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Abstract. We introduce a signal processing model for signals in non-white noise,
where the exact noise spectrum is a priori unknown. The model is based on a
Student’s t distribution and constitutes a natural generalization of the widely
used normal (Gaussian) model. This way, it allows for uncertainty in the noise
spectrum, or more generally is also able to accommodate outliers (heavy-tailed
noise) in the data. Examples are given pertaining to data from gravitational wave
detectors.

PACS numbers: 04.80.Nn, 02.30.Zz, 05.45.Tp

1. Introduction

The measurement of gravitational radiation holds great promise for exciting
astronomical observations [1, 2]. Around the world, efforts are under way to construct
and improve detectors for gravitational waves; among these are the LIGO detectors
in the US [3], GEO [4] and Virgo [5] in Europe, and TAMA in Japan [6], some of
which have already started taking data. Plans for future detectors include advanced
LIGO [7], LCGT in Japan [8], the Laser Interferometer Space Antenna (LISA) [9] and
the Einstein Telescope (ET) [10]. As existing instruments are becoming increasingly
sensitive and future instruments are approaching completion, sophisticated signal
processing methods are required in order to detect and accurately interpret these
often weak signals within a noisy environment. For example, signal detection is
usually implemented via matched filtering [11, 12, 13], while parameter estimation is
commonly done using Bayesian methods [14, 15]. Many of the data analysis procedures
employed to date are based on the assumption of the noise being Gaussian with
a known power spectral density [11, 16]. While these methods have proven to be
computationally efficient and very powerful at discriminating rare, weak signals within
noise, some more flexibility or robustness is sometimes desired. One example is the
analysis of data to be expected from LISA, where the measurement noise originates
partly from instrumental as well as astrophysical sources, and the noise spectrum is
only vaguely known a priori [17].

We introduce an approach that was developed in the context of the latter case,
where, along with the signal parameters to be inferred, the noise’s power spectrum
needed to be incorporated as an unknown into the model [18, 19]. The model developed
here turns out to be computationally convenient, as the additional noise parameters
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may be analytically integrated out, leading to a Student-t likelihood expression instead
of the original normal formulation. We expect the same approach to be useful in
many related signal processing contexts, as it allows to specify the prior information
about the power spectrum, i.e., its expected magnitude and the associated certainty,
in a straightforward manner. In this way, it should e.g. also be able to account for
nonstationarities in the data, in the sense that the power spectrum does not necessarily
need to be assumed to be exactly the same as at an earlier measurement; other
fluctuations, like outliers, could also be accommodated in a similar manner. In fact, the
resulting model actually falls into a class of generalizations to the standard Gaussian
that have been proposed for their robustness properties: models accommodating
heavier-tailed noise, or outliers, by either (‘directly’) implementing a non-Gaussian
noise model or (‘indirectly’) substituting the corresponding least-squares procedures
by less outlier-sensitive methods. Instead of the derivation based on an unknown
power spectrum, the same model may be motivated by assuming the power spectrum
itself to be random, so that the resulting noise mixture distribution exhibits a greater
variability. In the limiting case of decreasing spectrum variability, the model again
simplifies to the Gaussian. So the model will also be applicable as an ad-hoc alternative
tunable robust model, with clearly interpretable “tuning parameters”.

The organization of the paper is as follows. The time series setup is introduced
in Section 2.1. In the subsequent sections, the probabilistic modelling is described,
including its time-domain counterpart, the likelihood, prior distributions, posterior
distribution, marginal likelihood and some implications. Section 3 describes the
approach using two illustrative examples of simulated time series with and without a
signal. The discussion section 4 puts the new approach into context. An appendix
explicating the Discrete Fourier Transform conventions used in this paper is attached.

2. The time series model

2.1. The setup

Consider a time series x1, . . . , xN of N real-valued observations sampled at constant
time intervals ∆t, so that each observation xi corresponds to time ti = i∆t. This set
of N observations can equivalently be expressed in terms of sinusoids of the Fourier
frequencies:

xi =
1√

N∆t

bN/2c∑

j=0

aj cos(2πfjti) + bj sin(2πfjti) (1)

where the variables aj and bj each correspond to Fourier frequencies fj = j∆f = j
N∆t

.
The summation in (1) runs from j = 0 to j = bN/2c, with bN/2c denoting the largest
integer less than or equal to N/2. By definition, b0 is always zero, and bbN/2c is
zero if N is even; going over from xi’s to aj ’s and bj ’s again yields the same number
(N) of non-zero figures. The set of (N) frequency domain coefficients aj and bj

and the time domain observations xi are related to each other through a discrete
Fourier transform (and appropriate scaling; see appendix Appendix A.2). The set of
trigonometric functions in (1) constitutes an orthonormal basis of the sample space, so
that there is a unique one-to-one mapping of the observations in time and in frequency
domain. Instead of the two amplitudes aj and bj , the definition in (1) may equivalently
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be expressed in terms of a single amplitude and a phase parameter at each frequency:

xi =
1√

N∆t

bN/2c∑

j=0

λj sin(2πfjti + ϕj), (2)

where λj =
√

a2
j + b2

j and

ϕj =





arctan
(

bj

aj

)
if aj > 0

arctan
(

bj

aj

)
± π if aj < 0.

(3)

For each Fourier frequency fj , let κj be the number of Fourier coefficients not being
zero by definition, i.e.:

κj =
{

1 if (j = 0) or (N is even and j = N/2)
2 otherwise (4)

so that
∑bN/2c

j=0 κj = N . Note that generally one may often simplify to κj = 2 ∀j
without introducing a noticeable discrepancy, but in the following we will stick to the
accurate notation of κ depending on the index j.

For a given time series (either in terms of xi or aj and bj), we define the functions
of the Fourier frequencies

p1(fj) =
a2

j + b2
j

κj
and (5)

p2(fj) =
a2

j + b2
j

κ2
j

=
p1(fj)

κj
= ∆t

N |x̃(fj)|2 (6)

for j = 0, . . . , bN/2c, where x̃ denotes the discretely Fourier-transformed time series x,
as defined in appendix Appendix A.2. These are the empirical, discrete analogues of
the one-sided and two-sided spectral power. The set of p1(fj) is also known as the
periodogram of the time series [20].

Now consider the case where the observations xi, and consequently the aj and
bj , correspond to random variables Xi, Aj and Bj , respectively. This may mean that
these are realizations of a random process, where the random variables’ probability
distributions describe the randomness in the observations, or that they are merely
unknown, where the probability distributions describe a state of information, or it
may also be a mélange of both [21].

The time series has a zero mean if and only if the expectation of all frequency
domain coefficients is zero as well:

E[Xi] = 0 ∀i ⇔ E[Aj ] = E[Bj ] = 0 ∀j. (7)

For the probabilistic time series, the spectral power (p1(fj) or p2(fj)) consequently
also is a random variable (P1(fj) or P2(fj), respectively). We denote its expectation
value by S∗(fj); if the mean is zero as in (7), it is given by

S∗
1 (fj) = κjS

∗
2(fj) = E[P1(fj)] = E

[
A2

j+B2
j

κj

] (7)
= Var(Aj)+Var(Bj)

κj
. (8)

It is important to note that while the above expectation is closely related to
a time series’ power spectral density, it is yet quite different. Up to here we have
considered the discretely Fourier transformed data and some of its basic properties.
The figure S∗(fj) refers to data sampled at a particular resolution and sample size
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and is defined only at a discrete set of Fourier frequencies fj . One might want to
refer to S∗ as the discretized power spectrum. If in fact the data are a realization
from a stationary random process with (continuous) power spectral density S(f),
then the expectation S∗(fj) is related to S(f) through a convolution, depending on
the sample size N . Only in the limit of an infinite sample size both of them are
equal [20, 22]. While both continuous and discretized spectrum are commonly used
as an approximation to or in place of one another, it is crucial to realize that in the
following inference will be done with reference to the case of a finite sample size and
the discretized, convolved spectrum S∗(fj).

A related useful figure in this context is the integrated spectrum with respect to
some frequency range [f1, f2] [23], which here we define as

I[f1,f2] = ∆f

j2∑

j=j1

κj

2
S∗

1 (fj) (9)

where the summation is done over the corresponding range of Fourier frequencies
(j1 = min{k : fk > f1}, j2 = max{k : fk ≤ f2}, where f2 − f1 ≥ ∆f ). The
integrated spectrum allows to investigate or compare (discrete) spectra independent
of the particular sample size N .

2.2. The normal model

Suppose the moments as defined in (7) and (8) are given. We may set up a
corresponding normal time series model by assuming all the (frequency domain)
observables to be stochastically independent, have zero mean and

Var(Aj) = σ2
j , (10)

Var(Bj) = (κj − 1) σ2
j for j = 0, . . . , bN/2c, (11)

where

σ2
j = S∗

1 (fj) = κj S∗
2 (fj) for j = 0, . . . , bN/2c. (12)

While other choices of variance settings matching the assumptions would be possible,
the assumption of equal variances for Aj and Bj is the only one that makes the
joint density of (Aj , Bj) a function of overall amplitude λj alone, independent of the
phase ϕj , and with that leaves the model invariant with respect to time shifts. The
same model may also be motivated via the maximum entropy principle, as the (zero
mean, equal variance, independent) normal distribution maximizes the entropy given
the constraints on the moments given in (7) and (8) above [24]. In that way, the normal
model constitutes a most convervative model setup under the given assumptions
[21, 22, 24].

The joint normal distribution derived here has actually been commonly used
before (see e.g. [25]); the normality assumption may not only appear as a natural
choice, but will also turn out computationally convenient in the following. In the
context of Fourier domain data in particular, the normality assumption may also be
motivated via asymptotic arguments, by considering the limit of an infinite observation
time [26, 27, 28]. The resulting normal model also is exactly the same as the one
underlying the so-called Whittle likelihood [29, 30], or the one at the basis of matched
filtering [11, 12, 13]. While intuitively in other contexts it may often be sufficient to
point out the asymptotic equality S∗(fj) ≈ S(fj) for N → ∞, here it is crucial to
appreciate what exactly the σ2

j = S∗
1 (fj) stand for in the case of a finite sample size N .
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The difference between the exact and approximate (“Whittle”) model is explicated in
more detail in [30].

2.3. The corresponding time-domain model

An immediate consequence of the normality assumption for the frequency-domain
coefficients (Aj , Bj) is that the time-domain variables (Xi), being linear combinations
of the frequency-domain variables, also follow a normal distribution. The exact joint
distribution of the Xi is completely determined by their variance/covariance structure,
which may be expressed in terms of the autocovariance function. The covariance
for any pair of time-domain observations Xm and Xn (with m, n ∈ {1, . . . , N}, and
corresponding to times tm and tn) is given by:

Cov(Xm, Xn) =
1

N∆t

bN/2c∑

j=0

(
S∗

1 (fj)
κj

2 cos
(
2πfj(tn − tm)

))
. (13)

Note that the autocovariance Cov(Xm, Xn) = γ(tn − tm) depends on tm and tn only
via their time lag tn − tm. Remarkably (though not surprisingly), following either
the invariance or the maximum entropy argument to motivate the model structure in
section 2.2, the result is a strictly stationary model for the data [31]. Note also that
γ(0) = Var(Xi) = I[0,fN/2].

The autocovariance function allows one to express the distribution of the Xi in
terms of their (N ×N) covariance matrix ΣX , which is the symmetric, square Toeplitz
matrix

ΣX =




γ(0) γ(∆t) γ(2∆t) · · · γ(∆t)
γ(∆t) γ(0) γ(∆t) · · · γ(2∆t)
γ(2∆t) γ(∆t) γ(0) · · · γ(3∆t)

...
...

...
. . .

...
γ(∆t) γ(2∆t) γ(3∆t) · · · γ(0)




, (14)

since γ is periodic such that γ(i∆t) = γ((N − i)∆t). The periodic formulation
in (1) makes the first and last observations X1 and XN “neighbours”, just as X1

and X2 are. This may seem odd (depending on the context, of course), but is not
an unusual problem, as it arises for any conventional spectral analysis of discretely
sampled data in the form of spectral leakage [32]; it may just not always be as obvious
in its consequences. The above time domain expression sheds some light on the exact
shortcomings of the Whittle likelihood approximation; you can see for example that
it will be a poor approximation in case of predominantly low-frequency noise and a
small number of observations. The problem may be tackled via windowing of the
data, or it will also lessen with an increasing sample size; again, the features of this
approximation are discussed in more detail in [30].

2.4. Incorporating an unknown spectrum

2.4.1. The likelihood function Now suppose the spectrum is unknown and to be
inferred from the data x1, . . . , xN . An unknown spectrum here is equivalent to the
variance parameters σ2

0 , . . . , σ2
bN/2c being unknown. Assuming normality of Aj and

Bj , the likelihood function (as a function of the parameters σ2
0 , . . . , σ2

bN/2c) is:

p(x1, . . . , xN |σ2
0 , . . . , σ2

bN/2c)
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=
bN/2c∏

j=0

[
1√

2π σj

exp
(
−

a2
j

2σ2
j

)

×
( 1√

2π σj

)κj−1

exp
(
−

b2
j

2σ2
j

)]
(15)

= exp

(
−N

2 log(2π) −
bN/2c∑

j=0

[
κj log(σj) +

a2
j + b2

j

2σ2
j

])
(16)

∝ exp

(
−

bN/2c∑

j=0

κj

2

[
log
(
S∗

2 (fj)
)

+
∆t

N |x̃j |2

S∗
2(fj)

])
. (17)

The term x̃j here denotes the jth element of the Fourier-transformed data vector,
as defined in appendix Appendix A.1 and Appendix A.2. The above likelihood (17)
is exactly equivalent to the so-called Whittle likelihood, which is an approximate
expression for stationary time series [29, 30].

If the noise spectrum is a priori known, the “log
(
S∗

2 (fj)
)
” term may also be

irrelevant (see (31)), and the model again reduces to the normal model described
e.g. in [11] that is also the basis for matched filtering [12, 13]. In that case, the
logarithmic likelihood may be conveniently expressed in terms of an inner product of
vectors, allowing for a geometric interpretation that is expecially useful in the case of
linear signal models [11, 16, 33].

2.4.2. The conjugate prior distribution For the model defined above, the conjugate
prior distribution for each of the σ2

0 , . . . , σ2
bN/2c is the scaled inverse χ2-distribution

with scale parameter s2
j and degrees-of-freedom parameter νj :

σ2
j ∼ Inv-χ2(νj , s

2
j ) (18)

with density function

fνj ,s2
j

(
σ2

j

)
=

(
νj s2

j

2

)νj/2

Γ(νj/2)
(
σ2

j

)−(1+νj/2) exp
(
−

νj s2
j

2 σ2
j

)
(19)

[34]. The degrees-of-freedom here denote the precision in the prior distribution, while
the scale determines its order of magnitude. For increasing νj the distribution’s
variance goes towards zero, and for νj → 0 the density converges toward the non-
informative (and improper) distribution with density f(σ2

j ) = 1
σ2

j
, that is uniform on

log(σ2
j ), and which also constitutes the corresponding Jeffreys prior for this problem

[35]. If σ2
j follows an Inv-χ2(νj , s

2
j ) distribution, then its expectation and variance are

given by

E[σ2
j ] = νj

νj−2 s2
j and Var(σ2

j ) = 2ν2
j

(νj−2)2(νj−4) s4
j , (20)

and the mean and variance are finite for νj > 2 and νj > 4, respectively [34].
In addition to the Jeffreys prior (with ν = 0) already mentioned above, other

improper prior distributions may be implemented as special cases of an Inv-χ2(ν, s2)
distribution. A uniform prior distribution on σ corresponds to (ν = −1, s2 = 0), and
a uniform prior on σ2 corresponds to (ν = −2, s2 = 0). Generally, a prior with density
f(σ2) ∝ 1

(σ2)k (for k ≥ 0) corresponds to an Inv-χ2(ν = 2(k − 1), s2 = 0) distribution
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[36]. As usual, care must be taken when using such improper priors, as the resulting
posterior may not be a proper probability distribution [34].

2.4.3. The posterior distribution Due to the use of a conjugate prior distribution,
the posterior distribution of the σ2

j for given data again is of the same family. The
posterior density is defined by the product of prior (19) and likelihood (16):

p
(
σ2

j

∣∣ {x1, . . . , xN}
)
∝
(
σ2

j

)−(1+νj/2) exp
(
−

νj s2
j

2 σ2
j

)

×
(
σ2

j

)−κj/2 exp
(
−

a2
j + b2

j

2 σ2
j

)
(21)

=
(
σ2

j

)−(1+
νj+κj

2 ) exp
(
−

νj s2
j + a2

j + b2
j

2 σ2
j

)
(22)

which again can be recognized as a scaled inverse χ2-density (cp. (19)):

σ2
j

∣∣∣ {x1, . . . , xN} ∼ Inv-χ2
(
νj + κj ,

νjs2
j + a2

j+b2j
νj + κj

)
, (23)

where all the different parameters corresponding to different frequencies are mutually
independent. Comparing prior and posterior parameters ((18), (23)), and the way
the prior and likelihood are combined (21), one can see that the prior distribution
might be thought of as providing the information equivalent to νj observations (of
coefficients aj or bj) with average squared deviation s2

j [34]. The prior is essentially of
the same functional form as the likelihood (21), modulo a 1

σ2 term, which resembles
an overall (uninformative) Jeffreys prior prefactor [35]. The use of the conjugate
prior distribution hence is not only a computationally convenient choice, but may also
appear as a “natural” way of expressing prior information in this context.

The use of the conjugate prior distribution leads to a convenient expression for
the posterior distribution of the variance parameters σ2

j , and with that of the complete
discrete spectrum. Also, if σ2

j ∼ Inv-χ2(νj , s
2
j ), then, since s2

j is a scale parameter,
it follows that the distribution of the two-sided spectrum S∗

2(fj) = σ2
j /κj simply

is Inv-χ2(νj , s
2
j/κj). There is a deterministic relationship between given variance

parameters σ2
j and the implied autocorrelation function γ(t) (see (13)), and so for

random σ2
j the distribution of the corresponding γ(t) may be numerically explored

via Monte Carlo sampling from the distribution of the σ2
j . The expectation and

variance of γ(t) may also be derived analytically: the expected autocovariance (13),
with respect to the distribution of the σ2

j , is

E[γ(t)] =
1

N∆t

bN/2c∑

j=0

(
E[σ2

j ] κj

2 cos(2πfjt)
)
, (24)

which is finite as long as E[σ2
j ] is finite for all j. Similarly, the variance of the

autocorrelation is

Var(γ(t)) =
1

N2∆2
t

bN/2c∑

j=0

(
Var(σ2

j ) κ2
j

4 cos(2πfjt)2
)

, (25)

which again is finite as long as Var(σ2
j ) is finite for all j.
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2.4.4. The marginal likelihood The use of the conjugate Inv-χ2 prior (with νj > 0
degrees of freedom) for the variance parameters σ2

j allows to integrate the unknown
noise spectrum out of the likelihood expression (17). The marginal likelihood function
then is

p(x1, . . . , xN | ν0, . . . , νbN/2c, s
2
0, . . . , s

2
bN/2c)

=
bN/2c∏

j=0

∫ ∞

0

p(aj , bj |σ2
j ) p(σ2

j |νj , s
2
j ) dσ2

j (26)

=
bN/2c∏

j=0

(2 π)−
κj
2

(
νjs2

j

2

) νj
2

(
νjs2

j
+(a2

j
+b2

j
)

2

) νj+κj
2

Γ
(

νj+κj

2

)

Γ
( νj

2

) (27)

∝
bN/2c∏

j=0

(
1 +

κ2
j

∆t

N |x̃j |2

νjs2
j

)−
νj+κj

2

(28)

= exp

(
−

bN/2c∑

j=0

νj+κj

2 log
(

1 +
κ2

j
∆t

N |x̃j |2

νjs2
j

))
, (29)

which constitutes a product of Student-t densities with (νj +κj−1) degrees of freedom
[34]. Using the uninformative, improper Jeffreys prior (with νj = 0 degrees of freedom
and density p(σ2

j ) ∝ 1
σ2

j

) yields the marginal likelihood

p(x1, . . . , xN ) ∝
bN/2c∏

j=0

(
κ2

j
∆t

N |x̃j |2
)−κj

2 . (30)

One may then also get a mixture of the above expressions ((28) and (30)) in case of
a prior setting of partly zero and non-zero prior degrees of freedom.

Note that the corresponding analogue likelihood expression in case of an a priori
known spectrum (as e.g. in [29, 11, 30], see also (17)) was

p(x1, . . . , xN |σ2
0 , . . . , σ

2
bN/2c) ∝ exp

(
−

bN/2c∑

j=0

κ2
j

∆t

N |x̃j |2

2 σ2
j

)
, (31)

so that the (normal) sum-of-squares expression (31) in case of a known spectrum
generalizes to the Student-t expression (29) once one takes uncertainty about the
spectrum’s scale into consideration. The normal model in turn is the limiting case for
increasing degrees of freedom.

2.5. Robust inference via the Student-t model

The Student-t marginal likelihood expression (28) suggests that considering noise as
normal but with unknown spectrum is technically equivalent to viewing the noise
itself as being t-distributed. In that way, the Student-t model may also be useful as
an alternative for robust modelling, as the wider family of t-distributions includes the
normal and Cauchy distributions as special or limiting cases. In other contexts the
t-distribution is commonly used as a generalization of the normal model in order to
accommodate heavier-tailed errors (see e.g. [37, 38, 39, 40]). In contrast to the above
derivation of the t-distributed noise based on prior/posterior distributions, the noise
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may also be considered as a scale mixture of normal distributions; that is, normal
noise with a randomly varying scale (variance) [38]. Both relations may actually be
used to motivate the use of the Student-t distribution for noise exhibiting certain
nonstationarities (e.g., a noise spectrum that is slightly fluctuating over time), be it
to model the “variability” or the “uncertainty” in the spectrum, both of which are
mathematically the same here (except that uncertainty is reduced through learning,
while the random variation is not).

The use of heavier-tailed noise models already has repeatedly been advocated in
the gravitational wave detection context, in order to gain robustness against outliers
and similar deviations from the commonly assumed normality. Creighton [41] for
example suggests the use of a mixture of Gaussian noise and a (uniform) burst
component in order to account for wide-band noise burst events. Allen et al. [42]
also illustrate the use of a two-component Gaussian mixture in order to reduce the
influence of outliers in the data, but more generally they advocate an approach also
known as M-estimation, namely the explicit downweighting or ignorance of outlier
observations falling far into the tail of the noise distribution [43, 44]. Application
of the above Student-t model may also be considered as a special case of robust M-
estimation, based on a clearly interpretable noise model and associated parameters
[39, 40].

In case of an a priori known power spectrum, maximization of the normal
likelihood (31) is the basis for the matched filtering approach commonly used in
signal detection problems, when looking for signals of parameterized shape in noise
[12, 13, 16]. In Gaussian noise, the likelihood maximization then is equivalent to a
least-squares approach. A filter based on the Student-t likelihood (28) may therefore
be useful for cases of an unknown noise spectrum or non-Gaussian noise.

Note that since the likelihood (28) implies independent (as opposed to merely
uncorrelated) errors, likelihood maximization here is different from least-squares
estimation [45, 46, 38], and the likelihood might in fact exhibit multiple modes [47].
The (independent) Student-t model not only leads to a less drastic fall-off of the
likelihood for extreme values, and hence reduced leverage of outliers, but it also
implies non-spherical density contours for the joint distribution of the noise, effectively
allowing for a fraction of scrambled individual noise residuals. A similar effect was
pointed out by Creighton [41] when implementing a robust Gaussian/uniform mixture
noise model: the approach would allow for excess noise in individual interferometers,
so that a noise burst would essentially be automatically “vetoed” if it is only measured
in one of several interferometers. Similarly, the non-spherical density contours of the
Student-t model make it robust against odd data values at individual frequencies.

2.6. Defining the prior distribution’s parameters

Depending on the particular application and context in mind, there may be different
ways to sensibly specifying prior parameters. Firstly, there are the supposedly
uninformative priors; the Jeffreys prior [35] with νj = 0 degrees of freedom, and
priors that are uniform on σj or on σ2

j were already mentioned above (see Sec. 2.4.2).
Care needs to be taken here though, as these priors (with νj ≤ 0) are improper
distributions. These may lead to improper marginal likelihoods, as in the case of (30),
which does not correspond to a normalizable probability distribution for the noise.
The resulting posterior distribution of signal or noise parameters then may or may
not be a proper probability distribution [34].
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If the prior information on the spectral parameters is in the form of measurements
(or samples) of the spectrum (of same size and resolution), then this may be expressed
in terms of an equivalent sample size and corresponding prior degrees-of-freedom, as
suggested in Sec. 2.4.3. Choosing e.g. the νj to be twice the number of measurements of
the spectrum taken (i.e., equal to the number of observed Fourier coefficients) would
then be equivalent to initially assuming an uninformative Jeffreys prior and then
using the posterior based on the measurements as the prior for the actual (signal)
analysis. This will of course only make sense if one assumes the spectrum unknown
but stationary.

When using the Student-t model as a robust model accommodating for heavy-
tailed noise, i.e., when the noise itself is assumed to actually follow a t-distribution that
one can sample from, then one can use sample estimates for the Student-t parameters.
Moment estimators for s2

j and νj (based on sample variance and kurtosis) are given
e.g. in [48, 49].

When specifying prior parameters that are supposed to reflect information and/or
variability, it may be helpful to consider the implied moments or quantiles, for
individual frequency bins or frequency bands. The expressions for the prior’s moments
in (20) may be inverted to

νj = 4 + 2
E[σ2

j ]2

Var(σ2
j )

and s2
j =

νj − 2
νj

E[σ2
j ], (32)

which allows one to specify the scale s2
j and degrees-of-freedom νj based on pre-defined

prior expectation and variance of σ2
j , respectively. Note that the degrees-of-freedom νj

then are simply a function of the prior variation coefficient
√

Var(σ2
j )
/

E[σ2
j ]. A

specification of s2
j independent of j means a priori white noise, and specifying

individual νj for different j indicates varying prior certainty across the spectrum. A
sensible definition of the prior certainties for the individual spectrum parameters may
be complicated by the fact that the exact meaning of this discrete set of parameters
depends on the sample size N . In that case it may be helpful to instead consider
the integrated spectrum (9) and its a priori properties. The (prior) moments of the
integrated spectrum are given by

E[I[f1,f2]] = ∆f

j2∑

j=j1

κj

2 E[σ2
j ] = ∆f

j2∑

j=j1

κj

2
νj

νj − 2
s2

j (33)

(if all νj > 2), and

Var(I[f1,f2]) = ∆2
f

j2∑

j=j1

κ2
j

4
2ν2

j

(νj − 2)2(νj − 4)
s4

j (34)

(if all νj > 4). The (prior) variation coefficient for the power within any frequency
range then is:

√
Var(I[f1,f2])
E[I[f1,f2]]

=

√
∑j2

j=j1

κ2
j

4

2ν2
j

(νj−2)2(νj−4)s
4
j

∑j2
j=j1

κj

2
νj

νj−2s2
j

(35)

which simplifies in case all d.f. parameters are taken to be equal (νj ≡ ν):
√

Var(I[f1,f2])
E[I[f1,f2]]

=

√
2

ν − 4

√∑j2
j=j1

κ2
j

4 s4
j∑j2

j=j1

κj

2 s2
j

(36)
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and simplifies further in case all scale parameters are taken to be equal (s2
j ≡ s2):

√
Var(I[f1,f2])
E[I[f1,f2]]

=

√
2

ν − 4

√∑j2
j=j1

κ2
j

4∑j2
j=j1

κj

2

. (37)

In the general case of (j1 > 0, j2 < bN/2c) this is:
√

Var(I[f1,f2])
E[I[f1,f2]]

=

√
2

ν − 4
1√

j2 − j1 + 1
(38)

and similarly, in case (j1 = 0, and j2 = N/2, N even) it is:
√

Var(I[f0,fN/2])

E[I[f0,fN/2]]
=

√
2

ν − 4

√
N−1

2

N
2

. (39)

This may be useful if one wants to specify piecewise constant prior settings with given
constraints on the overall power per frequency range; this would then lead to the d.f.
settings

ν = 4 + 2
j2−j1+1

(
E[I[f1,f2]]√
Var(I[f1,f2])

)2

(40)

or ν = 4 + 2 N−1
N2

( E[I[f0,fN/2]]√
Var(I[f0,fN/2])

)2

(41)

respectively, for the above two cases ((38), (39)).
For example, if one wants the spectrum to be a priori white with some scale s2,

such that the marginal prior mean and variation coefficient of the integrated power
I[f0,fN/2] = Var(Xi) = γ(0) are given by

E
[
I[f0,fN/2]

]
= ς2 and

√
Var
(
I[f0,fN/2]

)

E
[
I[f0,fN/2]

] = c, (42)

then a setting of

νj = 4 + N−1
N2

2
c2 and s2

j = 2 ∆t
ν−2

ν ς2 (43)

independent of j will yield an a priori white spectrum with constant expectation and
variation in the overall variance I[f0,fN/2] for any sample size N . Piecewise constant
settings across different frequency bands may be implemented analogously. In case all
νj > 4, the integrated power, being a sum of random variables with finite mean and
variance, will be asymptotically normally distributed.

Instead of using moments, the prior may also be specified in terms of quantiles,
for example by first deciding on the degrees-of-freedom settings and then aiming the
prior median at a certain value. The quantiles of an Inv-χ2(ν, s2) distribution may be
derived based on the quantiles of a χ2-distribution; the p-quantile is then given by

ν s2
/

χ2
ν;1−p (44)

where χ2
ν;1−p is the (1 − p)-quantile of a χ2-distribution with ν degrees of freedom.

Finally, in the M-estimation context, the t-distribution’s d.f. parameter may also
be set based on the shape of the corresponding influence function [43, 44].
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Figure 1. The example data ni in the time domain, and its (empirical) power
∆t
N

|ñj |2 in the Fourier domain. The solid line in the right panel shows the
theoretical (2-sided) power spectral density in comparison.

3. Examples

3.1. Noise only

Consider a time series n(t) of N = 100 data points sampled at times ti = i
100 . As

a simple example of non-white noise, the data are generated from an autoregressive
process

n(ti) = 3
4n(ti−1) + x(ti), (45)

where the innovations x(ti) are drawn independently from a uniform distribution
across the interval [−

√
3,
√

3], so that they have zero mean and unit variance. The
overall variance of the process defined in this way is Var

(
n(ti)

)
= 2.29; due to the

positive correlation of subsequent samples it has a higher power at low frequencies
and less at high frequencies. Figure 1 shows a noise sample generated using the above
prescription, together with its theoretical power spectral density.

We will now apply the noise model introduced above and derive the posterior
distribution of the noise parameters. Assuming one has a rough idea of the noise
variance, we set the prior scale parameters s2

j so that the noise is a priori white with a
prior expectation of E

[
Var
(
n(ti)

)]
= 2.50. We use νj = 3 degrees of freedom, so that

the noise parameters’ (and with that, the overall power’s) prior expectations are finite,
while the variances are not. Prior scale and prior expectation then are s2

j = 0.0166, and
E[σ2

j ] = 0.05. Figure 2 illustrates the resulting posterior distribution for all 51 noise
parameters (23) in comparison to the case of using the uninformative (and improper)
Jeffreys prior. The Jeffreys prior (with νj = 0 degrees of freedom for each frequency
bin) does not depend on the scale parameters s2

j , and the resulting posterior with ≤ 2
degrees of freedom at each frequency does not have finite expectation values. Note
also that the posterior distributions corresponding to the first and last frequency bin
(zero and Nyquist frequencies, σ2

0 and σ2
50) are wider than the others in both cases,

as they have one less degree of freedom.
Figure 3 shows the posterior distributions of autocovariance and variance, which

are functions of the individual spectrum parameters σ2
j . The variance may either be

considered as the zero-lag autocovariance γ(0) (see (13)), or as the integrated power
I[0,fN/2] across the whole frequency range (see (9)).
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Figure 2. Posterior distributions of the 51 spectrum parameters σ2
j based on the

data shown in figure 1. The left plot shows the posterior corresponding to the
uninformative (and improper) Jeffreys prior. Posterior expectations do not exist
in this case. The right plot corresponds to assuming a priori white noise with
νj = 3 degrees of freedom for each frequency bin; the dashed line marks the prior
expectation value.
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Figure 3. Posterior distributions of autocovariance and variance; the
distributions shown here were derived via Monte Carlo integration.

3.2. A signal with additive noise

In the following example we will consider a time series where the primary interest
is in a signal component, while the additive noise component will be modelled using
the approach introduced above. As in the previous section, we will again consider
N = 100 data points y(t1), . . . , y(t100) that are modelled as

y(ti) = gf,ḟ,a,φ(ti) + n~σ(ti), (46)

where n~σ(ti) is non-white noise of unknown spectrum, and gf,ḟ,a,φ(t) is a “chirping”
signal waveform of increasing frequency:

gf,ḟ ,a,φ(t) = a sin(2π(f + ḟ t)t + φ) (47)

where f and ḟ are the frequency and frequency derivative, a is the amplitude, and φ
is the phase. The noise again is generated the same way as in the previous example,
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Figure 4. Marginal posterior densities of the four individual signal parameters.
The three densities in each panel result from three different models applied for the
noise term. The “unknown, coloured” case corresponds to the model introduced
above, the “fixed, coloured” case assumes the true noise spectrum to be a priori
known, and in the “unknown white” case the noise is modelled as white with
unknown variance. The vertical dashed lines indicate the true parameter values.

by simulating an autoregressive process. The signal’s “size” relative to the noise is

given by the signal-to-noise ratio (SNR: % =

√
4
∑

j

∆t
N |g̃(fj )|2

S1(fj ) ), which here is at 15.

We define the signal parameters’ prior as uniform for phase, frequency and
amplitude (φ ∈ [0, 2π], f ∈ [1, 50] and a ∈ [0, 10]) and normal for the frequency
derivative ḟ (zero mean and standard deviation 5). The prior distribution for the noise
parameters σ2

0 , . . . , σ2
50 is set exactly as in the previous section 3.2. For comparison,

we analyze the data two more times, once assuming the true noise spectrum to be
known, and once assuming the noise to be white, but with an unknown variance. In
the latter case, we again assume a (conjugate) Inv-χ2 prior with an expectation of 2.5
and 3 degrees of freedom for the variance parameter.

The posterior distributions of signal and noise parameters may now be derived
via Monte Carlo integration; we implemented a Metropolis sampler to simulate draws
from the joint posterior probability distribution of all parameters [34]. For the model
including the coloured noise spectrum as unknown, the signal parameters (f , ḟ , a,
φ) may be sampled based on the marginal likelihood expression (29), while samples
of the 51 noise parameters (σ2

0 , . . . , σ2
50) may then be sampled in an additional step

via the conditional distribution of noise parameters for given signal parameters and
the corresponding implied vector of noise residuals (23). Similarly, for the known
spectrum model, sampling of the four signal parameters may be based on the likelihood
expression (31), while sampling for the white noise model may be done using a
Gibbs sampler alternately sampling from the conditional distributions of four signal
parameters and the noise parameter [34].
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Figure 5. Marginal posterior distributions of the noise parameters. The left
panel shows the posterior distribution for the 51 individual parameters of the
coloured noise model. The right panel shows the prior and posterior distributions
of the integrated power in comparison with the corresponding variance parameter
in the white noise model.

Figure 4 shows the resulting marginal posterior distributions of the four signal
parameters in comparison. One can see that application of the more flexible coloured
noise model for the error term yields a more precise posterior distribution than the
white noise model, and in fact the posterior is more similar to the case when the
true noise spectrum is plugged into the model. Looking at the (marginal) posterior
distributions of the noise parameters in figure 5, one can see that although the noise
spectrum is only recovered with great uncertainty, this does not seem to harm the
estimation of the signal parameters of actual interest. The overall variance is better
recovered by the single-parameter white noise model, whereas the adaptability of the
coloured noise model to the predominantly low-frequency noise (which is reflected
in the posterior) seems to be the greater advantage. While the relative accuracy of
the different methods is subject to a multitude of circumstances, one can see that
depite its considerably greater complexity, the coloured noise model seems to perform
competitively here.

4. Discussion

This work originated out of the Mock LISA Data Challenges (MLDC) [50], a
gravitational wave parameter estimation effort in the context of the planned Laser
Interferometer Space Antenna (LISA). Here parameters of a signal were to be inferred,
where the signal was buried in noise known to be non-white and interspersed with a
host of individual emission lines [17]. So the problem was to model a non-white,
non-continuous spectrum where the shape of the spectrum was only vaguely known
in advance [18, 19]. Also, the spectrum itself was not of primary interest, but rather
a nuisance parameter that still needed to be accounted for along with the actual
signal. Application of the method described here solved the problem and allowed
the implementation of a Markov chain Monte Carlo (MCMC) algorithm based on a
straightforward generalization of the commonly utilized Gaussian noise assumption,
where modelling the spectrum complicated the analysis only slightly.

Several approaches to the simultaneous estimation of signal and noise parameters
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have been proposed before. An obvious way to model non-white noise would be to
assume a particular time series formulation that allows for some flexibility in the
resulting spectrum, for example an autoregressive (AR) model. Representations of
this kind have been applied in various signal processing contexts, e.g. for detecting
sinusoidal signals and estimating their parameters when these are buried in coloured
noise [51, 52], or in the context of musical pitch estimation, where the signals to
be modelled again are sinusoidal, but include higher harmonics and time-varying
amplitudes [53]. If one is only interested in a narrow frequency band of the data, it
may also be appropriate to model the noise spectrum as constant across the concerned
range [54]. Regarding data treated in their Fourier domain representation, there is
a rich literature concerned with the measurement of spectral densities (see e.g. [26]
and references therein). However, there the aim is usually to produce consistent and
smooth estimates of the spectrum, and the approaches applied include e.g. averaging
[55, 32], smoothing via splines [56] or Bayesian model fitting [57, 58].

The approach to modelling the noise spectrum introduced here is different in
that the spectrum per se is not of interest, or only of interest as far as it enters
into likelihood computations. Smoothness or interpolation therefore are not primarily
aimed for. What in fact is of concern is properly accounting for an a priori uncertainty
in the (discretized, convolved) spectrum, in the frequency resolution that is given
by the numerically Fourier transformed data, which then consequently entails the
necessity for updating our knowledge about the spectrum as data is being processed.
The resulting approach generalizes the model underlying the commonly used Whittle
likelihood [29, 11, 30], and is hence essentially based on the “plain” periodogram
of the noise time series, which for other purposes is commonly dismissed due to its
unfavourable large-sample convergence behaviour. The model is very flexible as it is
built upon a “binned” spectrum estimate without introducing any extra assumptions
on the shape of the underlying noise spectral density. Its generality and simplicity
make it useful for modelling residual noise at very little computational cost. In the
way it is defined, the model is very general; it is a generalization of the model that
constitutes the basis for matched filtering (e.g. [12, 13]) and that is commonly applied
in signal processing problems (e.g. [11]), which then in turn constitutes the special case
of an a priori known spectrum. The additional feature of the approach introduced here
is that it allows to specify corresponding uncertainties in addition to the (prior) scale
of the noise spectrum. Marginalization over the uncertainty in the noise spectrum
yields a Student-t model for the Fourier-domain data as a natural generalization of
the common normal model. Due to the straightforward interpretability of the model
and its computationally convenient form, we expect it to be particularly useful for
modelling an unknown noise spectrum that constitutes a nuisance parameter rather
than being of interest in itself. In that sense, the approach is not primarily aimed at
gaining information about an unknown spectrum, but rather at properly accounting
for uncertainty, and avoiding bias from supposedly precise a priori knowledge of the
spectrum.

Alternatively, the Student-t model may also be viewed as a generalized, robust
model accommodating for heavier-tailed, non-Gaussian, or non-stationary noise.
Related approaches are commonly used in many other applications in the context
of robust statistics [37, 38, 39, 40, 43, 44]. In fact, the use of similar methods
for accommodating noise outliers have already been advocated in the context of
gravitational wave signal processing [41, 42]. Along similar lines, Clark et al. [59]
implemented a (sine-Gaussian) noise-glitch component into the noise model. Principe
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and Pinto [60] suggested the use of a dictionary of glitch “atoms” in order to account
for burst-like noise events. Veitch and Vecchio [61] implemented a coherence test based
on a model selection procedure that is able to discriminate noise glitches (that appear
independently in the data) from actual astrophysical events (that appear coherently
in several data streams). Similarly, Littenberg and Cornish [62] extend their model to
allow for excess noise that is isolated in time and frequency via a wavelet approach.
Middleton [63] treated the general case of Gaussian noise with superimposed Poisson-
distributed impulse noise bursts. We are planning to investigate the performance and
sensitivity of a Student-t model for robust detection and parameter estimation in real
interferometer noise.

We expect the approach to be especially useful as a model component properly
accounting for non-white residual noise, at little computational cost and without
introducing overly restrictive assumptions about the noise. The interpretability of
the Student-t model in the context of robust modeling and M-estimation also makes it
straightforwardly useful for robust inference. In that way, it may particularly be useful
in signal processing contexts [64, 13], but it should be applicable in any case where a
model for (residual) noise is needed [23, 65]. The fact that the model represents noise
properties in terms of its power spectral density and is specified through physically
meaningful parameters may make it particularly appealing in physical or engineering
applications, where modelling is commonly based on Fourier-domain descriptions, and
a time-domain formulation might be hard to incorporate or motivate. The advantage
from application of the more flexible Student-t model will very much depend on the
particular inference problem at hand. The common normal model will obviously be
optimal when its assumptions are met, and the degree to which one will outperform
the other will depend on the particular departure(s) from Gaussianity, or on the
imperfect prior knowledge of the spectrum, even if the data are perfectly Gaussian.
While the range of possible deviations from the standard Gaussian model is infinite,
some insight into the behaviour of a Student-t model may be gained from the robust
statistics literature; the properties of such an approach for location estimation has
been investigated via Monte Carlo studies [66, 39] as well as theoretical considerations
of key figures like relative efficiency or breakdown point [39, 43, 44]. A case study in
the regression context may be found in [38].

The above basic model may in future be extended by introducing smoothness
constraints on the spectrum. This might for example be approached by considering
correlations between neighbouring spectral bins, or by assuming a piecewise constant
spectrum, similar to what was done in [54]; the latter approach would in fact be
a compromise between two models used in the example discussed above (Sec. 3.2),
namely a flat spectrum and individually modelled frequency bins. Another interesting
extension would be the incorporation of cross-spectra [23, 67]. Some of the methods
described here have been coded as an R software extension package and are available
for free download [68].
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Appendix

Appendix A.1. Discrete Fourier transform (DFT)

The Fourier transform convention used in this paper is specified below; it is defined
for a real-valued function h of time t, sampled at N discrete time points, at a sampling
rate of 1

∆t
, and it maps from

{h(t) ∈ R : t = 0, ∆t, 2∆t, . . . , (N − 1)∆t} (A.1)

to a function of frequency f

{h̃(f) ∈ C : f = 0, ∆f , 2∆f , . . . , (N − 1)∆f}, (A.2)

where ∆f = 1
N∆t

and

h̃(f) =
N−1∑

j=0

h(j∆t) exp(−2πij∆tf). (A.3)

The inverse DFT then is given by

h(t) =
1
N

N−1∑

j=0

h̃(j∆f ) exp(2πij∆f t) (A.4)

[22].

Appendix A.2. Relationship between DFT and time series model

Let

αj = Re
(
h̃(fj)

)
and βj = Im

(
h̃(fj)

)
, (A.5)

i.e.: h̃(fj) = αj + βj i. For simplicity, in the following N is assumed to be even; for
uneven N the derivation is similar. The inverse DFT was defined as (A.4):

h(t) =
1
N

N−1∑

j=0

h̃(fj) exp(2πifjt) (A.6)

=
1
N

N
2 −1∑

j=1

[(
2αj cos(2πfjt) + 2(−βj) sin(2πfjt)

)]

+ 1
N α0 + 1

N αN/2 cos(2πifN/2t) (A.7)

where t ∈ {0, ∆t, 2∆t, . . . , (N − 1)∆t}, and fj = j∆f = j
N∆t

are the Fourier
frequencies. So, comparing to (1), one can see that the realizations of a0, . . . , abN/2c
and b0, . . . , bbN/2c are derived from a given time series by Fourier-transforming and
then setting

aj = κj

√
∆t

N αj and bj = −κj

√
∆t

N βj (A.8)

for j = 0, . . . , bN/2c, which especially implies that

a2
j + b2

j = κ2
j

∆t

N (α2
j + β2

j ) = κ2
j

∆t

N

∣∣h̃(fj)
∣∣2. (A.9)
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