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Although the formulas for the light deflection due to quadrupole gravitational field of deflecting bodies are well known, the formulas are rather complicated, so that massive computations of quadrupole light deflection (e.g., in the framework of astrometric survey missions like Gaia) are time-consuming. Considering an observer situated within a few million kilometers from the Earth (clearly the most practical case), we derive the simplest possible form of the relevant formulas still having numerical accuracy of 1 µas. This form leads to simple upper estimates for the quadrupole light deflection in various cases allowing one to relate the magnitude of the actual quadrupole deflection with the corresponding monopole deflection due to the same body. These upper estimates can be used to decide if, for a given configuration, the actual quadrupole deflection should be computed for a given accuracy goal.

Introduction

In the nearest future astrometric observations will reach an accuracy of 1 microarcsecond (µas) level. This level of accuracy requires a precise modelling of light propagation. In particular, the light deflection due to quadrupole gravitational field of deflecting bodies should be taken into account [START_REF] Klioner | [END_REF]. On the other hand, the accuracy of radio and laser radar links of future missions like BepiColombo or Juno require modelling of the light travel time at the level of millimeters. Therefore, also the Shapiro delay due to quadrupole fields is of practical interest.

Analytical formulas for quadrupole light deflection are well known. Analytical solutions of light deflection in a quadrupole gravitational field have been investigated by many authors [START_REF] Ivanitskaya | Lorentz Basis and Gravitational Effects in Einstein's Theory of Gravitation[END_REF]2,14,1,6,7,[START_REF] Klioner | [END_REF][START_REF] Klioner | Gaia report[END_REF]. For the first time the full analytical solution for the light trajectory in a quadrupole field has been obtained in [6]. These results were confirmed by a different approach in [13]. Various generalization (higher-order multipole moments, time-dependence, etc.) were derived in [10,11,12]. The formulas suitable for high-accuracy data reduction are given e.g. in [START_REF] Klioner | [END_REF]. These formulas are rather complicated, so that massive computations of quadrupole light deflection are time-consuming. This represents a problem for data processing of astrometric surveys. For instance, the ESA mission Gaia (to be launched 2012) will have to process about 10 12 individual observations of about 10 9 distinct celestial objects. It is, therefore, obvious that efficient analytical algorithms to compute the quadrupole light deflection are mandatory. Furthermore, for observations in solar system, the quadrupole light deflection reaches the microarcsecond level only for objects at a relatively small angular distance from giant planets. Accordingly, it is highly useful to find simple analytical formulas by means of which one can decide whether or not the quadrupole field needs to be taken into account for a given accuracy and a given geometrical configuration.

In this paper we assume that the observer is located within a few million kilometers from the Earth's orbit which is clearly the most practical case (e.g. Gaia will have a Lissajous-like orbit around Lagrange point L 2 of the system Earth-Sun). This allows one to simplify the formulas for the quadrupole light deflection considerably. Besides these simplified formulas we derive simple analytical estimates of the quadrupole deflection allowing one to decide if the effect should be computed and taken into account for a given accuracy. We also give a strict upper estimate for the quadrupole Shapiro delay.

The paper is organized as follows. In Section 2 we summarize some basics about light deflection and introduce the notation. In Section 3 the full quadrupole formula in post-Newtonian order, the simplest possible expression for stars and quasars still having an accuracy of 1 µas and simple upper estimates of the latter are presented. In Section 4 the full quadrupole formula in post-Newtonian order, the simplest possible expression for solar system objects still having an accuracy of 1 µas and criteria are presented. An improved estimation of quadrupole Shapiro effect is given in Section 5. The efficiency and correctness of the upper estimates and simplified quadrupole formulas have been investigated numerically and analytically, and the results are discussed in Section 6. A summary of the findings is given in Section 7.

Some basic formulas of light propagation

Let us summarize some basic formulas of light propagation in post-Newtonian approximation. The geodetic equations in post-Newtonian order is linear with respect to the metric components and, therefore, the coordinates of a photon and the derivative with respect to coordinate time t are given by [START_REF] Klioner | [END_REF] x

(t) = x(t 0 ) + c σ (t -t 0 ) + i ∆x i (t) + O(c -4 ), (1) 
ẋ(t) = c σ + i ∆ ẋi (t) + O(c -4 ). (2) 
The sum runs over individual terms in the metric of various physical origins (e.g. monopole gravitational field of various bodies, quadrupole fields, higher-order multipole fields, etc.). Here, t 0 is the moment of emission, x 0 = x(t 0 ) is the position of source and

σ = lim t→-∞ ẋ(t)
c is the unit tangent vector of light path at infinitely past. The position of observer is x 1 = x(t 1 ) and t 1 is the moment of observation. The unit coordinate direction of the light propagation at the moment of observation reads n = ẋ(t 1 ) | ẋ(t 1 )| . In post-Newtonian order the transformation σ to n reads [6,[START_REF] Klioner | [END_REF] 

n = σ + i δσ i + O(c -4 ) , δσ i = σ × c -1 ∆ ẋi (t 1 ) × σ . (3) 
The spherical symmetric part (monopole contribution) due to one massive body A and its absolute value are given by (cf. Eq. (102) in [START_REF] Klioner | [END_REF])

δσ A pN = -(1 + γ) G c 2 M A d A d 2 A 1 + σ • r A 1 r A 1 , δσ A pN = (1 + γ) G c 2 M A d A 1 + σ • r A 1 r A 1 . ( 4 
)
Here γ is the PPN parameter, M A is the mass of body A, c is the speed of light, G is the gravitational constant, and

d A = σ × r A 1 × σ is the impact parameter, d A = |d A |, r A 1 = x(t 1 ) -x A , r A 1 = r A 1
, and x A is the position of massive body A. In order to consider light propagation between two given points x 0 and x 1 (as it is needed for the data processing for solar system objects) let us define vectors

r A 0 = x(t 0 )-x A and R = x 1 -x 0 = r A 1 -r A 0 with absolute values R = |R| and r A 0 = |r A 0 |, and unit vector k = R/R. In post-Newtonian approximation, the transformation k to n reads [5] n = k + i δk i + O(c -4 ) , δk i = k × c -1 ∆ ẋi (t 1 ) -R -1 ∆x i (t 1 ) × k . (5) 
The impact parameter d A can be computed as

d A = k × r A 1 × k + O(c -2 ) = k × r A 0 × k + O(c -2
). The spherical symmetric part (monopole contribution) due to one massive body A and its absolute value are given by (cf. Eq. (70) in [START_REF] Klioner | [END_REF] or Table 1. Numerical parameters of the giant planets taken from [START_REF] Weissman P R, Mcfadden | Encyclopedia of the Solar System[END_REF]. In this table the values of r A min 1 are given under assumption that the observer is in the vicinity of Earth's orbit. The value J 2 for the Sun is taken from [3].

Parameter

Sun Jupiter Saturn Uranus Neptune Eq. ( 24) in [START_REF] Klioner | [END_REF])

GM A /c 2 [
δk A pN = -(1 + γ) G c 2 M A r A 1 k × r A 0 × r A 1 r A 0 r A 1 + r A 0 • r A 1 , δk A pN = (1 + γ) G c 2 M A r A 1 r A 0 × r A 1 r A 0 r A 1 + r A 0 • r A 1 . (6) 

The quadrupole light deflection for stars and quasars

Using the expression ∆ ẋQ (t 1 ) given by Eq. (44) of [START_REF] Klioner | [END_REF] one gets [START_REF] Klioner | Gaia report[END_REF][START_REF] Zschocke | [END_REF] 

δσ Q = A δσ A Q , δσ A Q = 1 + γ 2 G c 2 α A UA c + β A ĖA c + γ A ḞA c + δ A VA c . (7) 
The scalar functions and vectorial coefficients are given by Eqs. (A.1) -(A.8) of Appendix A.1. The last three terms in Eq. ( 7) can be estimated as

T A 1 = 1 + γ 2 G c 2 β A ĖA c + γ A ḞA c + δ A VA c ≤ 13 G c 2 M A J A 2 P 2 A (r A min 1 ) 3 . (8) 
Here, P A is the equatorial radius, J A 2 is the second zonal harmonics of massive body A, and r A min 1 is the minimal distance between massive body and observer. The proof of this estimation is given in [START_REF] Zschocke | [END_REF].

It is well known (see Table 1 of [START_REF] Klioner | [END_REF]) that the quadrupole light deflection in solar system can achieve the level of 1 µas only for the giant planets (and, possibly, the Sun). Using the parameters in Table 1 we obtain from (8) that T A 1 ≤ 10 -6 µas for all these bodies. Therefore, these terms in [START_REF] Klioner | Gaia report[END_REF] can safely be neglected at the level of a microacrsecond. Accordingly, the simplest possible expression of quadrupole light deflection for stars and quasars still having an accuracy of 1 µas and valid for an observer situated within a few million kilometers of the Earth orbit reads:

δσ A Q = 1 + γ 2 G c 2 α A UA c . (9) 
The simplified formula of quadrupole light deflection ( 9) is still a complicated expression.

In order to avoid evaluation of this term for each object in the data reduction, a simple criterion is needed allowing one to decide whether or not it is necessary to compute the quadrupole light deflection for a source. The absolute value of light deflection due to the quadrupole field of objects A can be estimated as [START_REF] Zschocke | [END_REF] |

δσ A Q | ≤ 9 4 1 + γ 2 GM A c 2 J A 2 P 2 A d 3 A 1 + σ • r A 1 r A 1 . (10) 
A comparison of (10) with the absolute value of the monopole deflection given by ( 4) gives

δσ A Q ≤ 9 8 J A 2 P 2 A d 2 A δσ A pN . (11) 
This estimate relates the quadrupole light deflection for stars and quasars to the corresponding monopole deflection. The latter is relatively large, defined by a simple formula and usually computed for each source and each deflecting body. In this case the estimate (11) can be computed at cost of two multiplications (note that d A is known since it is used for δσ A pN ). In case when | δσ pN | is not readily available, one can use [START_REF] Zschocke | [END_REF] δσ

A Q ≤ 2 (1 + γ) GM A c 2 J A 2 P 2 A d 3 A ( 12 
) ≤ 2 (1 + γ) GM A c 2 J A 2 1 P A , (13) 
where we use d A ≥ P A and (A.1) is estimated by |2 + 3 cos α -cos 3 α| ≤ 4 for α being the angle between vectors σ and r A 1 . Estimate (13) coincides with Eq. (41) of [6].

The quadrupole light deflection for solar system objects

The quadrupole light deflection for solar system objects δk Q is defined by Eqs. ( 36)-( 47) and (69) of [START_REF] Klioner | [END_REF] and can be written as [START_REF] Klioner | Gaia report[END_REF][START_REF] Zschocke | [END_REF]:

δk Q = A δk A Q , δk A Q = 1 + γ 2 G c 2 A α A A A c + β A B A c + γ A C A c + δ A D A c . ( 14 
)
The scalar functions and vectorial coefficients are given in Eqs. (A.10) -(A.17) in Appendix A.2. In [START_REF] Zschocke | [END_REF] it has been shown that the last three terms in ( 14) can be estimated by

T A 2 = 1 + γ 2 G c 2 β A B A c + γ A C A c + δ A D A c ≤ 9 2 1 P 2 A r A min 1 + 1 P A (r A min 1 ) 2 + 19 2 1 (r A min 1 ) 3 GM A c 2 J A 2 P 2 A . ( 15 
)
Using the parameters given in Table 1 we obtain the numerical estimates of T A 2 given in Table 2. In view of these numerical values, the simplest possible form of quadrupole light deflection (14) for solar system objects with an accuracy of 1 µas and valid for an observer situated within a few million kilometers of the Earth orbit is given by

δk A Q = 1 + γ 2 G c 2 α A A A c . (16) 
Again, in order to avoid unnecessary computations, one needs an efficient way to estimate the magnitude of δk A Q . This can be done using the following inequality [START_REF] Zschocke | [END_REF] 

| δk A Q | ≤ 3 (1 + γ) 2 GM A c 2 1 d 2 A 1 r A 1 J A 2 P 2 A r A 0 × r A 1 r A 0 r A 1 + r A 0 • r A 1 . (17) 
A comparison with (6) yields

δk A Q ≤ 3 2 P 2 A d 2 A J A 2 δk A pN . (18) 
This estimate allows one to estimate the magnitude of the quadrupole light deflection in observations of solar system objects using the monopole deflection. As it was mentioned above, the monopole deflection is significantly larger and should be usually calculated for each source and each gravitating body (at least for those bodies, for which the quadrupole deflection could be sufficiently large). If | δk pN | has been calculated, the magnitude of δk A Q can be estimated at cost of three multiplications (we note that d A is required to compute | δk pN | and can be considered as known). If | δk pN | is not readily available, we can use [START_REF] Zschocke | [END_REF] 

δk A Q ≤ 2 (1 + γ) GM A c 2 J A 2 P 2 A d 3 A (19) ≤ 2 (1 + γ) GM A c 2 J A 2 1 P A , ( 20 
)
where in the last estimate we have used P A ≤ d A .

Shapiro effect for solar system objects

According to Eq. ( 1), the propagation time c τ = c (t 1 -t 0 ) is given by [6]:

c τ = R + c i δτ i + O c -4 , c δτ i = -k • ∆x i (t 1 ) . ( 21 
)
The formula for the Shapiro delay due to one mass monopole with mass M A is well known:

c δτ A pN = (1 + γ) GM A c 2 log r A 0 + r A 1 + R r A 0 + r A 1 -R . ( 22 
)
This monopole Shapiro delay becomes unboundedly large for growing distance R between the points of emission and observations (although it is growing logarithmically with R). The quadrupole Shapiro effect c δτ

Q = -k • ∆x Q (t 1
) is given by [6]: 

c δτ Q = A c δτ A Q , c δτ A Q = 1 + γ 2 G c 2 (δ A V A + γ A F A + β A E A ) , (23) 
G c 2 | δ A V A | ≤ G M A c 2 J A 2 P 2 A d 2 A , (24) 
G c 2 | γ A F A + β A E A | ≤ G M A c 2 J A 2 P 2 A (r A 0 ) 2 + P 2 A (r A 1 ) 2 . ( 25 
)
Now since d A ≥ P A , r A 0 ≥ P A , and r A 1 ≥ P A , we conclude that

c δτ A Q ≤ 3 J A 2 GM A c 2 , (26) 
which represents a strict upper bound of quadrupole Shapiro delay and slightly improves the estimate given in Eq. ( 47) in [6]. This estimate implies that the quadrupole Shapiro delay has an upper bound that depends only on physical parameters of the massive body. Table 3 gives maximal possible quadrupole effects in the Shapiro delay for any positions of the source and observer.

Efficiency of the upper estimates

As explained above, the principal merit of the simple upper estimates for the quadrupole light deflection (Eqs. ( 11), ( 12) and ( 13) for stars and quasars and Eqs. ( 18), ( 19) and (20) for solar system objects) is the possibility to use them, at very low computational cost, as criteria to decide if the quadrupole deflection should be calculated or not for a given configuration and a given numerical accuracy. In this Section we investigate the numerical efficiency of the criteria for two situations: (1) purely random homogeneous distribution of sources and the position of observer with respect to the deflecting body, and (2) light rays grazing the surface of the deflecting body, but with directions still randomly distributed with respect to the body (note that the body is not spherically symmetric and the orientation does play a role). For both of these situations we compute minimal, maximal and mean values of the ratio between the quadrupole deflection and its upper estimate. The higher is the mean value the more efficient is the corresponding estimate as a criterion.

For stars and quasars, starting from ( 11), ( 12) and ( 13), we consider the following ratios

r 1 = δσ A Q 9 8 P 2 A d 2 A |J A 2 | δσ A pN , r 2 = δσ A Q 4 G M A c 2 |J A 2 | P 2 A d 3 A , r 3 = δσ A Q 4 G M A c 2 |J A 2 | 1 P A , (27) 
where δσ A Q and δσ A pN are determined by Eqs. ( 9) and (4), respectively. For solar system objects, starting from Eqs. ( 18), ( 19) and (20), we consider the ratios

r 4 = δk A Q 3 2 P 2 A d 2 A |J A 2 | δk A pN , r 5 = δk A Q 4 G M A c 2 |J A 2 | P 2 A d 3 A , r 6 = δk A Q 4 G M A c 2 |J A 2 | 1 P A , (28) 
where δk A Q and δk A pN is determined by Eqs. ( 16) and ( 6), respectively. For all six ratios it is easy to compute the minimal and maximal values analytically. Besides that for both distributions of sources and observers it is possible to compute analytically the mathematical expectations (i.e. the mean values) of each of six ratios r i . These values are given in Table 4. The analytical calculations have been also confirmed by direct numerical simulations in which the ratios r i were computed for correspondingly distributed sources and positions of the observer and statistically analyzed.

The minimal values of all r i is zero. The maximal values of the ratios are 1 except for r 1 and r 4 for grazing rays. In the latter case the maximal values are less than 1. This reflects the fact that for grazing rays the numerical coefficients in (11) and ( 18) can be improved (but only for grazing rays and not for arbitrary situation). The fact that no maximal values are greater than 1 confirms the validity of the estimates. The efficiency of the criteria are characterized by the mean values of the ratios. Considering that the random distribution of sources is much more realistic situation than the grazing rays we can conclude that the trivial estimates (13) and (20) leading to r 3 and r 6 are extremely inefficient: the value of quadrupole deflection is typically five orders of magnitude lower than "predicted" by those estimates. The criteria (12) and (19) are already better: the quadrupole deflection is typically only 3 times lower than "predicted" (the mean value of both r 2 and r 5 for random sources is 0.33). It is clear, however, than the most efficient criteria are given by ( 11) and (18). For stars and quasars the value of the quadrupole deflection "predicted" by ( 11) is only two times larger than the real value. It means that only 50% of the computations based on (11) lead to values lower than the desired numerical cut-off value and could be saved. Estimates (11) and (18) will be used for the Gaia data processing. In the numerical simulations, the expressions T 1 in (8) and T 2 in (15) have also been calculated and have shown, independently from the analytical calculations, the correctness of simplified quadrupole formula (9) for stars and quasars and (16) for solar system objects.

Summary

In this paper we have developed efficient numerical algorithms allowing one to compute the quadrupole light deflection with minimal computational efforts. These algorithms 0.00 0.72 × 10 -5 1.00

will be used for data processing of the ESA astrometric survey mission Gaia and can be useful in other cases. In this work we assume that the observer is situated within a few million kilometers from the Earth orbit. This is clearly the most practical case. Other situations can be analyzed along the lines of our reasoning. The main results which are valid with an accuracy of at least 1 µas are as follows:

1. Quadrupole light deflection for stars and quasars can be computed as (9).

2. Eqs. ( 11), ( 12) and ( 13) can be used as an a priori criterion if the quadrupole light deflection (9) has to be computed for a given source.

3. Quadrupole light deflection for solar system sources can be computed as [START_REF] Weissman P R, Mcfadden | Encyclopedia of the Solar System[END_REF].

4. Eqs. (18), ( 19) and (20) can be used as an a priori criterion if the quadrupole light deflection [START_REF] Weissman P R, Mcfadden | Encyclopedia of the Solar System[END_REF] has to be computed for a given solar system object.

The efficiency of the upper estimates has been investigated numerically and analytically, and the results are shown in Table 4. They demonstrate high efficiency and correctness of the upper estimates, both for randomly distributed sources and sources which generate grazing rays. According to these investigation, the most efficient upper estimate of quadrupole light deflection is (11) for stars and quasars and (18) for solar system objects. The correctness of simplified quadrupole formulas has also been shown by numerical simulations.

Additionally, we give a strict upper bound (26) for the quadrupole effect in the Shapiro delay. This upper bound can be used to decide whether or not the quadrupole Shapiro delay should be taken into account if high-accuracy ranging measurements are to be modelled; e.g. in the framework of missions like BepiColombo [15] or Juno.

Table 2 .

 2 Maximal numerical values of the neglected terms as given by (8) and(15) 

		m]		1476. 1.40987 0.42215 0.064473 0.076067
	J A 2 [10 -3 ]		0.0002	14.697	16.331	3.516	3.538
	P A [10 6 m]		696.	71.492	60.268	25.559	24.764
	r A min 1	[10 12 m]		0.147	0.59	1.20	2.59	4.31
	GM A J A 2 P 2 A /c 2 [10 15 m 3 ]	0.143	0.106	0.025 0.000148 0.000165
	Parameter	Sun	Jupiter	Saturn	Uranus	Neptune
	T A 1 [µas]		< 10 -6 for Sun and giant planets
	T A						

2 [µas] 1.86 × 10 -3 3.26 × 10 -2 5.32 × 10 -3 8.11 × 10 -4 5.79 × 10 -5

Table 3 .

 3 Numerical values of estimate (26).

	Parameter	Sun Jupiter Saturn Uranus Neptune
	3 J A 2	G M A c 2 [mm] 0.89	62.16	20.68	0.68	0.81
	where the scalar functions and scalar coefficients are given in Eqs. (A.18) -(A.23) in
	Appendix A.3. This expression for the quadrupole Shapiro delay cannot be reasonably
	simplified. However, one can give a strict upper bound for the quadrupole effect in the
	Shapiro delay. One can demonstrate [17] that		

Table 4 .

 4 Statistical properties of the ratios r i for two distributions of sources (see text for further explanations).

	ratio	random		grazing	
		min mean	max	min mean max
	r 1	0.00 0.49	1.00	0.00 0.59	0.89
	r 2 r 3	0.00 0.33 0.00 0.72 × 10 -5 1.00 1.00	0.00 0.67	1.00
	r 4	0.00 0.38	1.00	0.00 0.44	0.67
	r 5 r 6	0.00 0.33	1.00	0.00 0.67	1.00
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Appendix A. Explicit formulas for the quadrupole terms

We give the full expressions of coefficients and scalar functions of quadrupole light deflection and quadrupole Shapiro effect in post-Newtonian order, because so far they were not being presented in a refereed journal.

Appendix A.1. Light deflection for stars and quasars

The functions in (7) read

3 , (A.4)

Here M A ij is the symmetric and trace-free quadrupole moment of body A. For an axial symmetric body (this approximation is sufficient for the solar system and the accuracy of 1 µas) one has

where R A is the rotational matrix giving the orientation of the figure axis of body A (see Eq. ( 48)-(53) of [START_REF] Klioner | [END_REF]).

Appendix A.2. Light deflection for solar system objects

The functions in (14) read

(A.10)

5 , (A.12)

3 , (A.13)

)

The functions in (23) read

3 , (A.18)

(A.20) .23)