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Homogeneous vacua of (generalized) new massive gravity

We obtain all homogeneous solutions of new massive gravity models on S 3 and AdS 3 by extending previously known results for the cosmological topologically massive theory of gravity in three dimensions. In all cases, apart from the maximally symmetric vacua, there are axially symmetric (i.e., bi-axially squashed) as well as totally anisotropic (i.e., tri-axially squashed) metrics of special algebraic type. Transitions among the vacua are modeled by instanton solutions of 3 + 1 Hořava-Lifshitz gravity with anisotropic scaling parameter z = 4.

Introduction

Over the years, there has been considerable interest in toy models of gravitational physics at the classical and quantum levels by focusing, in particular, to theories in 2 + 1 space-time dimensions (for a modern overview of the subject see, for instance, [START_REF] Carlip | Quantum Gravity in 2 + 1 Dimensions[END_REF], and references therein). Einstein gravity (with or without cosmological constant) has no propagating degrees of freedom in three dimensions, and, as such, it appears to be of limited interest at first sight. Nevertheless, it provides a soluble model that has been studied extensively as topological (Chern-Simons) field theory using a natural reformulation in terms of the spin connection, [START_REF] Achúcarro | A Chern-Simons action for three-dimensional anti-deSitter supergravity theories[END_REF][START_REF] Witten | 2 + 1)-dimensional gravity as an exactly soluble system[END_REF]. Several interesting questions have been addressed in this context, including the possible resolution of classical singularities and topology changing amplitudes in the quantum theory, [START_REF] Witten | Topology changing amplitudes in (2 + 1)-dimensional gravity[END_REF]. Localized matter sources were also included and found to affect the geometry globally rather than locally, thus leading to conical singularities in space-time, [START_REF] Deser | Three-dimensional Einstein gravity: dynamics of flat space[END_REF]. Furthermore, the presence of a cosmological constant allowed the construction of AdS 3 black-hole solutions, [START_REF] Banados | The black hole in three-dimensional space-time[END_REF], and also led to important developments in connection with two-dimensional conformal symmetries, [START_REF] Brown | Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity[END_REF], as predecessor of AdS/CFT correspondence. The interest in the subject was revived recently, while searching for conformal field theories dual to pure three-dimensional gravity with negative cosmological constant, [START_REF] Witten | Three-dimensional gravity reconsidered[END_REF].

Massive generalizations of three-dimensional gravity provide an interesting twist as they allow propagating degrees of freedom in space-time. Topologically massive gravity is the prime example obtained by adding a gravitational Chern-Simons term to the usual Einstein-Hilbert action in the spirit of topologically massive gauge theories, [START_REF] Deser | Three-Dimensional Massive Gauge Theories[END_REF][START_REF] Deser | Topologically massive gauge theories[END_REF]. The model was extended by the addition of a cosmological constant term to cosmological topologically massive gravity and it was further generalized to three-dimensional supergravity, [START_REF] Deser | Cosmological Topological Supergravity[END_REF]. The gravitational Chern-Simons term is odd under parity and as a result the theory exhibits a single massive propagating degree of freedom of a given helicity, whereas the other helicity mode remains massless. Topologically massive gravity appears to be a renormalizable quantum field, [START_REF] Deser | Is topologically massive gravity remormalizable?[END_REF] (but see also [START_REF] Oda | Renormalizability of topologically massive gravity[END_REF] for a more recent discussion), which makes it a valuable model. Various solutions have been obtained and studied over the years (see, for instance, [START_REF] Chow | Classification of solutions in topologically massive gravity[END_REF], and references therein) including AdS 3 black-holes. The cosmological variant of the theory was also investigated in detail at the chiral point, [START_REF] Li | Chiral gravity in three dimensions[END_REF], and in the context of AdS/CFT correspondence, [START_REF] Skenderis | Topologically massive gravity and the AdS/CFT correspondence[END_REF], leading to surprisingly rich mathematical structures that are still under investigation and revived interest in the model.

Another massive generalization of three-dimensional gravity was proposed recently by adding a specific quadratic curvature term to the Einstein-Hilbert action, [START_REF] Bergshoeff | Massive Gravity in Three Dimensions[END_REF][START_REF] Bergshoeff | More on Massive 3D Gravity[END_REF]. This term (to be discussed later in detail) was designed to yield upon linearization the Pauli-Fierz action for a massive propagating graviton, and the resulting theory became known as new massive gravity. This model also appears to be a unitary renormalizable quantum field theory in three dimensions, [START_REF] Nakasone | On Unitarity of Massive Gravity in Three Dimensions[END_REF][START_REF] Oda | Renormalizability of Massive Gravity in Three Dimensions[END_REF], but unlike topologically massive gravity, the new theory preserves parity, and, as a result, the gravitons acquire the same mass for both helicity states. Models of this type with quadratic curvature terms are known to be renormalizable in four space-time dimensions, [START_REF] Stelle | Renormalization of higher derivative quantum gravity[END_REF], which, in turn, imply power counting super-renormalizability of the corresponding three-dimensional theory. Adding a cosmological constant term yields the cosmological new massive gravity. Further generalization is provided by combining the effect of the gravitational Chern-Simons and the quadratic curvature terms to the Einstein-Hilbert action (with or without cosmological constant), thus leading to the so called generalized massive gravity model that encompasses all previously known theories of three-dimensional gravity in a unified framework. The resulting theory exhibits by construction propagating degrees of freedom, but with different masses for the two helicity states of the graviton, which reduce consistently to the graviton modes of the topologically massive and the new massive theories of gravity in different corners of the space of coupling constants, [START_REF] Bergshoeff | Massive Gravity in Three Dimensions[END_REF][START_REF] Bergshoeff | More on Massive 3D Gravity[END_REF]. Generalization to three-dimensional supergravity was subsequently considered, [START_REF] Andringa | Massive 3D Supergravity[END_REF], and the chiral point of generalized massive gravity in AdS 3 was investigated, [START_REF] Liu | On the generalized massive gravity in AdS 3[END_REF]. Also, various solutions of new massive gravity, including AdS 3 black-holes, have already been constructed in the literature, [START_REF] Clement | Black holes with a null Killing vector in three-dimensional massive gravity[END_REF][START_REF] Oliva | Three-dimensional black holes, gravitational solitons, kinks and wormholes for BHT masive gravity[END_REF], and some aspects of the AdS/CFT correspondence turned out to be on par with the holographic studies of topologically massive gravity, [START_REF] Grumiller | AdS 3 /LCFT 2 : Correlators in new massive gravity[END_REF].

The subject of three-dimensional massive gravity provides an active area of research where new developments or applications are mostly welcome. The landscape of vacua is quite rich and it has not been explored in all generality. Various special classes of solutions already exist in the literature -we do not intend to list them all -and some general methods have been proposed for their explicit construction, [START_REF] Gurses | Killing Vector Fields in Three Dimensions: A Method to Solve Massive Gravity Field Equations[END_REF]. Certainly, solutions of new massive gravity, and its generalizations, are less studied compared to topologically massive gravity, as they involve certain fourth-order equations in three-dimensional geometry. Most notably, what is still lacking is the construction of homogeneous solutions which generalize the maximally symmetric vacuum to anisotropic model geometries. The main purpose of the present work is to investigate the class of such locally homogeneous vacua of generalized massive gravity (with or without cosmological constant) by focusing, in particular, to Bianchi IX metrics on S 3 when the theory is defined in the Euclidean regime. In this case, we will be able to solve the field equations in all generality and obtain configurations with different degree of anisotropy. As will be seen later, these solutions reduce to the homogeneous solutions of topologically massive gravity in the appropriate corner of the space of coupling constants, which have been known for a long time, [START_REF] Vuorio | Topologically massive planar universe[END_REF][START_REF] Nutku | Homogeneous, anisotropic three manifolds of topologically massive gravity[END_REF][START_REF] Ortiz | Homogeneous solutions to topologically massive gravity[END_REF] (but see also [START_REF] Chow | Classification of solutions in topologically massive gravity[END_REF]). Likewise, by analytic continuation, we will obtain all homogeneous metrics on AdS 3 in the Lorentzian version of the theory.

The interest in the solutions of three-dimensional massive gravity also stems from the fact that they provide static solutions of 3 + 1 Hořava-Lifshitz gravity. Recall that the non-relativistic theory of gravity proposed recently by Hořava, [START_REF] Hořava | Quantum gravity at a Lifshitz point[END_REF], involves the Euclidean action of three-dimensional gravity as superpotential functional (assuming detailed balance). Using the generalized three-dimensional massive gravity model, one obtains a super-renormalizable version of Hořava-Lifshitz gravity in 3 + 1 spacetime dimensions with anisotropic scaling z = 4 (see also [START_REF] Cai | On the z = 4 Hořava-Lifshitz gravity[END_REF]), whereas restriction to topologically massive gravity yields a non-relativistic theory with anisotropic scaling parameter z = 3. Following [START_REF] Bakas | Geometric flows in Hořava-Lifshitz gravity[END_REF], it is possible to consider gravitational instantons of Hořava-Lifshitz theory, which are defined as eternal solutions of the gradient flow equations following from the action of three-dimensional massive gravity. Then, instantons with SU(2) isometry, which are the simplest to consider, are determined by first reducing the flow equations to three-dimensional geometries of Bianchi type IX and then classifying all eternal solutions that interpolate between the fixed points. The homogeneous vacua of generalized three-dimensional massive gravity are not only solutions of Hořava-Lifshitz gravity, but they also offer the end points (as fixed points of the flow lines) to support such instanton solutions. Therefore, the results we report here can also be used as starting point to extend the methods of our previous work [START_REF] Bakas | Geometric flows in Hořava-Lifshitz gravity[END_REF] to the construction of gravitational instantons in non-relativistic theories with higher anisotropic scaling parameter.

The material of this paper is organized as follows: In section 2, we briefly review the theories of three-dimensional massive gravity, with increasing degree of complexity, and their field equations, setting up the notation and the framework of our study. In section 3, we introduce the Bianchi IX ansatz by considering metrics on S 3 with SU(2) isometry group and solve the field equations of Euclidean generalized massive gravity. The solutions are classified and tabulated according to the geometric characteristics of the metrics and the limiting cases of new massive gravity and topologically massive gravity are discussed separately. These results constitute the main body of our work. In section 4, the solutions are extended to the Lorentzian regime by analytic continuation of the metrics and obtain all homogeneous solutions of generalized massive gravity on AdS 3 . The resulting configurations are also characterized algebraically using the general classification schemes of Petrov and Serge. In section 5, the results are taken in the context of Hořava-Lifshitz gravity and we outline the construction and classification of the corresponding SU(2) gravitational instantons when the anisotropic scaling parameter of the theory is z = 4. Finally, in section 6, we present the conclusions and some directions for future work.

Massive gravity in three dimensions

The models of three-dimensional massive gravity are based on certain higher-order extensions of pure Einstein gravity. We first consider the Einstein-Hilbert action,

S EH = 1 κ 2 w d 3 x |g| (R -2Λ) , ( 2 . 1 ) 
including also the effect of a cosmological constant Λ, which can assume any value. The three-dimensional gravitational coupling κ w will be normalized to 1 for conve-nience, but it can be easily reinstated by rescaling the other couplings. We have three massive theories of gravity that are presented in increasing order of complexity.

Topologically massive gravity: It is defined by adding the gravitational Chern-Simons term to the Einstein-Hilbert action, following [START_REF] Deser | Three-Dimensional Massive Gauge Theories[END_REF][START_REF] Deser | Topologically massive gauge theories[END_REF],

S TMG = S EH + 1 ω S CS , ( 2 . 2 ) 
where

S CS = 1 2 d 3 x |g| ε λµν Γ ρ λσ ∂ µ Γ σ ρν + 2 3 Γ σ µτ Γ τ νρ (2.3)
is written in terms of the usual Levi-Civita connection of the space-time metric g.

Here, ε µνρ is the fully anti-symmetric symbol in three dimensions with ε 123 = 1.

Clearly, the Chern-Simons term flips sign under orientation reversing transformations and the theory is not invariant under parity.

The classical equations of motion are obtained by varying the action with respect to the metric and they read as

R µν - 1 2 Rg µν + Λg µν + 1 ω C µν = 0 , (2.4) 
where C µν is the Cotton tensor of the metric g, which is defined as follows

C µν = ε µ ρσ |g| ∇ ρ (R νσ - 1 4 Rg νσ ) (2.5)
and it is a traceless and covariantly conserved symmetric tensor. Taking the trace of equation (2.4) yields R = 6Λ for the classical solutions, whereas the remaining equations of motion can be cast in the form

R µν - 1 3 Rg µν + 1 ω C µν = 0 ( 2 . 6 )
that is most appropriate for the algebraic (Petrov-Segre) characterization of the corresponding solutions, as will be seen later.

Clearly, the maximally symmetric Einstein metrics which are conformally flat are common solutions of topologically massive gravity with ordinary Einstein theory.

New massive gravity: It is defined by adding a very special quadratic curvature term to the Einstein-Hilbert action, following [START_REF] Bergshoeff | Massive Gravity in Three Dimensions[END_REF][START_REF] Bergshoeff | More on Massive 3D Gravity[END_REF],

S NMG = S EH - 1 m 2 S BHT , ( 2 . 7 ) 
where the new term (assuming signature -+ + in the Lorentzian version of the theory rather than + -used in the original works)

S BHT = d 3 x |g| R κλ R κλ - 3 8 R 2 (2.8)
is denoted by the initials of its inventors. Unlike topologically massive gravity, this theory preserves parity.

The corresponding classical equations of motion are certain fourth-order equations of the form R µν -

1 2 Rg µν + Λg µν - 1 2m 2 K µν = 0 , (2.9) 
where K µν is the symmetric and covariantly conserved tensor

K µν = 2∇ 2 R µν - 1 2 ∇ µ ∇ ν R + 9 2 RR µν -8R µ κ R νκ -g µν 1 2 ∇ 2 R -3R κλ R κλ + 13 8 R 2 .
(2.10) The special feature is that its trace coincides with the Lagrangian density of S BHT ,

K ≡ g µν K µν = R κλ R κλ - 3 8 R 2 , ( 2 . 1 1 )
which singles out the special value q = -3/8 among the more general combination of quadratic curvature terms R κλ R κλ + qR 2 in the action.

As before, taking the trace of equation (2.9) yields K + m 2 (R -6Λ) = 0 for the classical solutions, whereas the remaining equations of motion can be written as a sum of two traceless tensors, namely,

R µν - 1 3 Rg µν - 1 2m 2 (K µν - 1 3 Kg µν ) = 0 , (2.12)
which is also a useful form for the algebraic classification of the corresponding metrics.

Generalized massive gravity:

It is obtained by combining the Einstein-Hilbert action with both higher order terms in the form

S GMG = S EH + 1 ω S CS - 1 m 2 S BHT , ( 2 . 1 3 )
thus, providing the most general massive theory of gravity up to four derivative terms 1 . Clearly, it is not invariant under parity, in general, and reduces to all simpler massive gravity models in the appropriate corners of the space of coupling constants.

In this general case, the classical equations of motion take the following form

R µν - 1 2 Rg µν + Λg µν - 1 2m 2 K µν + 1 ω C µν = 0 ( 2 . 1 4 )
and include a mixture of second, third and fourth order derivative terms, making them more intricate to study. The trace of equation (2.14) yields K + m 2 (R -6Λ) = 0, which is the same condition as for new massive gravity, whereas the remaining components can be organized as the sum of three traceless tensors,

R µν - 1 3 Rg µν - 1 2m 2 (K µν - 1 3 Kg µν ) + 1 ω C µν = 0 . (2.15)
We conclude the general presentation of these models by considering three special limiting cases that may arise in the space of coupling constants. Pure second order Einstein gravity arises in the limit κ w → 0 with Einstein metrics as vacua. Pure third order Cotton theory is conformal gravity that arises in the limit ω → 0 and has conformally flat metrics as vacua; it admits an alternative Chern-Simons gauge field interpretation based on the conformal group in three dimensions, [START_REF] Horne | Conformal gravity in three dimensions as a gauge theory[END_REF]. Finally, a special fourth order theory arises in the limit m → 0, which has already been studied in the literature as ghost-free model of gravitation, [START_REF] Deser | Ghost-free, finite, fourth order D = 3 (alas) gravity[END_REF]. As will be seen later, these three special limiting cases admit some very simple homogeneous solutions that form the base for other vacua. For more general values of the couplings, the vacua arise by balancing three competing terms of different order and their form can be rather complex.

Homogeneous solutions on S 3

In this section we construct and classify all locally homogeneous solutions of the Euclidean generalized massive gravity on S 3 . The homogeneous vacua of new massive gravity, as well as topologically massive gravity (which are already known in the literature) will follow from the general expressions as limiting cases.

Bianchi IX model geometries

First, we present some background material for homogeneous geometries with isometry group SU(2) based on Bianchi classification (see, for instance, [START_REF] Stephani | Exact Solutions of Einstein's Field Equations[END_REF]). We will also compute the components of the curvature tensors R ij , C ij and K ij for this class of models. Such geometries provide consistent reduction of the field equations to an algebraic system of equations of three variables that turns out to be exactly soluble.

The line element of locally homogeneous geometries on S 3 takes the following form

ds 2 = γ 1 σ 2 1 + γ 2 σ 2 2 + γ 3 σ 2 3 , ( 3 . 1 ) 
using the left-invariant Maurer-Cartan one-forms of SU(2), σ i , which satisfy the rela-

tions dσ i + 1 2 ε i jk σ j ∧ σ k = 0 . (3.2)
More explicitly, in terms of Euler angles ranging as 0 ≤ ϑ ≤ π, 0 ≤ ϕ ≤ 2π and 0 ≤ ψ ≤ 4π, we have the realization

σ 1 = sin ϑ sin ψ dϕ + cos ψ dϑ σ 2 = sin ϑ cos ψ dϕ -sin ψ dϑ (3.3) σ 3 = cos ϑ dϕ + dψ .
These metrics are not isotropic in general. The isometry group is enhanced to SU(2) × U(1) when any two γ i 's coincide, forming axisymmetric configurations, and it extends to SU(2) × SU [START_REF] Achúcarro | A Chern-Simons action for three-dimensional anti-deSitter supergravity theories[END_REF] in the fully isotropic case when all γ i 's are equal.

The Ricci tensor R ij , the Cotton tensor C ij and the fourth order tensor K ij given by equation (2.10) are all diagonal in this base. Their non-vanishing components take the form,

R 11 = 1 2γ 2 γ 3 γ 2 1 -(γ 2 -γ 3 ) 2 , ( 3 . 4 
)

C 11 = - γ 1 2(γ 1 γ 2 γ 3 ) 3 /2 γ 2 1 (2γ 1 -γ 2 -γ 3 ) -(γ 2 + γ 3 ) (γ 2 -γ 3 ) 2 , ( 3 . 5 
)

K 11 = - γ 1 32(γ 1 γ 2 γ 3 ) 2 21(5γ 4 1 -3γ 4 2 -3γ 4 3 ) -2(γ 2 1 γ 2 2 + γ 2 1 γ 2 3 -3γ 2 2 γ 2 3 )- (3.6) 20 3γ 3 1 (γ 2 + γ 3 ) -γ 3 2 (γ 1 + 3γ 3 ) -γ 3 3 (γ 1 + 3γ 2 ) -γ 1 γ 2 γ 3 (γ 1 -γ 2 -γ 3 )
and there are similar expressions for the other components that follow by cyclic permutation of the indices in all three tensors. Also, the Ricci scalar curvature is given by

R = 1 2γ 1 γ 2 γ 3 2γ 1 γ 2 + 2γ 2 γ 3 + 2γ 3 γ 1 -γ 2 1 -γ 2 2 -γ 2 3 , ( 3 . 7 ) 
whereas the trace of

K ij is K = 1 32(γ 1 γ 2 γ 3 ) 2 21(γ 4 1 + γ 4 2 + γ 4 3 ) -2(γ 2 1 γ 2 2 + γ 2 1 γ 2 3 + γ 2 2 γ 2 3 )+ (3.8) 20 γ 1 γ 2 γ 3 (γ 1 + γ 2 + γ 3 ) -γ 3 1 (γ 2 + γ 3 ) -γ 3 2 (γ 1 + γ 3 ) -γ 3 3 (γ 1 + γ 2 ) .
The expressions for the components of the Cotton tensor are obtained choosing a particular orientation on S 3 . For the opposite orientation these expressions flip sign as they are odd under parity.

Vacua of generalized massive gravity

We are now in position to examine the reduced field equations and provide the general solution of the resulting algebraic equations for generalized massive gravity on S 3 . The free parameters Λ, ω and m 2 are taken to assume any real value at first. We will find three different classes of metrics, in general: maximally isotropic with SU(2) × SU(2) isometry, axially symmetric with SU(2) × U(1) isometry and totally anisotropic metrics with SU(2) isometry. Restrictions on the range of free parameters will be placed in each case separately so that the corresponding metrics have physical (Euclidean) signature.

Isotropic solutions:

Setting γ 1 = γ 2 = γ 3 = γ, the field equations reduce to a single algebraic equation which has at most two physically acceptable solutions

γ ± = 1 8Λ 1 ± 1 - Λ m 2 . ( 3 . 9 )
Note that these maximally symmetric solutions are conformally flat and they are independent of ω, since the Cotton tensor vanishes. For m 2 = Λ there is a single solution with γ = 1/8Λ, which only makes sense for Λ > 0 (and hence m 2 > 0). For Λ = 0 the only physically acceptable solution is γ -= 1/16m 2 when m 2 > 0. On the other hand, for m 2 > Λ > 0, both solutions (3.9) are real and positive, thus leading to isotropic metrics with two different radii. Finally, for Λ > 0 > m 2 or m 2 > 0 > Λ only γ + and γ -, respectively, are physical solutions. In all other cases there are no isotropic vacua in the theory. All these solutions are clearly isotropic solutions of new massive gravity as well, since they are inert to the Chern-Simons coupling ω by their symmetry.

Axially symmetric solutions: Imposing axial symmetry sets two coefficients of the metric equal, say γ 1 = γ 2 = γ 3 , resulting to partially anisotropic metrics on S 3 also known as Berger spheres or bi-axially squashed spheres. By permuting the coefficients γ i one can choose the axis of symmetry along any principal direction of space, which can rotate into each other by Z 3 symmetry. The corresponding metric takes the following form in terms of Euler angles,

ds 2 = γ 1 (dϑ 2 + sin 2 ϑdϕ 2 ) + γ 3 (dψ + cos ϑdϕ) 2 (3.10)
and can be viewed as S 1 fibration over the base space S 2 with squashing parameter

γ 3 /γ 1 .
The most efficient way to construct such solutions is by expressing the free parameters ω and Λ in terms of the metric coefficients and m 2 ; of course, for any given solution, the parameters Λ and m 2 are related by the trace part of the field equations, m 2 (R -6Λ) + K = 0. Then, for axially symmetric metrics, one finds that the most general solution is determined by the special equations

ω = 12m 2 γ 1 √ γ 3 4γ 1 (1 -2m 2 γ 1 ) -21γ 3 , ( 3 . 1 1 ) Λ = 64m 2 γ 3 1 -40γ 1 γ 3 + 21γ 2 3 + 16γ 2 1 (1 -m 2 γ 3 ) 192m 2 γ 4 1 , ( 3 . 1 2 )
which are valid for any non-zero value of m 2 . It is possible to invert these relations to express γ i = γ i (m 2 , ω, Λ), but the resulting expressions are quite lengthy and not very illuminating in general. For the special cases of new massive gravity and topologically massive gravity these expressions are much simpler and will be presented later.

There are at most three axially symmetric solutions of the generalized massive gravity, depending on the range of parameters, and, in particular, on the sign of ω that flips under parity. Thus, for m 2 > Λ ≥ 0, there exist no axially symmetric solutions with ω > 0 and there are up to three distinct solutions with ω < 0, which, however, depend on the particular value of ω. Also, for 0 < m 2 < Λ, the field equations admit one or two axially symmetric solutions for positive or negative values of ω, respectively.

Totally anisotropic solutions: Configurations of this type are often called tri-axially squashed spheres, and, as it turns out, they only exist for couplings satisfying some very special relations. The first one is most conveniently described as

ω m 2 = 2(γ 1 γ 2 + γ 1 γ 3 + γ 2 γ 3 ) -γ 2 1 -γ 2 2 -γ 2 3 2 γ 3 1 + γ 3 2 + γ 3 3 -(γ 1 + γ 2 )(γ 1 + γ 3 )(γ 2 + γ 3 ) √ γ 1 γ 2 γ 3 (3.13)
with γ 1 = γ 2 = γ 3 ; the cosmological constant Λ is not arbitrary but it can be determined via the trace part of the field equations m 2 (R -6Λ) + K = 0 in terms of the corresponding γ i . Alternatively, using the expression of the Ricci scalar curvature (3.7) and introducing the following cubic combination of the metric coefficients,

Y = γ 3 1 + γ 3 2 + γ 3 3 -(γ 1 + γ 2 )(γ 1 + γ 3 )(γ 2 + γ 3 ) , ( 3 . 1 4 )
we find that the totally anisotropic metrics satisfy the relation

ω m 2 = (γ 1 γ 2 γ 3 ) 3/2 R Y . ( 3 . 1 5 )
This form is particularly useful for discussing the anisotropic solutions of new massive gravity and topologically massive gravity as special cases.

It also turns out that such vacua satisfy the special curvature condition, following from the equations,

5R 2 = 16m 2 Λ (3.16)
assuming non-vanishing (but finite) values of Λ and m 2 . This relation may be valid for some axially symmetric solutions as well, but not in general. It implies, in particular, that m 2 Λ > 0 is a necessary condition for the existence of totally anisotropic solutions; as for the parameter ω, it can acquire positive or negative values without spoiling the Euclidean signature of space. Using the trace part of the field equations, we may eliminate Λ and arrive at the equivalent special relation 15R 2 -8m 2 R -8K = 0. Solving for m 2 , we obtain

m 2 = 8(γ 1 + γ 2 + γ 3 ) γ 2 1 + γ 2 2 + γ 2 3 -2(γ 1 γ 2 + γ 1 γ 3 + γ 2 γ 3 ) + 3(γ 2 1 + γ 2 2 + γ 2 3 ) + 26(γ 1 γ 2 + γ 1 γ 3 + γ 2 γ 3 ) 8γ 1 γ 2 γ 3 , ( 3 . 1 7 ) 
which together with condition (3.13) (or (3.15)) provide the most efficient way for the general description of such metrics. The common points of these algebraic relations subsequently determine γ i in terms of the free parameters of the theory, but the resulting expressions are incredibly long and they are omitted from the presentation.

The general characteristics of all homogeneous solutions of generalized massive gravity are summarized in the table below. All other cases do not materialize.

Ricci

Chern-Simons BHT mass totally axially isotropic curvature parameter parameter anisotropic symmetric

R > 0 ω > 0 m 2 > 0 no γ 1 > γ 3 yes R > 0 ω > 0 m 2 < 0 yes yes yes R > 0 ω < 0 m 2 > 0 yes yes yes R > 0 ω < 0 m 2 < 0 yes yes yes R < 0 ω > 0 m 2 < 0 no γ 1 < γ 3 no R < 0 ω < 0 m 2 > 0 yes γ 1 < γ 3 no R < 0 ω < 0 m 2 < 0 no γ 1 < γ 3 no
Table 1: Geometric characteristics of vacua of generalized massive gravity.

Vacua of new massive gravity

We now turn our attention to the corresponding solutions of new massive gravity, which are obtained by taking the limit |ω| → ∞. There are homogeneous solutions with all possible degrees of anisotropy, as in the general case.

Isotropic solutions:

The isotropic solutions are independent of ω. As such, they are identical to those of generalized massive gravity with the same range of the parameters m 2 and Λ.

Axially symmetric solutions: In this case, the equations (3.11) and (3.12) simplify and yield at most two distinct axially symmetric metrics with coefficients given explicitly by

γ 1 = γ 2 = 4m 2 ± 3m 2 (5m 2 + 7Λ) m 2 (21Λ -m 2 ) , ( 3 . 1 8 
)

γ 3 = 24m 2 (7Λ -11m 2 ) ± 4(21Λ -17m 2 ) 3m 2 (5m 2 + 7Λ) 21m 2 (21Λ -m 2 ) 2 . ( 3.19) 
For positive cosmological constant only the solution with the plus sign is physically acceptable provided that Λ > m 2 > 0, whereas for m 2 < -7Λ/5 there are two axially symmetric solutions. Otherwise, there are no axially symmetric vacua with Λ > 0.

For negative cosmological constant only the solution with the plus sign is physically acceptable provided that 21Λ < m 2 < 0, whereas for all other values m 2 < 0 there are two axially symmetric solutions. Furthermore, there are no axially symmetric vacua when m 2 > 0 and Λ < 0.

Totally anisotropic solutions:

The theory admits totally anisotropic solutions provided that both m 2 and Λ are negative. Such solutions are required to satisfy the special condition Y = 0,

γ 3 1 + γ 3 2 + γ 3 3 -(γ 1 + γ 2 )(γ 1 + γ 3 )(γ 2 + γ 3 ) = 0 ( 3 . 2 0 )
that results from equation (3.15) as |ω| → ∞. The totally anisotropic solutions have positive Ricci scalar curvature that is related to the parameters Λ and m 2 by equation (3.16), which is left intact by the limiting procedure. Alternatively, solving for m 2 , as in generalized massive gravity, the totally anisotropic vacua are determined by the common points of (3.20) and (3.17) with unequal coefficients γ i .

Thus, fixing m 2 < 0, we can describe all totally anisotropic vacua of new massive gravity in parametric form. Solving for γ i (m 2 , Λ) results into some very complicated and lengthy expressions that are also omitted from the presentation.

The general characteristics of all homogeneous solutions of new massive gravity are summarized in the next table:

Ricci

BHT mass totally axially isotropic curvature parameter anisotropic symmetric

R > 0 m 2 < 0 yes yes yes R > 0 m 2 > 0 no γ 1 > γ 3 yes R < 0 m 2 < 0 no γ 1 < γ 3 no
Table 2: Geometric characteristics of vacua of new massive gravity.

Vacua of topologically massive gravity

The homogeneous vacua of topologically massive gravity follow from the general discussion by specializing the results to the limiting case |m 2 | → ∞. As before, we have solutions with all possible degrees of anisotropy that are listed below.

Isotropic solutions:

The isotropic metrics are conformally flat, since their Cotton tensor vanishes, and, therefore the only solution is

γ = 1 4Λ , ( 3 . 2 1 )
provided that Λ > 0, as in pure Einstein gravity. The positive cosmological constant sets the scale for having a constant curvature (round) metric on S 3 with radius ∼ 1/ √ Λ.

Axially symmetric solutions: In this case, the system of equations (3.11) and (3.12) simplify to

ω = - 3 √ γ 3 2γ 1 , Λ = 4γ 1 -γ 3 12γ 2 1 , ( 3 . 2 2 )
which, in turn, can be easily solved to yield the metric coefficients of the axially symmetric metrics as

γ 1 = γ 2 = 9 ω 2 + 27Λ , γ 3 = 36ω 2 (ω 2 + 27Λ) 2 . ( 3 . 2 3 ) 
Note that these solutions always exist provided that ω assumes negative values (with the given choice of orientation made in section 3.1) without other restriction. It can be readily seen from the expression for Λ given above that axially symmetric metrics with 4γ 1 > γ 3 correspond to positive Λ and, hence, to positive Ricci scalar curvature R, whereas for 4γ 1 < γ 3 the cosmological constant and the scalar Ricci curvature are both negative. This is a well known property of the Berger spheres, as one can flip the sign of R by elongating the sphere beyond a critical value. At the critical point 4γ 1 = γ 3 the curvature vanishes and so does Λ in the theory.

Totally anisotropic solutions: By the same token, the totally anisotropic solutions of topologically massive gravity can be easily obtained. Taking |m 2 | → ∞, we find that these configurations have vanishing Ricci scalar curvature, following from equation (3.15), in which case Λ = 0 and the special condition (3.16) is still satisfied in a limiting sense, as R = 0. In this limit, it can also be seen that Y = 4γ 1 γ 2 γ 3 , following from equation (3.14) by taking into account the vanishing of the Ricci scalar curvature of such metrics. In addition, equation (3.13) yields the following expression for the Chern-Simons coupling

ω = - γ 1 + γ 2 + γ 3 √ γ 1 γ 2 γ 3 , ( 3 . 2 4 )
which is in fact required to be negative (with the given choice of orientation) without further restriction. Thus, the totally anisotropic vacua are described as common solutions of R = 0 and the condition (3.24) demanding that γ 1 = γ 2 = γ 3 . We note that even in this limiting case it is not easy to express the metric coefficients γ i in terms of ω in closed form. Note, however, that this class of metrics has common element with the class of axially symmetric solutions the Berger sphere with coefficients

γ 1 = γ 2 = γ 3 /4.
The general characteristics of all homogeneous solutions of topologically massive gravity are summarized in the table below:

Ricci

Chern-Simons totally axially isotropic curvature parameter anisotropic symmetric

R > 0 ω > 0 no no yes R > 0 ω < 0 no yes yes R = 0 ω < 0 yes γ 1 < γ 3 no R < 0 ω < 0 no γ 1 < γ 3 no
Table 3: Geometric characteristics of vacua of topologically massive gravity.

The classification of all homogeneous vacua of topologically massive gravity was carried out in the literature long time ago, including the totally anisotropic solutions, [START_REF] Vuorio | Topologically massive planar universe[END_REF][START_REF] Nutku | Homogeneous, anisotropic three manifolds of topologically massive gravity[END_REF][START_REF] Ortiz | Homogeneous solutions to topologically massive gravity[END_REF] (but see also [START_REF] Chow | Classification of solutions in topologically massive gravity[END_REF] for an overview, as well as the more recent work [START_REF] Bakas | Geometric flows in Hořava-Lifshitz gravity[END_REF]). This justifies the parametrization used earlier for the presentation of the classification scheme of all homogeneous solutions of generalized massive gravity (see, in particular, equation (3.13)) and it is gratifying to see how these special results are reproduced from our general construction.

Other special limiting cases

Concluding this section, we discuss three special limiting cases that arise in the space of couplings. The homogeneous solutions we obtain in these cases are rather simple and they form the basis for the more general vacua that arise by competition of the individual terms in the general theory. First, by taking the limit κ w → 0, we obtain pure Einstein gravity that exhibits a fully isotropic solution for Λ > 0, so that R = 6Λ, and there are no other homogeneous vacua. Next, by taking the limit ω → 0, we obtain the pure Cotton theory of conformal gravity, [START_REF] Horne | Conformal gravity in three dimensions as a gauge theory[END_REF], which exhibits a fully isotropic solution and a degenerate axially symmetric vacuum with γ 1 = γ 2 = ∞ and γ 3 = 0, which is nevertheless regular provided that the volume of space (∼ √ γ 1 γ 2 γ 3 ) is held finite. The latter metric corresponds to a fully squashed configuration along one of the principal directions of S 3 and it is unique up to permutations of the axes. Finally, pure fourth order gravity follows from the general theory in the limit m → 0, [START_REF] Deser | Ghost-free, finite, fourth order D = 3 (alas) gravity[END_REF]. In this case, by first considering the traceless part of the equations of motion, we find that there is a fully isotropic solution as well as two different axially symmetric solutions, which are unique up to permutations of the axes. One of them is the degenerate (but regular) metric on the fully squashed S 3 , as in the pure Cotton theory, and the other is a non-degenerate Berger sphere with γ 1 = γ 2 and γ 3 = 4γ 1 /21. However, non of these metrics satisfies the trace part of the classical equations of motion, K = 0, and, therefore, pure fourth order gravity has no regular homogeneous vacua; this is also consistent with the absence of a length scale in the model that can stabilize the vacua, if any.

Turning on all parameters in generalized massive gravity allows for more complex situations that can balance the effect of different terms and produce the web of the homogeneous vacua we have described above. In all cases, it is convenient to first solve the traceless part of the classical equations of motion and then examine the constraints imposed on the vacua from the trace of the equations to obtain physically acceptable solutions with different characteristics. The traceless part of the equations of motion will also be used in the next section to provide an algebraic classification of the homogeneous metrics on AdS 3 following by analytic continuation.

Homogeneous solutions on AdS 3

Analytic continuation of the squashed spheres yields homogeneous solutions of massive gravity on AdS 3 with Lorentzian signature. S 3 is an S 1 fibration over S 2 and, therefore, there are two inequivalent ways to obtain squashed metrics on AdS 3 depending on the choice of time-like direction, τ. One is associated to time-like squashed metrics by viewing AdS 3 as time-like fibration over the hyperbolic plane H 2 and the other to space-like squashed metrics by viewing AdS 3 as space-like fibration over AdS 2 space. We will consider both possibilities below and indicate how the classification of homogeneous vacua on S 3 carry to homogeneous metrics on AdS 3 with the appropriate choice of coupling constants in the theory.

First, we consider the following analytic continuation and define coordinates τ, ρ and z as

ψ = τ , ϑ = π 2 -iρ , ϕ = -iz . ( 4 . 1 )
Then, the metric on AdS 3 with positive definite coefficients γ 1 , γ 2 , γ 3 takes the general form

ds 2 = γ 1 (cosτ dρ + sinτ coshρ dz) 2 + γ 2 (sinτ dρ -cosτ coshρ dz) 2 - γ 3 (dτ + sinhρ dz) 2 (4.2)
after flipping the overall sign of the metric to have signature -+ +. For axially sym-metric configurations with γ 1 = γ 2 it specializes to

ds 2 = γ 1 dρ 2 + cosh 2 ρ dz 2 -γ 3 (dτ + sinhρ dz) 2 . ( 4 . 3 )
This corresponds to the case of time-like squashing, where the base space is H 2 with metric dρ 2 + cosh 2 ρ dz 2 . If we had considered, instead, the analytic continuation ϑ = iρ, ψ = τ and ϕ = z, the hyperbolic trigonometric functions sinhρ and coshρ would have been exchanged, resulting to time-like squashing of AdS 3 over the base space H 2 with metric dρ 2 + sinh 2 ρ dz 2 . The two choices are clearly related to each other as they correspond to different coordinate patches on H 2 (often called hyperbolic and elliptic solutions, respectively). Here, we choose to work with the first one as it provides global coordinates in space.

Next, we consider another analytic continuation by defining coordinates τ, ρ and z as follows,

ϕ = τ , ϑ = π 2 -iρ , ψ = iz , ( 4 . 4 )
which provide a different choice of time-like direction as the role of τ and z coordinates is exchanged. Then, the general homogeneous metric on AdS 3 takes the form

ds 2 = = γ 1 (coshz dρ -sinhz coshρ dτ) 2 -γ 2 (sinhz dρ -coshz coshρ dτ) 2 + γ 3 (dz + sinhρ dτ) 2 , ( 4 . 5 ) 
which specializes for γ 1 = γ 2 to the bi-axially squashed metrics

ds 2 = γ 1 dρ 2 -cosh 2 ρ dτ 2 + γ 3 (dz + sinhρ dτ) 2 . ( 4 . 6 )
As before, we also flip the overall sign of the metric to have signature -+ +. These correspond to metrics on AdS 3 with space-like squashing, since the base space is AdS 2 with metric dρ 2cosh 2 ρ dτ 2 . We also note for completeness that another choice of coordinate patch on base space with metric dρ 2sinh 2 ρ dτ 2 would have resulted from the analytic continuation ϑ = iρ, ϕ = τ and ψ = z.

In all cases we obtain AdS 3 vacua with coefficients and parameters given as before for all different types of squashing in the generalized theory of three-dimensional massive gravity and its simpler variants (new and topologically massive gravity), thus making the repetition of equations obsolete. The only difference that should be taken into account, as compared to the corresponding expressions for the homogeneous vacua found in section 3, is that the cosmological constant Λ should be replaced by -Λ, since we have chosen the signature -+ + on AdS 3 using a sign flip of the metric after analytic continuation; if we had chosen to work with signature + -this would not be needed. Likewise, the other parameters ω and m 2 also flip sign and they should be replaced by -ω and -m 2 . Note, however, that the time-like and space-like squashed metrics are mutually related by exchanging the role of ϕ and ψ coordinates on S 3 (prior to analytic continuation), which in turn imply a change of orientation. Thus, if ω is replaced by -ω in the case of time-like squashed metrics on AdS 3 , as explained above, ω will not flip sign in the space-like squashed metrics. With these explanations in mind we obtain complete classification of all homogeneous metrics on AdS 3 with SU(1, 1) isometry group. Their existence and tabulation as time-like and space-like squashed vacua follows easily from the corresponding tables found in section 3 with the appropriate range of parameters. For the simpler case of topologically massive gravity, which has been studied for a long time, the results are in agreement with those reported in earlier works on the subject, [START_REF] Nutku | Homogeneous, anisotropic three manifolds of topologically massive gravity[END_REF][START_REF] Ortiz | Homogeneous solutions to topologically massive gravity[END_REF] (but see also [START_REF] Chow | Classification of solutions in topologically massive gravity[END_REF] for an overview and many more references to the literature).

Concluding this section, we comment on the algebraic characterization of the spacetime metrics on AdS 3 based on the Petrov and Segre classification (see, for instance, [START_REF] Stephani | Exact Solutions of Einstein's Field Equations[END_REF] for the general scheme as it was initially developed in four space-time dimensions). In three dimensions, the Petrov classification refers to the Cotton tensor C i j , [START_REF] Barrow | Three-dimensional classical spacetimes[END_REF][START_REF] Hall | Classification and conformal symmetry in threedimensional space-times[END_REF][START_REF] Torres Del Castillo | Algebraic clasification of the curvature of three-dimensional manifolds with indefinite metric[END_REF][START_REF] Garcia | The Cotton tensor in Riemannian spacetimes[END_REF][START_REF] Sousa | Equivalence of three-dimensional spacetimes[END_REF], and the Segre classification refers to the traceless Ricci tensor [START_REF] Hall | Three-dimensional space-times[END_REF][START_REF] Hall | Classification and conformal symmetry in threedimensional space-times[END_REF][START_REF] Torres Del Castillo | Algebraic clasification of the curvature of three-dimensional manifolds with indefinite metric[END_REF][START_REF] Sousa | Equivalence of three-dimensional spacetimes[END_REF]. In either case one views these second rank tensors as linear maps between 3-vectors which are classified according to the number of distinct eigenvalues and the space-time character of their eigenvectors; we refer to the literature for the details and notation used for the different classes of space-times.

S i j = R i j -δ i j R/3,
Topologically massive gravity is rather special in this context, because the Petrov and Segre classifications coincide by the traceless part of the classical equations of motion (2.6), although the notation used in the literature depends on the particular scheme. It is rather instructive to briefly summarize the results of the algebraic characterization of all homogeneous vacua of topologically massive gravity, following [START_REF] Chow | Classification of solutions in topologically massive gravity[END_REF]. In this case, determining the eigenvalues of S i j and their multiplicities is equivalent to finding the scalar invariants

I = S i j S j i = tr(S 2 ) , J = S i j S j k S k i = tr(S 3 ) . ( 4 . 7 ) 
Bi-axially squashed AdS 3 metrics are of Petrov type D and one often distinguishes between the time-like and space-like squashed metrics using the notation D t and D s respectively. These solutions are denoted by [(11), 1] and [1(1, 1)], respectively, in the Segre classification scheme and satisfy the relation 

I 3 = 6J 2 = 0.
I 3 > 6J 2 .
Of course, it is also possible to have other solutions of more general algebraic type but they fall outside the class of homogeneous metrics and we are not going to discuss these here.

For the generalized massive gravity, and its limiting theory of new massive gravity, the three-dimensional analogues of the Petrov and Segre classifications are distinct because C ij is no longer proportional to S ij . Still one can classify their homogeneous solutions into algebraic types, which turn out to be identical to those appearing in topologically massive gravity. This can be explicitly checked case by case for AdS 3 vacua with all possible degrees of anisotropy and verify that they are of Petrov type O, D (D t or D s ) and I R . Likewise, one can characterize these vacua by their Segre type and find exactly the same classes in the notation used above.

Applications to z = 4 Hořava-Lifshitz gravity

We will discuss some applications of our results to Hořava-Lifshitz gravity in 3 + 1 dimensions. This is a non-relativistic theory of gravitation that has been proposed as ultra-violet completion of Einstein's theory, [START_REF] Hořava | Quantum gravity at a Lifshitz point[END_REF], but it also serves as toy model for transitions among vacua of three-dimensional gravity in the spirit of Onsager-Machlup theory for non-equilibrium processes, [START_REF] Onsager | Fluctuations and irreversible processes[END_REF].

Space-time is assumed to be M 4 = R × Σ 3 and the theory is defined using the ADM (Arnowitt-Deser-Misner) decomposition of the metric

ds 2 = -N 2 dt 2 + g ij dx i + N i dt dx j + N j dt .
( 5 . 1 )

The metric on the spatial slices Σ 3 is g ij , whereas N and N i are the lapse and shift functions, respectively, which depend on all space-time coordinates, in general2 . The infinite dimensional space of all three-dimensional Riemannian metrics g ij is called superspace and it is endowed with a metric

G ijk = 1 2 g ik g j + g i g jk -λg ij g k (5.2)
that generalizes the standard DeWitt metric using an arbitrary parameter λ (other than 1). The inverse metric in superspace is

G ijk = 1 2 g ik g j + g i g jk - λ 3λ -1 g ij g k (5.3) so that G ijk G k mn = 1 2 (δ i m δ j n + δ i n δ j m ) . ( 5 . 4 )
The action of Hořava-Lifshitz gravity in 3 + 1 dimensions is written as a sum of kinetic and potential terms. Assuming detailed balance, which is important for our discussion, the action takes the form, [START_REF] Hořava | Quantum gravity at a Lifshitz point[END_REF],

S HL = 2 κ 2 dtd 3 x √ gNK ij G ijk K k - κ 2 2 dtd 3 x √ gNE ij G ijk E k , ( 5.5) 
where K ij is the second fundamental form measuring the extrinsic curvature of the spatial slices Σ at constant t (not to be confused with the fourth order tensor K ij of new massive gravity),

K ij = 1 2N ∂ t g ij -∇ i N j -∇ j N i (5.6)
and

E ij = - 1 2 √ g δW[g] δg ij . ( 5 . 7 ) 
The four-dimensional gravitational coupling is κ. The kinetic term contains two time derivatives of the metric g ij , and, as such, it is identical to general relativity in canonical form (though λ is taken arbitrary here). The potential term is different, however, as it is derived from a superpotential functional W that is chosen appropriately to render the theory power-counting renormalizable.

In the following, we choose W[g] to be the action functional of Euclidean threedimensional massive gravity, setting, in general, W = S GMG . Then, the theory has anisotropy scaling parameter is z = 4, since the highest order term in the potential of S HL is K ij K ij followed by C ij C ij and R ij R ij as well as other subleading cross terms, [START_REF] Cai | On the z = 4 Hořava-Lifshitz gravity[END_REF]. We will restrict attention to the so called projectable case of Hořava-Lifshitz gravity, meaning that the lapse function N associated with the freedom of time reparametrization is restricted to be a function of t, whereas the shift functions N i associated with diffeomorphisms of Σ 3 can depend on all space-time coordinates. In view of the applications that will be discussed next, we choose

N(t) = 1 , N i (t, x) = 0 , (5.8) 
without great loss of generality.

It is clear that the vacua of three-dimensional massive gravity provide static (i.e., t-independent) solutions of Hořava-Lifshitz gravity, which is one of the applications. More importantly, these vacua can also be used to support instanton solutions that interpolate smoothly between different critical points of W[g], and, hence, of the potential functional of the four-dimensional action S HL . Although the description of instanton solutions will be quite general here, following earlier work on the subject, [START_REF] Bakas | Geometric flows in Hořava-Lifshitz gravity[END_REF], specialization to homogeneous vacua of generalized massive gravity on Σ 3 S 3 leads to a classification scheme for all SU(2) gravitational instantons of Hořava-Lifshitz theory with anisotropy scaling parameter z = 4. It also puts the results of section 3 in a wider context and makes them the basis for future developments. The rest of this section outlines this construction, but more details will be presented elsewhere, [START_REF] Bakas | Instantons of z = 4 Hořava-Lifshitz gravity[END_REF].

Let us now consider the Euclidean action of Hořava-Lifshitz theory which is obtained by analytic continuation in time. Furthermore, for technical reasons that will become apparent in a moment, we restrict the parameter λ of the superspace metric in the range λ < 1/3 (5.9) so that G ijk is positive definite. Also, Σ 3 is assumed to be compact with no boundary, as in the typical case Σ 3 S 3 we are considering here. Then, the Euclidean action can be manipulated by standard elementary methods as follows, [START_REF] Bakas | Geometric flows in Hořava-Lifshitz gravity[END_REF],

S Eucl HL = 2 κ 2 dtd 3 x √ gK ij G ijk K k + κ 2 2 dtd 3 x √ gE ij G ijk E k = 2 κ 2 dt d 3 x √ g K ij ± κ 2 2 G ijmn E mn G ijk K k ± κ 2 2 G k rs E rs ∓2 dtd 3 x √ gK ij E ij , ( 5 . 1 0 )
taking into proper account all boundary terms. Thus, for positive definite superspace metric, the Euclidean action appears to be bounded from below by .11) Extrema of the action are provided by configurations satisfying the following special equations that are first order in time,

S Eucl HL ≥ ∓2 dtd 3 x √ gK ij E ij = ∓ dtd 3 x √ gE ij ∂ t g ij = ± 1 2 dt dW dt . ( 5 
K ij ≡ 1 2 ∂ t g ij = ∓ κ 2 2 G ijmn E mn , ( 5 . 1 2 ) 
which are the defining equations of instantons.

As the spatial slices evolve in Euclidean time following (5.12), the superpotential functional W changes monotonically. This is easily seen by considering

dW dt = -2 d 3 x √ gE ij ∂ t g ij = ±2κ 2 d 3 x √ gE ij G ijk E k , ( 5 . 1 3 )
which is the integral of a quadratic quantity when λ < 1/3, and, therefore, it increases or decreases monotonically depending on the overall sign. Using this observation and by taking the time integral of equation (5.13), it turns out that the lower bound of the Euclidean action S HL is always positive and it is saturated by the special configurations (5.12). Then, the instanton action is

S Eucl HL = 1 2 |∆W| , ( 5 . 1 4 ) 
where ∆W denotes the difference of the corresponding values of W at the two end points of the time interval that supports such solutions. Instantons and anti-instantons are associated to the two different sign options, and, therefore, they are mutually related by reversing the arrow of time.

As in ordinary instanton physics, it is also appropriate here to consider solutions with finite Euclidean action only. This is possible provided that there are solutions of equation (5.12) that extrapolate smoothly between degenerate minima of the potential for, otherwise, W may become infinite. This restriction is also imposed by the spacetime interpretation of the solutions of Euclidean Hořava-Lifshitz gravity in order to obtain complete spaces with non-singular metrics. Thus, instantons are naturally associated to eternal solutions of certain higher order geometric flow equations, which are gradient flows of W according to equation (5.12). In particular, setting W = S GMG , we obtain the following evolution equations,

∂ t g ij = - κ 2 2 R ij - 2λ -1 2(3λ -1) Rg ij - Λ 3λ -1 g ij - κ 2 2ω C ij + κ 2 4m 2 K ij - λ 3λ -1 K , ( 5 . 1 5 ) 
choosing for definiteness one of the two sign options. The instanton solutions correspond to trajectories that connect continuously any two fixed points of the flow, without encountering singularities, as -∞ < t < +∞. They are solely selected by their boundary conditions, having spatial slices with zero extrinsic curvature (equal to the normal derivative ∂ t g ij ) at the two end-points of their Euclidean life-time3 . All other flow lines of the geometric evolution equation (5.12) do not qualify as instantons, and, in general, they become extinct (typically in finite time) by encountering singularities, thus leading to infinite action S Eucl HL ; they are discarded from our general construction. The explicit construction and classification of all instanton solutions of z = 4 Hořava-Lifshitz theory relies heavily on two open problems. The first is the classification of all vacua of generalized massive gravity, which serve as end-points of the interpolating instanton metrics. The second is the general behavior of higher order curvature flows, as (5.15), and the possible occurrence of singularities that may inflict the trajectories. The standard methods that are available for studying second order equations are not applicable any more and even the short time existence of solutions is now questionable, in general. Focusing on homogeneous vacua offers a mini-superspace model to study these problems and obtain concrete results. We have obtained complete classification of all fixed points as classical solutions on S 3 with SU(2) symmetry and at the same time the flow equations reduce consistently to a closed system of ordinary differential equations for the metric coefficients γ i as functions of time. Then, eternal solutions of these equations are in one-to-one correspondence with the SU(2) gravitational instanton solutions of z = 4 Hořava-Lifshitz theory. Explicit constructions are possible by extending previous results [START_REF] Bakas | Geometric flows in Hořava-Lifshitz gravity[END_REF] to fourth order flows, but the details are more complicated and they will be presented in a separate paper.

The instanton solutions of Hořava-Lifshitz gravity can also be used to describe offshell transitions among the many different vacua that populate the landscape of mas-sive gravity models. This alternative interpretation is in the spirit of Onsager-Machlup theory for non-equilibrium processes in thermodynamics, [START_REF] Onsager | Fluctuations and irreversible processes[END_REF]. In this general context, W is the entropy function that changes monotonically in time and it is proportional to the logarithm of the probability of a given fluctuation. The gradient of W is the thermodynamic force measuring the tendency of a system to seek equilibrium. Linearization of the flow equations around the fixed points describe small fluctuations away from equilibrium states, whereas the instanton solutions incorporate non-linear effects for large transitions between different states of the system. It will be interesting to strengthen the analogy between non-equilibrium processes and geometric flow equations by focusing, in particular, to three-dimensional massive gravity models as working example and explore its higher dimensional origin by embedding the theory in string or M-theory framework. A renormalization group approach to the instanton solutions might also emerge from this study.

Conclusions

We have classified all homogeneous vacua of (generalized) new massive gravity in three dimensions using the Bianchi IX ansatz for Riemannian metrics on S 3 . We have also obtained the corresponding AdS 3 metrics by analytic continuation and characterized them algebraically using the Petrov and Segre schemes. Our results provide generalization of the homogeneous vacua of topologically massive gravity in the presence of a new quadratic curvature term in the action based on the recent proposal [START_REF] Bergshoeff | Massive Gravity in Three Dimensions[END_REF]. In all cases we found that homogeneous metrics with different degrees of anisotropy can be realized as vacua in certain regions of the parameter space of couplings. The most exotic case is provided by the totally anisotropic (i.e., tri-axially squashed) metrics, which have special Ricci scalar curvature. Although the explicit form of the metric coefficients are rather cumbersome to present, in general, as functions of the couplings, the action takes particularly simple form, as can be found (but not shown here). These critical values of the action can be used to compute the instanton action of interpolating configurations among the different vacua and associate them to a probability measure by advancing further the connections with higher order geometric flows.

It should be emphasized that these homogeneous solutions coexist in certain regions of the parameter space of couplings, as summarized in Tables 1, 2 and 3. Thus, fixing the couplings ω, m 2 and Λ one may have isotropic, axially symmetric and totally anisotropic configurations as distinct classical solutions of three-dimensional gravity. In other regions of the parameter space only some of these vacua can coexist. They all provide the landscape of homogeneous vacua in mini-superspace, and, as such, they are not continuously connected to each other. Some of these vacua can coalesce by varying the couplings, in which case their defining relations coincide for special values of ω and m 2 , as can be readily seen from the equations. These remarks apply to generalized new massive gravity by extending previously known results for topo-logically massive gravity. Finally, Hořava-Lifshitz gravity was used as toy model to study off-shell transitions among these vacua. In this context, we were not concerned with the shortcomings and problems of such alternative theories of gravitation (see for instance [START_REF] Blas | Models of non-relativistic quantum gravity: The good, the bad and the healthy[END_REF] for a recent overview and references therein), but we certainly have to face them in detail when applying our results to Euclidean gravity. We hope to return to these problems elsewhere.

In future work, it will be interesting to consider other classes of solutions of generalized massive gravity and explore more regions in the landscape of vacua. Although this is a rather intricate problem, it is the simplest to address in the context of gravitational theories propagating degrees of freedom. Another important question is the possibility to embed such three-dimensional theories in string or M-theory and use them to investigate the structure of the corresponding space-time configurations in higher dimensions. Although some partial results exist in this direction, in particular for topologically massive gravity, [START_REF] Lu | Seven-dimensional gravity with topological terms[END_REF], the general framework is still lacking. We hope to be able to report on this and related issues elsewhere.

  Isotropic solutions are of Petrov type O and of Segre type [(11, 1)] satisfying the special relation I = J = 0. Finally, totally anisotropic metrics are of Petrov type I R and of Segre type [11, 1] satisfying the relation

An extension of new massive gravity to all orders in the curvature was recently proposed via a gravitational Born-Infeld action,[START_REF] Güllü | Born-Infeld extension of new massive gravity[END_REF]. Likewise, a Born-Infeld extension of (3 + 1)-dimensional Hořava-Lifshitz gravity was proposed to account for arbitrary anisotropy scaling parameter z in the curvature expansion,[START_REF] Güllü | Born-Infeld-Hořava gravity[END_REF]. We will not investigate such generalized massive theories of gravity here, since we are only limited to models with up to four derivative terms, but, clearly, it is interesting to inquire about locally homogeneous (and other) solutions of the gravitational Born-Infeld theory.

We use Latin indices i, j, • • • to indicate that Σ

is always Riemannian here. Before we used Greek indices µ, ν, • • • to allow for both Riemannian and pseudo-Riemannian metrics in the discussion of three-dimensional gravitational theories.

Despite appearances, the fixed points of the flow equation (5.15) are independent of λ and coincide with the vacua of generalized massive gravity. The parameter λ only affects the form of the flow lines that define the instantons.