the
convergence of the discrete approximations towards the solution of the continuous problem. Our
presentation of this section is fairly classical, and we invoke (variants of) arguments previously
seen in the literature on numerical schemes for the eikonal equation [22, 19, 5]. A detailed
description and proof is nevertheless necessary, since the original constructions of §1 do not
exactly fit in earlier framework. The FM-LBR is split in two steps: Preprocessing (stencil
construction), followed by Execution (Dijkstra-like resolution of (10)). The integer n ≥ 2 is
fixed in this subsection.

After the Preprocessing of the FM-LBR comes its proper Execution. This part of the algo-
rithm involves a boolean table b : Ωn → {trial, accepted}. Given such a table, we say that a
grid point z ∈ Ω is accepted if b(z) = accepted, and that z is a trial point otherwise.

Definition 2.1. Consider a map d : Ωn → IR+, and a grid point x ∈ Ωn. We introduce a
variant of the Hopf-Lax update Λn(d, x) which involves two additional variables: a boolean table
b : Ωn → {trial, accepted}, and another grid point y ∈ Ωn.

Λn(d, x; b, y) := min
x′∈Γ
‖x′ − x‖M(x) + IV d(x′). (26)
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FM-LBR: Preprocessing.
Input. An integer n ≥ 2. The values M(z), z ∈ Ωn, of a Riemannian metric M∈ C0(Ω, S+

d ).

1. Produce a M(x)-reduced mesh T (x) for each x ∈ Ωn, using Proposition 1.9 in dimension
2, Proposition 1.10 in dimension 3, or by combining these constructions with Remark 1.3
in higher dimension if the metric has a block diagonal structure.

2. Construct the stencils Vn(x) = x+ 1
nT (x), x ∈ Ωn, by offsetting and rescaling T (x).

3. Compute the reversed stencils, defined by V n(y) := {x ∈ Ωn \{y}; y is a vertex of Vn(x)}.

We denoted by Γ the collection of vertices, edges and facets of the boundary of the stencil V :=
Vn(x), which (i) contain only accepted grid points, and (ii) contain the point y. As before IV
denotes piecewise linear interpolation on the mesh V . The difference x′−x makes sense because
x and x′ belong to the small and simply connected stencil V of x.

Equivalently, one has

Λn(d, x; b, y) := min
k,(αi),(vi)


∥∥∥∥∥∥
∑

1≤i≤k
αi
vi
n

∥∥∥∥∥∥
M(z)

+
∑

1≤i≤k
αi d

(
x+

vi
n

) , (27)

where the minimum is taken among all 1 ≤ k ≤ d, all α1, · · · , αk ∈ IR and all v1, · · · , vk ∈ ZZd,
such that

• αi + · · ·+ αk = 1, and αi ≥ 0 for all 1 ≤ i ≤ k.

• v1, · · · , vk are non-zero vertices of a common simplex T ∈ T (x).

• b(x+ v1/n) = · · · = b(x+ vk/n) = accepted.

• x+ v1/n = y.

The main originality of the FM-LBR lies in the stencil construction, in the Preprocessing
step. The second part of this algorithm, Execution, is similar to other Dijkstra inspired solvers
of the eikonal equation with static stencils, such as [2, 22].

FM-LBR: Execution.

4. Initialize to trial a (mutable) boolean table b : Ωn → {trial, accepted}.

5. Initialize to +∞ another (mutable) table d : Ωn → IR+, except for d(0) = 0.

6. While there remains a trial point in Ωn

(a) Denote by y the trial point which minimizes d, and set b(y) ::= accepted.

(b) For all x ∈ V n(y), set d(x) ::= min{d(x), Λn(d, x; b, y)}.

Output. The map d : Ωn → IR+.

The rest this section is devoted to the proof of the following theorem. Points (i) and (iii)
also hold for any alternative construction of M(z)-reduced meshes T (z), in the Preprocessing
step, in dimension d ≤ 4, which diameters are uniformly bounded by a constant C = C(κ(M)).
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Theorem 2.2. (i) The map dn = d obtained at the end of the FM-LBR satisfies the discrete
fixed point system (10).

(ii) The cost of the FM-LBR is O(N lnN+N lnκ(M)), where N := nd = #(Ωn), if elementary
operations among reals (+,−,×, / and

√
·) have unit complexity.

(iii) Denoting by D : Ω→ IR+ the solution of the anisotropic eikonal equation (2) one has

lim
n→∞

(
max
z∈Ωn

|D(z)− dn(z)|
)

= 0.

The next lemma constitutes the causality property, which is the key to the one pass resolution
of the system (10) in Fast Marching algorithms, see Proposition 2.4.

Lemma 2.3 (Sethian and Vladimirsky 2000, [19]). Let M ∈ S+
d and let v1, · · · , vk ∈ IRd be

linearly independent vectors such that vT
i Mvj ≥ 0 for all 1 ≤ i ≤ j ≤ k. Consider the compact

and convex set
Ξ := {α = (α1, · · · , αk) ∈ IRk

+; α1 + · · ·+ αk = 1}

Choose ∆ = (δ1, · · · , δk) ∈ IR, denote

δ := min
α∈Ξ

∥∥∥∥∥∥
∑

1≤i≤k
αiwi

∥∥∥∥∥∥
M

+
∑

1≤i≤k
αiδi, (28)

and assume that the minimizer α ∈ Ξ of this problem has positive coefficients.
Then δ > δi for each 1 ≤ i ≤ k. Furthermore denoting by M̂ the matrix of entries M̂ij =

vT
i Mvj, and defining 1 := (1, · · · , 1) ∈ IRk, one has the relations

1 = ‖δ1−∆‖M̂−1 , (29)

M̂α = ‖α‖M̂ (δ1−∆). (30)

Proof. For completeness, and due to notation changes, we give the proof of this lemma, which
follows the steps of Property A.1 in [19].

The problem (28) is the optimization, on the compact an convex set Ξ, of a strictly convex
functional. Hence there exists a unique minimizer α ∈ Ξ. The gradients of the maps α 7→
‖α‖M̂ +αT∆ and α 7→ αT1, respectively the minimized function and the constraint in (28), are
proportional at the minimizer α according to Lagrange’s Theorem. Hence there exists λ ∈ IR,
the Lagrange multiplier, such that

M̂α

‖α‖M̂
+ ∆ = λ1. (31)

Therefore

‖λ1−∆‖M̂−1 =

∥∥∥∥∥ M̂α

‖α‖M̂

∥∥∥∥∥
M̂−1

= 1. (32)

Using again (31) we obtain

δ = ‖α‖M̂ + αT∆ = αT

(
M̂α

‖α‖M̂
+ ∆

)
= αT(λ1) = λ.
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Combining the last equation with (32) (resp. (31)) we obtain (29) (resp. (30)).
Since M̂ has non negative coefficients, positive diagonal coefficients, and since we have as-

sumed that α has positive coefficients, we obtain that the product M̂α has positive coefficients,
hence also δ1 − ∆. Therefore δ > δi for all 1 ≤ i ≤ k in view of (30), which concludes the
proof.

The next proposition, adapted from [22], shows that the Execution of the FM-LBR solves
the discrete fixed point system (10).

Proposition 2.4 (Tsitsiklis, 1995). We denote by E the collection of maps d : Ωn → IR+

satisfying d(0) = 0. The set E is partially ordered as follows: d ≤ d′ if d(z) ≤ d′(z) for all
z ∈ Ωn. We denote by d0 ∈ E the map equal to +∞ on Ωn \ {0}.

We denote by Λn : E → E the operator defined by Λn(d)(z) := Λn(d, z) if z ∈ Ωn \ {0}.

1. The operator Λn is increasing on E: Λn(d) ≤ Λn(d′) for all d,d′ ∈ E such that d ≤ d′.

2. The sequence Λkn(d0) converges to a fixed point d ∈ E of Λn, as k →∞.

Let N := nd. We denote by (yi)0≤i<N the grid points consecutively selected at step 6 (a) of the
FM-LBR, and by (di)1≤i≤N the maps obtained at the end of each iteration of the while loop.

3. For all 0 ≤ i ≤ j ≤ N one has di ≥ dj ≥ d.

4. For all 0 ≤ i < N one has dj(yi) = d(yi).

5. For all 0 ≤ i ≤ j < N one has d(yi) ≤ d(yj).

Combining Points 3 and 4 we obtain dN = d. Recalling Point 2 and observing that a fixed point
of Λn solves (10), we obtain Point (i) of Theorem 2.2.

Proof. Point 1, the monotonicity of Λn on E, follows from the expression (9) of the pointwise
entries Λn(d, z), d ∈ E, z ∈ Ωn, as a minimum of monotone maps (linear forms with positive
coefficients).

Point 2. Any map d ∈ E satisfies d ≤ d0, hence Λ(d0) ≤ d0. Using Point 1 and an immediate
induction argument we obtain that the sequence Λk(d0) is decreasing, and thus converging to a
limit d ∈ E. The identity Λ(d) = d follows from the continuity of Λn, which is clear in view of
its expression (9) as a minimum of linear functions indexed by a compact set.

Point 3. Consider a fixed 0 ≤ i < N , and denote by bi the value of the boolean map at
the beginning of the i-th iteration (thus bi(yj) = trial if and only if i ≤ j). The maps di and
di+1 may only differ on the set V n(yi), see step 6 (b) of the FM-LBR. We assume that di ≥ d,
an induction hypothesis that is satisfied for i = 0, and observe that di ≥ di+1 by construction.
Furthermore, for x ∈ V n(yi) we have either di+1(x) = di(x), hence di+1(x) ≥ d(x) by induction,
or

di+1(x) = Λn(di, x; bi, yi) ≥ Λn(d, x; bi, yi) ≥ Λn(d, x) = d(x).

Thus di ≥ di+1 ≥ d, for all 0 ≤ i < N , which concludes the proof of Point 3.
Following the steps of Lemma 3.2 in [22], we prove Points 4 and 5, simultaneously, by

induction on i. Let y be the trial point (bi(y) = trial, equivalently y = yj for some j ≥ i) which
minimizes d. If y ∈ ∂Ω∗ = {0}, then y = 0, i = 0, d(0) = d0(0) = 0, and there is nothing to
prove. Otherwise we have

d(y) = Λn(d, y) = ‖y −
∑

1≤r≤k
αryσ(r)‖M(y) +

∑
1≤r≤k

αrd(yσ(r)), (33)
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for some 1 ≤ k ≤ d, positive barycentric coefficients (αr)
k
r=1, and grid points (yσ(r))

k
r=1. These

points satisfy d(yσ(r)) < d(y), due to the causality property, hence bi(yσ(r)) = accepted. Thus

σ(r) < i, for 1 ≤ r ≤ k, and therefore di−1(yσ(r)) = d(yσ(r)) by induction hypothesis on Point
4. Recalling the Hopf-Lax updates performed at step 6 (b) of the FM-LBR, in the previous
iterations of the while loop, we find that the right hand side of (33) is an upper bound for di(y),
hence di(y) ≤ d(y). Since di ≥ d (Point 3), it follows that y minimizes di among trial points,
similarly to yi. Finally d(y) ≥ di(y) = di(yi) ≥ d(yi) ≥ d(y), using Point 3 and the optimality
of y for the last two inequalities. Thus d(yi) = di(yi), and this is the minimum of d among the
trial points {yj ; j ≥ i}. This establishes Points 4 and 5 at rank i.

We next turn to Point (ii) of Theorem 2.2: the complexity estimate of the FM-LBR. Consider
a point z ∈ Ωn. Obtaining a M(z)-reduced basis has cost O(1 + lnκ(M(z))), see Theorem 1.5,
and from this point constructing a M(z)-reduced mesh T (z) using Proposition 1.9 or 1.10 has
cost O(1). Step 1 of FM-LBR Preprocessing thus has total cost O(N +N lnκ(z)). Steps 2 and
3 only cost O(N).

The FM-LBR Execution involves the evaluation of the Hopf-Lax update operator (27). Each
mesh T (z), z ∈ Ωn, has O(1) vertices by assumption, hence evaluating this operator amounts to
solve O(1) optimization problems of the form (28). Their solution is obtained as the root δ of
a univariate quadratic equation (29), hence the complexity is O(1). Globally in the Execution,
such evaluations happen at most the following number of times:∑

z∈Ωn

#(V n(z)) =
∑
z∈Ωn

n(z) = O(N),

where n(z) denotes the number of non-zero vertices of T (z). In our case n(z) = O(1). In
addition, the FM-LBR Execution requires to maintain a list of the elements of β−1(trial),
sorted by increasing value of δ. Elementary insertions and deletions in this list have cost O(lnN)
(if this sorted list is implemented numerically using a binary heap), and occur each time the
Hopf-Lax formula is evaluated. The Execution cost is thus O(N lnN). Combining the costs of
Preprocessing and Execution, we obtain as announced the complexity O(N lnN +N lnκ(M)).

Remark 2.5 (Memory requirements). The memory requirements of numerical methods for
the eikonal equation, such as the AGSI and the FM-LBR, are dominated by (I) storing the
riemannian metric M, sampled on the discrete domain Ω∗, and the discrete solution d, and (II)
storing the graph structure underlying the numerical scheme. Point (I) requires two tables of
Nd(d + 1)/2 and N reals, typically represented in 64bit floating point format, independently of
the method.

Point (II) is avoided for AGSI when this method is executed on a mesh with a trivial periodic
structure, which is the case in our experiments. For the FM-LBR, Point (II) is divided into the
storage of the direct stencils (V∗(x))x∈Ωn, and of the reversed stencils (V ∗(y))y∈Ωn. Storing a
directed graph with N vertices and N ′ edges requires a table of N ′ vectors1, and another of N
integers: the indices of the start of the consecutive stencils in the previous table. For the direct
or the reversed stencils of the FM-LBR, N ′ = 6N in two dimensions, and N ′ = 14N in three
dimensions, see Propositions 1.9 and 1.10. We represented integers in 32bit format, and vector
components in 8bit format, since these are small integers by construction. Summing up, we find
that the memory requirements of the FM-LBR are approximately twice those of the AGSI (for
which we do not count any mesh structure).

1 The edge ~xx′ may also be represented by the index of the endpoint x′, instead of the associated vector.
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2.1 Convergence analysis

We establish in this section the convergence result announced in Point (iii) of Theorem 2.2. The
FM-LBR is applied for each n ≥ 2 to a fixed Riemannian metricM∈ C0(Ω, S+

d ), and produces
a sequence of maps dn : Ωn → IR+ satisfying (10).

Lemma 2.6. • (Limited extension) There exists a constant V0 = V0(M) such that each
vertex v of each mesh T (z), z ∈ Ω, satisfies ‖v‖ ≤ V0.

• (Consistency) There exists a constant r0 = r0(M) > 0 such that the following holds. For
each z ∈ Ω there exists a basis (u1, · · · , ud) of ZZd such that u1, · · · , ud,−u1, · · · ,−ud are
vertices of the mesh T (z + w), for all w ∈ IRd such that ‖w‖ ≤ r0.

Proof. We prove this lemma for the mesh constructions given in Propositions 1.9 and 1.10. The
“block diagonal” case immediately follows by considering each block separately.

The elements of a M -reduced basis of ZZd have a norm bounded by κ(M), see Proposition
1.6. Hence any vertex of a M -reduced mesh T built as described in Proposition 1.9 satisfies
‖v‖ ≤ 2κ(M) (resp. Proposition 1.10 and ‖v‖ ≤ 3κ(M)). This establishes Point (Consistency).

We denote by r0 = r0(M) the largest positive constant such that for all z ∈ Ω and all w ∈ IRd

|w| ≤ r0 ⇒ d×(M(z),M(z + w)) ≤ ln(1 + κ(M)−2)/4.

If z ∈ Ω and ‖w‖ ≤ r0, then it follows from Corollary 1.8 that the vertices of T (z+w), which is
M(z + w)-reduced mesh, contain as a subset any M(z)-reduced basis (u1, · · · , ud) of ZZd. This
establishes Point (Limited extension), and concludes the proof.

Our next lemma shows that the discrete maps dn : Ωn → IR+ obey a Lipschitz regularity
property, if n is sufficiently large, and thus take finite values,

Lemma 2.7. For any n > 0, any z ∈ Ωn and any vertex v of T (z), one has

dn(z)− dn(z + v/n) ≤ ‖v‖M(z)/n. (34)

For any n ≥ n0, any z ∈ Ωn, and any v ∈ {−1, 0, 1}d one has

|dn(z)− dn(z + v/n)| ≤ ∆0/n, (35)

where n0 := d2V d
0 /r0, ∆0 := d2V d

0 M0, and M0 := max{
√
‖M(z)‖; z ∈ Ω}.

Proof. If z ∈ Ωn \ {0}, then (34) follows from the equality dn(z) = Λn(dn, z), and from the
definition (27) of Λn(dn, ·). If z = 0, then the left hand side of (34) is negative, while the right
hand side is non-negative. This concludes the proof of the first part of this lemma.

We next turn to the proof of (35), and for that purpose we consider a fixed n ≥ n0. Consider
a point z ∈ Ωn and a basis (u1, · · · , ud) of ZZd as in Lemma 2.6 (Consistency), and observe that
‖ui‖ ≤ V0 for all 1 ≤ i ≤ d. Let A be the d×d matrix which columns are u1, · · · , ud. We denote
by com(A) the comatrix of A, and we observe that the coefficients of this matrix are bounded
in absolute value by V d−1

0 (indeed they are determinants of (d − 1) × (d − 1) sub-matrices of
A, the norm of which columns is bounded by V0). Since | detA| = 1, the absolute value of the
coefficients of A−1 = com(A)T/ detA is also bounded by V d−1

0 .
Let (α1, · · · , αd) ∈ ZZd be such that v = α1u1 + · · · + αdu1, in other words (α1, · · · , αd) =

A−1v. We denote s := |α1| + · · · + |αd|, and we observe that s ≤ d2V d−1
0 , since the absolute

value of the coefficients of v is bounded by 1. There exists v0, v1, · · · , vs ∈ ZZd, such that
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v0 = 0, vs = v and vi+1 − vi ∈ {u1, · · · , ud,−u1, · · · ,−ud} for all 1 ≤ i ≤ s. Furthermore
‖vi‖ ≤ sV0 ≤ d2V d

0 , hence u1, · · · , ud,−u1, · · · ,−ud are vertices of T (z + vi/n) according to
Lemma 2.6 (Consistency). It thus follows from (34) that

n(dn(z + vi/n)− dn(z + vi+1/n)) ≤ ‖vi+1 − vi‖M(z+vi) ≤ ‖vi+1 − vi‖
√
‖M(z + vi)‖ ≤M0V0,

which implies that dn(z)−dn(z+v/n) ≤ sM0V0/n ≤ d2M0V
d

0 /n = ∆0/n. Exchanging the roles
of z and z+ v/n we obtain likewise dn(z+ v/n)−dn(z) ≤ ∆0/n, which concludes the proof.

Let ϕ : IRd → Ω be the canonical surjection. We denote by dper the distance on Ω defined
for all z, z′ ∈ Ω by

dper(z, z
′) := min{‖Z − Z ′‖; Z ∈ ϕ−1(z), Z ′ ∈ ϕ−1(z′)}

Corollary 2.8. For each n ≥ n0 and for all z ∈ Ω we define

Dn(x) := min
z∈Ωn

dn(z) + ∆0 dper(z, x), (36)

where the constants n0, ∆0, are defined in Lemma 2.7.
The map Dn : (Ω, dper)→ IR+ is ∆0-Lipschitz, and dn(x) = Dn(x) for all x ∈ Ωn.

Proof. The map Dn is ∆0-Lipschitz since it is defined as the minimum of the family of ∆0-
Lipschitz functions x 7→ dn(z) + ∆0 dper(z, x), indexed by x ∈ Ωn.

Let x ∈ Ωn, let v = (v1, · · · , vd) ∈ ZZd and let vmax := max{|v1|, · · · , |vd|}. Applying vmax

times (35) we obtain

|dn(x)− dn(x+ v/n)| ≤ ∆0vmax/n ≤ ∆0‖v/n‖.

It follows that dn(x) ≤ dn(z) + ∆0 dper(x, z) for all x, z ∈ Ωn. This immediately implies as
announced that dn(x) = Dn(x) for all x ∈ Ωn, which concludes the proof.

Before stating the main result of this section, we recall the definition of the viscosity solution
of an eikonal equation [11].

Definition 2.9. The viscosity solution of the eikonal equation (2), is the unique continuous
function D : Ω→ IR+ such that for any ϕ ∈ C1(Ω, IR) and any z ∈ Ω \ {0} the following holds:

• If D−ϕ has a unique global maximum at z, then ‖∇ϕ(z)‖M(z)−1 ≤ 1.

• If D−ϕ has a unique global minimum at z, then ‖∇ϕ(z)‖M(z)−1 ≥ 1.

In alternative definitions of the notion of viscosity solution, the assumption that “D−ϕ has
a unique global maximum at z” is often replaced with “D−ϕ attains a local maximum at z”
(resp. minimum). These two definitions are equivalent, since one may subtract (resp. add) to
ϕ a suitable smooth function ψ ∈ C1(Ω, IR+), large far from z, and with a parabolic behavior
close to z: ψ(z + h) ≈ λ‖h‖2 for h sufficiently small.

We show in the following that the functions Dn, introduced in Lemma 2.8, converge uniformly
towards the viscosity solution of (2) as n → ∞. This immediately implies the convergence of
the discrete maps dn produced by our modified algorithm, as stated in Point (iii) of Theorem
2.2. The proof is similar in essence to the proof provided in [5], yet with a number of minor
modifications due to our specific context.
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Since (Ω,dper) is a compact metric space, since Dn(0) = 0 and since Dn is ∆0-Lipschitz for
all n ≥ n0, the theorem of Arzelà-Ascoli implies that the sequence Dn is pre-compact. In the
rest of the proof we consider an arbitrary subsequence (Dσ(n))n≥0 which converges uniformly
on Ω towards a limit D : Ω → IR+. Our objective is to establish that D is a viscosity solution
of the eikonal equation (2). Once this point is established, we conclude as announced that Dn

converges uniformly toward the viscosity solution of (2), using the uniqueness of the viscosity
solution and the pre-compactness of the sequence Dn.

We consider for each n ≥ 1 a point zn ∈ Ωn, the non-zero vertices vn1 , · · · , vnd ∈ ZZd of a
common simplex T ∈ T (zn), and some coefficients αn1 , · · · , αnd ∈ IR+, αn1 + · · ·+ αnd = 1, which
will all be specified later. We consider λn > 0, and vn ∈ IRd, ‖vn‖ = 1, such that

λnvn = αn1v
n
1 + · · ·+ αndv

n
d .

Note that λn ≤ V0. On the other hand using the acuteness property (13) and denoting M :=
M(zn) we obtain

λ2
n‖M‖ ≥ ‖λnvn‖2M

=
∑

1≤i≤n
(αni )2‖vni ‖2M + 2

∑
1≤i<j≤n

αni α
n
j (vni )TMvnj

≥

 ∑
1≤i≤n

(αni )2

 min
1≤i≤n

‖vni ‖2M

≥ d−1‖M−1‖−1,

hence λn ≥ (dκ(M))−
1
2 . Denoting

Dn := dn(zn)−
∑

1≤i≤d
αni dn(zn + vni /n),

it follows from the definition (27) of the Hopf-Lax update that

Dn ≤ λn‖vn‖M(zn)/n (37)

but also that, given n > 0 and zn ∈ Ωn, we may choose vn1 , · · · , vnd and αn1 , · · · , αnd in such way
that the above inequality is an equality.

Consider an arbitrary map ϕ ∈ C1(Ω, IR) and a point z ∈ Ω \ {0}. Denoting L := ∇ϕ(z)T

we have for any x ∈ Ω and any h ∈ IRd the Taylor development

|ϕ(x+ h)− ϕ(x)− Lh| ≤
∫ 1

0
‖∇ϕ(x+ th)−∇ϕ(z)‖‖h‖dt ≤ ω(dper(x, z) + ‖h‖)‖h‖, (38)

where ω denotes the modulus of continuity of the continuous function ∇ϕ : Ω→ IRd. We denote

Sn := ϕ(zn)−
∑

1≤i≤d
αni ϕ(zn + vni /n),

and we observe that, using (38) and denoting rn := dper(z, zn) + V0/n,

|Sn + λnLvn/n| ≤
∑

1≤i≤n
αni |ϕ(zn + vni /n)− ϕ(zn)− Lvni /n| ≤ ω(rn)V0/n. (39)
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We now explicit the choice of zn, (vni ) and (αni ), and we use the above inequalities to conclude
the proof. Let us assume that D−ϕ has a strict global maximum (resp. minimum) at z. For
each n > 0 we denote by zn ∈ Ωn a maximizer (resp. minimizer) of D− dn on Ωn. It follows
from the uniform convergence Dσ(n) → D, as n→∞, that zσ(n) → z.

We consider a fixed v ∈ IRd such that ‖v‖ = 1, and we choose αn1 , · · · , αnd and vn1 , · · · , vnd as
above in such way that vn = v for all n > 0. (resp. We choose αn1 , · · · , αnd and vn1 , · · · , vnd in
such way that (37) is an equality for all n > 0, and we denote by v an arbitrary cluster value of
the sequence (vσ(n))n≥2.)

Using successively (39), the definition of zn, and (37) we obtain

−λnLvn/n− ω(rn)V0/n ≤ Sn ≤ Dn ≤ λn‖vn‖M(zn)/n

(resp. −λnLvn/n+ ω(rn)V0/n ≥ Sn ≥ Dn = λn‖vn‖M(zn)/n). It follows that

−Lvn ≤ ‖vn‖M(zn) + ω(rn)V0/λn

(resp. −Lvn ≥ ‖vn‖M(zn) − ω(rn)V0/λn). Since rσ(n) → 0 as n → ∞ (resp. rσ(n) → 0 and v is
a cluster value of the sequence (vσ(n))n>0), and since λn is bounded below independently of n,
we obtain

−Lv ≤ ‖v‖M(z)

(resp. −Lv ≥ ‖v‖M(z)). Observing that

‖∇ϕ(z)‖M(z)−1 = sup

{
−Lv
‖v‖M(z)

; v ∈ IRd, ‖v‖ = 1

}
we obtain as announced that ‖∇ϕ(z)‖M(z) ≤ 1 (resp. ‖∇ϕ(z)‖M(z) ≥ 1). It follows that D is
the viscosity solution of (2), which concludes the proof.

3 Numerical experiments

This section is devoted to the numerical comparison of three solvers of the eikonal equation:
two popular methods (AGSI, FM-8) which enjoy a reputation of simplicity and efficiency in
applications, and the proposed algorithm (FM-LBR). The Adaptive Gauss Seidel Iteration2

(AGSI) [5] produces numerical approximations which are guaranteed to converge towards the
solution of the continuous anisotropic eikonal equation as one refines the computation grid3, for
an arbitrary continuous Riemannian metricM. Fast Marching using the 8 point stencil (FM-8,
stencil illustrated on Figure 1, center left) does not offer this convergence guarantee, but has

a quasi-linear complexity O(N lnN), in contrast to the super-linear complexity O(µ(M)N1+ 1
d )

of the AGSI. Fast Marching using Lattice Basis Reduction4 (FM-LBR) aims to offer the best of
both worlds: a convergence guarantee, and fast computation times5.

2 As suggested in [5], the stopping criterion tolerance for the iterations of the AGSI is set to 10−8.
3 The grid is triangulated with a trivial periodic mesh, for the AGSI and the MAOUM
4We use for each discrete point z the M(z)-reduced neighborhood described by Proposition 1.9 in 2-d, and

Proposition 1.10 in 3-d, except if the matrix M(z) is detected to be exactly diagonal. In that case we use the
standard 4 vertices neighborhood in 2-d (resp. 6 vertices in 3-d), which is a M(z)-reduced mesh, see Figure 1 (left
and center right). This modification has little impact on accuracy or CPU time, but avoids to pointlessly break
the symmetry of the numerical scheme. A C++ source code, provided as an ancillary file to the Arxiv version of
this paper, allows to reproduce the above experiments.

5Note that memory requirements are doubled for the FM-LBR in comparison with the AGSI and FM-8, see
Remark 2.5.
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Figure 6: Level lines of the solutions of the two dimensional test cases.

We also implemented the Monotone Acceptance Ordered Upwind Method (MAOUM) [2], a
Dijkstra inspired method using static stencils, like the FM-LBR. The difference between these
two methods is that the stencil Vn(z) used by the MAOUM at a point grid point z ∈ Ωn

is isotropic, only depends on the anisotropy ratio κ(M(z)), and its boundary has cardinality
#(Ωn ∩ ∂Vn(z)) = O(κ(M(z))); in contrast the stencil of the FM-LBR is anisotropic, aligned
with the ellipse defined by M(z), and of cardinality O(1). The stencils of the MAOUM were
precomputed and stored in a look-up table, resulting in a complexity O(κ(M)N lnN) for this
algorithm.

We consider four test cases. The first two involve two dimensional Riemannian metrics M
of limited anisotropy, κ(M) ' 5, and were proposed in [24, 19] (including the grid sizes). All
four methods (FM-LBR, FM-8, AGSI, MAOUM) are viable, yet the proposed method shows
a reduced CPU usage and a competitive accuracy in comparison with its alternatives. The
third test case, introduced in [4] and related to image segmentation problems, involves a highly
anisotropic two dimensional metric M, κ(M) ' 100. It was observed in [4] that neither the
AGSI or the FM-8 are viable in this context, due to complexity and accuracy issues respectively;
and the MAOUM is no better. We show that FM-LBR solves this dilemma. The fourth test is
a generalization of the third one in three dimensions.

Remark 3.1. Contrary to the assumptions of the convergence analysis, in §2, but consistently
with the envisioned applications, our test cases do not involve periodic boundary conditions. As
a result, in exceptional circumstances, a few grid points usually in the domain’s corners may not
be reached by the FM-LBR, because they are not connected to the origin in the underlying graph
(Lemma 2.7 does not apply). In the following experiments this only happened when the first test
case was rotated by an angle θ ∈ [0.56, 0.61] radians. The numerical values at the four corners
of the grid, equal to +∞, were then rejected when computing the L1 and L∞ errors.

The last two test cases involve discontinuous Riemannian metrics, which happens in many
applications (e.g. at the junction between materials of different index in geometrical optics), but
also contradicts the assumptions of our convergence analysis.

The first benchmark, introduced in [24], consists in computing the Riemannian distance from
the origin (0, 0, 0) on the surface parametrized by f : (x, y) → (x, y, (3/4) sin(3πx) sin(3πy)).
Denoting by F := (∂xf, ∂yf) the differential of f , the Riemannian metric is given by M =
FTF . The coordinates (x, y) are restricted to the square [−0.5, 0.5]2, and the anisotropy ratio
is κ(M) ' 5.1 [24]. A reference solution is obtained on a 4000× 4000 grid using the AGSI, and
extended by bilinear interpolation. The FM-LBR, FM-8, AGSI and MAOUM are applied on
a 292 × 292 grid, and the L∞ and averaged L1 errors estimated with respect to the reference
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FM-LBR FM-8 AGSI MAOUM

First test
CPU time 0.19 0.19 1.01 1.28
L∞ error 3.99 1.47 1.62 8.80
L1 error 1.13 0.53 0.51 2.33

First test, rotated by π/6
CPU time 0.20 0.21 1.44 1.31
L∞ error 5.52 12.5 9.45 8.56
L1 error 1.46 3.42 2.51 2.52

Second test
CPU time 0.076 0.079 0.77 0.36
L∞ error 2.90 3.03 3.67 7.66
L1 error 1.03 1.30 1.40 2.3
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Figure 7: Tables of CPU time in seconds, L∞ error an averaged L1 error (left). Accuracy, in
the first test rotated by an angle θ ∈ [0, π/4] (this interval is enough, since the dependence in
θ is π/2-periodic and even). In average over theta, CPU times are 0.21s, 0.20s, 1.37s, 1.31s,
L∞ errors 5.16, 7.64, 6.86, 8.57 and averaged L1 errors 1.34, 2.58, 1.95, 2.40 for the FM-LBR,
FM-8, AGSI and MAOUM respectively. All errors are multiplied by 100, for better readability.

solution. As shown on Figure 7, FM-LBR is the fastest in terms of CPU time6, but is less
accurate than the AGSI or the FM-8.

Rotating the this test case by the angle θ = π/6, and conducting the same experiment, shows
a different story: the numerical error increases strongly for the AGSI and the FM-8, while the
FM-LBR, unaffected, is now the most accurate method, see Figure 7. Unsurprisingly the CPU
time is almost unaffected for the one pass solvers (FM-LBR, FM-8, MAOUM), while it slightly
increases for the AGSI. The FM-LBR cuts L∞ and L1 numerical errors by 40% in comparison
with the AGSI and the MAOUM, and CPU time by 85%, while the FM-8 produces even larger
numerical errors.

Figure 7 shows that the FM-LBR offers the best accuracy for more grid orientations θ than
its alternatives. The maximal error and averaged error with respect to θ are also in favor of the
FM-LBR. The heuristic explanation of these empirical observations is the following: for θ = 0,
this test case is dominated by (close to) axis-aligned anisotropy. The fixed stencils of the AGSI
and the FM-8 seem to benefit from this configuration; the FM-8 also works well for θ = π/4, be-
cause its stencil includes the four diagonals. In contrast, the large stencils used by the MAOUM
provide a good angular resolution in all directions, hence the method is mostly unaffected by
rotations of the discretization grid. The FM-LBR does not suffer either from off-axis anisotropy,
thanks to its adaptive stencils which are aligned with the anisotropy directions. In the special
case of constant Riemannian metrics, random grid orientations are actually more favorable in
average to the FM-LBR than axis aligned ones, see [12].

The second benchmark, discussed in [24, 19], is inspired by seismic imaging. The Rieman-
nian metric M is defined as follows: at each point z = (x, y), the symmetric matrix M(z) has

6All timings obtained on a 2.4Ghz Core 2 Duo, using a single core. Timings of the FM-LBR include the stencil
construction, which typically accounts for 25%.
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Figure 8: Reference solution for the third test case (left). The Riemannian metric M is
anisotropic only on a thin band along a spiraling curve, wide of a few grid points. Detail at
resolutions n× n, where n equals 200 (center left), 500 (center right) and 1000 (right).

the two eigenvalues 0.8, 0.2, the latter associated to the eigenvector (1, (π/2) cos(4πx)). There
is little or no bias here towards axis-aligned anisotropy. The Riemannian distance from the
origin (0, 0) is computed on the square domain [0.5, 0.5]2. A reference solution is obtained on a
4000×4000 grid using the AGSI, and compared with the results of the four algorithms, obtained
on a 193 × 193 grid. As shown on the table Figure 7, FM-LBR takes a smaller CPU time and
offers a better accuracy than its alternatives.

The third [4] and fourth test cases are relevant benchmarks if one’s objective is to use fast
marching methods for the segmentation of tubular structures, in medical image or volume data
respectively. The Riemannian metric M is euclidean (equal to Id) on a box domain Ω, except
on the neighborhood of a curve Γ, see Figures 8 and 12 (right). The matrix M(z), when z ∈ Ω
is close to Γ, has two eigenspaces: one of dimension 1, directed “tangentially” to the curve Γ,
and associated to a small eigenvalue (1/1002 and 1/502 respectively), and one of co-dimension
1, associated to the eigenvalue 1. The (approximated) Riemannian distance D to to the origin
0 ∈ Ω is computed, and a path of minimal minimal length γ joining a given point P ∈ Ω is
extracted by “gradient descent on the Riemannian manifold (Ω,M)”:

γ′(t) = −M(γ(t))−1∇D(γ(t)). (40)

By construction of the Riemannian metricM, traveling close and tangentially to the curve Γ is
cheap. This is reflected by the level lines of D, and by the allure of the minimal path, see Figures
6, 8 and 12. Heuristically, this path joins the curve Γ in straight line, almost orthogonally, and
then follows it. The alignment of the minimal path with the direction of anisotropy, observed in
this test case, is not an uncommon phenomenon. The FM-LBR presumably benefits a lot from
this behavior in terms of accuracy, since its stencils typically provide a good “angular resolution”
in the direction of anisotropy, see Figures 2, 3, 5.

The performance of the FM-LBR, FM-8 and AGSI is illustrated on Figure 9 for the third
test case. The MAOUM showed a poor accuracy in this test, presumably due to the huge sten-
cils it generated, hence its results are not shown. The CPU time/resolution curve of the AGSI
shows a stronger slope than the one pass solvers (FM-LBR, FM-8), which reflects its intrinsically

larger complexity, namely O(µ(M)N1+ 1
d ) instead of O(N lnN). The L∞ and L1 error curves

suggest that the FM-8 is not consistent in this test case, contrary to the FM-LBR and AGSI.
The reference solution was obtained on a 4000× 4000 grid, using the variant of the Fast March-
ing algorithm described in [13]. The AGSI could not be used due to prohibitive computation
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Figure 9: CPU Time (left, in seconds), L∞ error (center), and averaged L1 error (right) of the
FM-LBR, FM-8 and AGSI, at several resolutions ranging from 120 to 1200 (log-log scale).

times and unimpressive accuracy in this test, and the FM-LBR was rejected because using it
for reference might have induced a bias in our favor. At the resolution 1000 × 1000, typical in
image analysis, the FM-LBR cuts the L∞ error by 80% and the L1 error by 75% with respect
to the AGSI, while reducing the CPU time from 11 minutes to 2.5 seconds.

Obtaining the shortest path joining two given points is essential in motion planning control
problems [2], as well as in the envisioned application [4]. This involves solving the Ordinary
Differential Equation (ODE) (40), a task less trivial than it seems. The author is conscious that
a benchmark based on minimal paths may reflect the properties of the ODE solver (and the time
spent adjusting its sometimes numerous parameters), as much as those of the eikonal solver, but
does so nevertheless due to the importance of minimal paths in applications. Eikonal solvers
based on the discrete fixed point problem (10), such as the FM-LBR, FM-8 and AGSI, provide
at each grid point z ∈ Ωn an estimate d(z) of the distance D(z), and in addition an estimate
v(z) of the direction and orientation of the distorted gradient −M(z)−1∇D(z). This estimate
has the form

v(z) :=
1

n

∑
1≤i≤k

αivi =
∑

1≤i≤k
αi(zi − z), (41)

where the integer 1 ≤ k ≤ d, the positive barycentric coefficients (αi)
k
i=1 and the vertices (vi)

k
i=1

of the mesh T (z) (resp. vertices (zi)
k
i=1 of Vn(z)) achieve the minimum in the Hopf-Lax update

operator (27).
From this point, a typical approach to solve (40) is to extend the values of d or v to the

continuous domain Ω via an interpolation procedure, and then to use a black box ODE solver or
a Runge Kutta method. Note that the accuracy usually expected from these high order methods
is mostly doomed, since the discretization (10) of the eikonal equation is only first order, and
since the vector field M−1∇D is discontinuous both at “caustics” and discontinuities of M. A
more significant issue is that computations frequently get stuck, despite the use of state of the
art and/or commercial interpolation methods and ODE solvers, see e.g. [2] Figure 5.10.

We propose a method for the computation of minimal paths, which trades high order accuracy
for robustness, and never gets stuck if the eikonal solver is Dijkstra inspired. It takes advantage
of the specific form (10) of the discretization of the eikonal equation, and does not rely on black
box routines. It is parameter free: there is not interpolation order or gradient step to adjust.

As illustrated on Figure 11, the FM-LBR recovers a qualitative minimal path in the third
test case for grid resolutions much coarser than the AGSI. See Figure 8 for an illustration of
the impact of coarse resolutions on the problem discretization. Hence the better accuracy of
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Figure 10: Notations for the minimal path computation (left); the contour of the stencil Vn(xi)
is shown dotted. Grid points x0, · · · , xr ∈ Ωn, corrections u0, · · · , ur ∈ IRd shown as arrows, and
piecewise linear path γ (center). Grid Points (xi)

r
i=1 and piecewise linear path γ in the second

test case at resolution n× n, n = 100, using the FM-LBR (center right, detail).

the FM-LBR in this test case, see Figure 9, does effectively translate into a better extraction of
minimal paths.

Our method produces a piecewise linear path γ, joining the points x0 + u0, · · · , xr + ur of
Ω, where x0, · · · , xr ∈ Ωn are grid points, and u0, · · · , ur ∈ IRd are small correcting offsets,
see Figure 10. The first grid point x0 is given by the user (and should satisfy d(x0) < ∞, see
Remark 3.1), and the first offset u0 is zero. All produced grid points xi+1, 0 ≤ i < r, are vertices
of the stencil Vn(xi) of the previous point. In the case of a Fast Marching method, the causality
property implies that the values (d(xi))

r
i=0 are strictly decreasing, down to zero: d(xr) = 0 (the

last point belongs to the source).

Minimal path computation, starting from a given grid point P ∈ Ωn.
Initialisation: x0 := P , u0 := 0, i ::= 0.
While d(zi) > 0 do
• Denote by z1, · · · , zk the grid points appearing in the expression (41) of v(xi).
• Find λ ∈ IR+, 1 ≤ j ≤ k, which minimize ‖xi + ui + λv(xi)− zj‖
• Set xi+1 := zj and ui+1 := xi + ui + λv(xi)− zj .
• i ::= i+ 1.

The piecewise linear path γ : [0, r] → Ω, parametrized so that γ(i) = xi + ui, satisfies the
differential equation

γ′(t) = λbtcv(xbtc), (42)

for non-integer t ∈ [0, r], where the constants (λi)
r
i=1 are the minimizers in the second step of

the while loop, and the vector v(z), z ∈ Ωn, is defined in (41). The particularity of our path
extraction method is that the direction field v is not evaluated on the curve γ, but at the nearby
points (xi)

r
i=0. The next proposition shows that these points remain at distance O(κ(M)3/n)

from the curve in dimension 2 (the exponent 3 seems to be either over-estimated or a rare
worst case scenario, in view of the experiments, see Figure 10), hence the accuracy of our path
extraction method should be no worse than an explicit Euler integration of the ODE (40), with
step κ(M)3/n. We only use the fact that the meshes T (z), z ∈ Ω, have diameter O(κ(M)), and
are built of triangles of area 1/2.

Proposition 3.2. Consider a piecewise linear path γ ∈ C0([0, r],Ω) extracted with the above
algorithm and parametrized as in (42), in dimension 2, after the Execution of the FM-LBR on
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Ωn for a Riemannian metric M. Then for all t ∈ [0, r], one has for some absolute constant C

‖γ(t)− xbtc‖ ≤ Cκ(M)3/n. (43)

Proof. We consider a fixed integer 0 ≤ i < r, and observe that for all t ∈ [i, i+ 1[ one has, since
γ is linear on this interval and γ(i) = xi + ui

‖γ(t)− xbtc‖ ≤ max{‖γ(i+ 1)− xi‖, ‖γ(i)− xi‖} ≤ max{‖ui+1‖+ ‖xi+1 − xi‖, ‖ui‖}.

By construction, there exists a non-zero vertex vj of the mesh T (xi), appearing in (41), such
that xi+1−xi = vj/n. Combining Propositions 1.6 and 1.9 we obtain that ‖vj‖ ≤ 2κ(M), hence
‖xi+1 − xi‖ ≤ 2κ(M)/n.

Our next objective is to bound ‖ui‖ uniformly. In order to avoid notational clutter, we
rescale the variables of interest by a factor n: we set u := nui, u

′ := nui+1, and v := nv(xi). By
construction (second step of the while loop in the path computation), we have for any λ ∈ IR+

and any 1 ≤ j ≤ k
‖u′‖ ≤ ‖u+ λv − vj‖, (44)

where the integer 1 ≤ k ≤ 2, and the vectors (vj)
k
j=1 are those appearing in the expression

(41) of v. If k = 1, then choosing λ = 1, j = 1, and observing that v = v1, we obtain
‖u′‖ ≤ ‖u+ 1× v − v1‖ = ‖ui‖.

We next assume that k = 2, and observe that v = α1v1 + α2v2 for some α1, α2 ∈ IR∗+ such
that α1 + α2 = 1, see (41). We consider an arbitrary but fixed µ ∈]1,∞[ (e.g. µ :=

√
2), and

define w1 := v1µ − v2/µ, w2 := v2µ − v1/µ. Note that ‖wj‖ ≤ (µ + µ−1) max{‖v1‖, ‖v2‖} ≤
C0κ(M) with C0 = 2(µ + µ−1). The matrix A of lines w1 and w2 satisfies |detA| = (µ2 −
µ−2)|det(v1, v2)| = µ2 − µ−2, since |det(v1, v2)| = 1, see Point (b) of Definition 1.1. On the
other hand ‖A‖ ≤

√
‖w1‖2 + ‖w2‖2 ≤

√
2C0κ(M), thus ‖A−1‖−1 = |detA|/‖A‖ ≥ C1/κ(M)

where C1 := (µ− µ−1)/(
√

2C0). Therefore there exists 1 ≤ j ≤ 2 and ε ∈ {−1, 1} such that

εuTwj
√

2 ≥
√

(uTwj)2 + (uTwj)2 = ‖Au‖ ≥ ‖A−1‖−1‖u‖ ≥ C1‖u‖/κ(M).

Assume, without loss of generality, that j = 1 and ε = 1 satisfy the above expression. Then
choosing λ = 1/(α1 + µ2α2) and j = 1 in (44) yields, with ν := α2λ

‖u′‖2 ≤ ‖u− νw1‖2 = ‖ui‖2 − 2νuTw1 + 4ν2‖w1‖2 ≤ ‖u‖2 − 2νC1‖u‖/κ(M) + ν2C2
0κ(M)2.

If ‖u‖ ≥ C2κ(M)3, where C2 := C2
0/(2C1), then the above inequality shows that ‖u′‖ ≤ ‖u‖,

since ν ≤ 1. If ‖u‖ is below this bound, then choosing λ = 0 in (44) yields ‖u′‖ ≤ ‖u‖+ ‖v1‖ ≤
C2κ(M)3 + 2κ(M). By an immediate induction argument we thus obtain ‖ui‖ ≤ (C2κ(M)3 +
2κ(M))/n, for all 0 ≤ i ≤ r, which concludes the proof.

The fourth test case is a generalization of the third one to three dimensions. It also involves
a spiraling curve Γ, surrounded by a thin tubular neighborhood where traveling tangentially
to Γ is 50 times cheaper than in orthogonal directions, or anywhere else in the domain, see
Remark 3.3 for details. CPU time was 105s for the FM-LBR, while the AGSI took 480s and
failed to recover the minimal path presented on Figure 12 (center) (a straight line joining the
two endpoints was obtained instead). We do not perform a detailed benchmark in this case,
which is similar in essence to the third one. Let us simply point out that FM-LBR addresses
here a large scale (more than 10 millions grid points), strongly anisotropic (κ(M) = 50) three
dimensional shortest path problem, with a good accuracy and within reasonable CPU time on
standard laptop computer.
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Figure 11: Visual comparison of the accuracy of three algorithms, at three resolutions, in the
2-d test case. Qualitatively, the approximate geodesic has the right behavior for a resolution as
low as 170× 170 with the FM-LBR, and 1000× 1000 with the AGSI. This is presumably never
the case for the FM-8, which is not consistent here.

Figure 12: Results of the FM-LBR in the fourth, 3-d, test case. Iso-surface {d(z) = 2} (left),
and shortest path joining the points (0, 0, 0) and (3, 0, 0) (center). Detail of the discrete points
(represented by small cubes), in the neighborhood of the curve Γ(t) = (cosω0t, sinω0t, t), for
which the Riemannian metric is not euclidean (right).
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Remark 3.3. Exact description of third and fourth test cases, given for reference.

• The third, 2d test case is posed on the domain Ω = [−1.1, 1.1]2, involves three parameters
ω0 = 6π, r0 = δ0 = 1/100 (the parameter δ0 was it seems slightly larger in the original
experiment [4]), and the curve Γ : [0, 1] → Ω defined by Γ(t) = t(cosω0t, sinω0t). For all
z ∈ Ω we have M(z) = Id, except if there exists 0 ≤ t ≤ 1 and 0 ≤ r ≤ r0 such that
z = Γ(t) + r(cosω0t, sinω0t). In that case M(z) has the eigenvalues δ2

0 and 1, the former
being associated to the eigenvector Γ′(t). Geodesic starting point: P = (1,−1).

• The fourth, 3d test case is posed on the domain Ω = [−1.1, 1.1]2 × [0, 3], discretized on
a 200 × 200 × 272 grid, involves the three parameters ω0 = (5/2)π, r0 = δ0 = 1/50, and
the curve defined by Γ(t) = (cosω0t, sinω0t, t). For all z ∈ Ω we have M(z) = Id, except
if there exists t, λ, µ ∈ IR such that z = Γ(t) + (λ cos(ω0t), λ sinω0t, µ) and λ2 + µ2 ≤
(r0/2)2. In that case M(z) has the eigenvalues δ2

0 and 1, the former being associated
to the eigenvector Γ′(t) and the latter to the orthogonal space. Geodesic starting point:
P = (0, 0, 3).

Conclusion

In this paper, we introduced a new discretization scheme for anisotropic eikonal equations: Fast
Marching using Lattice Basis Reduction (FM-LBR). It is a variant of the classical Fast Marching
algorithm, based on the algebraic concept of Lattice Basis Reduction, which strongpoints are
the following. (I, Convergence) This algorithm is consistent for the anisotropic eikonal equation
associated to any continuous Riemannian metric, of arbitrary anisotropy. (II, Complexity) It has
a numerical cost comparable to classical isotropic Fast Marching, independently of the problem
anisotropy. (III, Accuracy) The accuracy of the FM-LBR is competitive in general, and striking
in test cases, related to tubular segmentation in medical images, where the Riemannian metric
has a pronounced anisotropy close to and tangentially to a curve.

These strongpoints come at the price of the specialization of the FM-LBR: (i) the Riemannian
metric may not be replaced with a more general Finsler metric, (ii) the domain needs to be
discretized on a cartesian grid, and (iii) of dimension 2, 3, or in higher dimension the underlying
Riemannian metric needs to have a block diagonal structure. Hopefully these requirements are
met in many applications, and future work will be devoted to the application of the proposed
algorithm in the context of medical image processing.
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