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Abstract

This paper discusses linearised vacuum gravitational perturbations of the Kerr space-
time in a neighbourhood of future null infinity’ *. Unlike earlier discussion of
perturbations of the Kerr space-time we avoid the use of spheroidal harmonics and
harmonic time dependence. Instead we develop the theory in terms of Hertz poten-
tials and spherical harmonics with coupling between modes. The “master equation”
is a single complex scalar wave equation which, in the Minkowski limit, reduces
to the Euler-Poisson-Darboux equation. We solve this by Picard iteration making
extensive use of the flat space-time Riemann-Green function. As an application we
consider the problem of outer boundary conditions for numerical relativity and gen-
eralise earlier results of Buchman & Sarbhach (2006), (2007) for the Schwarzschild
case.

1 Introduction, motivation and conclusions

This paper is about linearised vacuum gravitational perturbations of the Kerr space-time
in a neighbourhood of future null infinity’*. This study is motivated by the increased
interest, both theoretical and observational, in the gravitational radiation emitted by col-
lapsing rotating objects. (In particular an understanding of how zero rest mass fields
propagate far from the source in a curved space-time background is essential for the pre-
scription of outer boundary conditions in humerical relativity.) One might have thought
that this had already been achieved. Linearised perturbations of the Schwarzschild space-
time were discussed originally hy Regge & Wheeler (1957)Land Zerilli (1970), and their
work has inspired many successors, including Buchman & Sarbach (2006),(2007), whose
contribution was the inspiration for the current work. Linearised perturbations of the Kerr
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space-time were first treated systematically_hy Teukblsky [1973) and the state of the art
is described in the classic monographh, Chandrasekhar| (1983). Later developments have
been reviewed recently by Sasaki & Tagbshi (2003). So what more is there to say? Well
the computational techniques employed in this paper start from a very different viewpoint
to this earlier work, and lead to different insights. We review these differences below.

1.1 Separability

The Einstein field equations involve four independent variables and many dependent ones,
leading to a complicated set of partial differential equations. However the Schwarzschild
space-time is spherically symmetric and if two of the independent variables are chosen
to be standard spherical polar angheand¢ one can factor out their dependence in the
equations governing linear problems by decomposing the dependent variables as a sum of
terms involving spherical harmonig$,, (¢, ¢) and their vector and tensor generalisations,
or equivalently in terms of spin-weighted spherical harmonigs, (¢, ¢) . (In all cases
one factors out an”® dependence.) The resulting equations now involve only two in-
dependent variables, usually calleandr. Most studies carry the separability further by
noting that the Schwarzschild space-time is static. They make an additional assumption
of “normal modes” with ar** dependence, thereby reducing the problem to the study of
the properties of ordinary differential equations. This is an excellent way to study prob-
lems such as linearised stability, where one formulates boundary conditions>as\/
and ag" — oo. However for the applications we have in mind, e.g., a collapsing star, only
part of the Schwarzschild space-time is presentraid2M.

The Kerr space-time also possesses symmetries—it is axisymmetric and stationary.
Traditionally spherical harmonics are replaced by spheroidal harmsfcs, aw), where
thee™! “normal mode” dependence is mandatory. However we believe that normal modes
can detract from physical understanding, and so we do not make this assumption. We shall
however use a spherical harmonic decomposition because those functions are complete
on the unit sphere. Because we have axisymmetry rather than spherical symmetry there
will be a cross-coupling of oufl, m)-modes (which involve functions of two variables,
usuallyt andr), and we show how to deal with this in sectldn 5. In particular we publish,
apparently for the first time, expansions tes 6 Y}, (0, ¢) andsin 6(9/00) ;Y,..(8, ¢)
as sums of theY;,,,(6, ¢) for contiguoud.

1.2 Chartsand null tetrads

Almost all treatments of perturbations of the Kerr space-time use the well-known Boyer-
Lindquist chart, referred to here ésr, 6, ¢). Those based on the approach._of Teukolsky
(1973) use also the Newman & Penfdse (1962) (NP) null tetrad associated with this chart,
in which the only nonzero Weyl curvature scalarig. This chart (and associated NP
tetrad) has many convenient properties but we believe that it is suboptimal for the descrip-
tion of zero rest mass fields near future null infinify . We prefer to usela Newman & Unti
(1962) chartu, r, 0, ¢) whereu is a retarded time variable, and take great care about its
choice in sectiofl2.



1.3 Formalismsfor linearised perturbation theory

The Einstein field equations are an exceedingly complicated set of coupled nonlinear
partial differential equations. However in the Regge-Wheeler-Zerilli theory it was soon
recognised that perturbations could be described completely in terms of a single complex
scalar function satisfying a “master equation”, a sort of time-independent one dimensional
Schiodinger equation._Teukolski (1973) realised that the equations governing linearised
perturbations could also be reduced to a single “master equation” for a complex scalar
field, essentially the linearisedl, or ¥,. (Chandrasekhat (1983) then showed how to
transform the master equation into Schwarzschild form. As was pointed out above, we
wish here to avoid normal modes, but we would like a master equation formalism.

In fact the master equation property is rather fundamental and was already known
at the end of the nineteenth century._Eertz (1889) considered classical electrodynamics
and introduced a Hertz bivector potentfat® = H!* whose divergence generated au-
tomatically a vector potentiall® in Lorentz gauge.H* has sufficient gauge freedom
that it can be determined in terms of a single complex scalar field which satisfies a linear
wave equation._Sachs & Bergmann (1958) extended the idea to linearised perturbations
of Minkowski space-time, where the Hertz potenfi&l”? has the usual Riemann tensor
symmetries and/**? ,; generates a metric perturbation in de Donder gauge. Afgéfid
has sufficient gauge freedom to be described by a single complex scalar field satisfying
a linear wave equation._Penrose (1965) generalised these ideas to the case aéspin
rest mass scalar fields propagating in Minkowski space-time. They could be described
in terms of a totally symmetric 2-component spinor of valeRgeand, by a suitable
choice of gauge, the Hertz spinor could be specified in terms of a single complex scalar
field satisfying a linear wave equatioh._Stewart (1979) generalised Penrose’s work, re-
stricted to integrak, to arbitrary vacuum background space-times in the electromagnetic
case and vacuum algebraically special space-times in the gravitational case. Stewart’s
work, restricted to vacuum space-times of Petrov type D (which includes Schwarzschild
and Kerr) is reviewed in sectidh 4. (Nearly similar results can be found.in_ Chrzahowski
(1975), Kegeles & Cohn (1979) and references therein.) Because we will be considering
Newman & PenroSe (1962) theory in a Petrov type D space-time we utilise the formalism
of Geroch, Held & Penrose (1973) which greatly simplifies the calculations. We give a
brief introduction to this formalism in secti@h 3.

1.4 Evolution equations

Whichever formalism we use for linearised theory we have to solve a second order linear
partial differential equation in four independent variables. As explained above we can
factor out the angular dependence leaving us with a countable set of linear differential
equations with two independent variables, saandr. We are not making a Fourier
decomposition with respect tand so we have to solve a partial differential equation for
say x(t,r). In sectiorlb we write this formally a&[x] = C[x| where all of the terms

on the right hand side vanish whéih = a = 0, the “curvature terms”. The flat space
equationE[x| = 0 turns out to be the Euler-Poisson-Darboux (EPD) equation which, in
this context, can be solved exactly, Darbioux (1899), Stewarti(2009). We next argue that in
a neighbourhood o¥ * wherea/r < M/r < 1 the coefficients of the derivativesdx]

are at least one order of magnitude smaller than the corresponding coefficiéijig.in
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This means that we can sol¥8y| = C[x] by Picard iteration, i.e., by solving a sequence
of problemsE[x )] = 0, E[xm)] = Clxm-n] forn =1,2,.... Then the solution of the
original problem isy = lim, .. x(»). We carry out thex = 1 step, and show how, for
reasonably simple initial data, one can obtgin analytically.

Solutions of the homogeneous flat space-time equdiigf) = 0 can be split in an
unambiguous way into “outgoing” and “incoming” modes which, except in the simplest
cases, do not satisfy a Huygens’s principle. For prescribed initial data we showhow
can be written as the sum of an inhomogeneous “mixed” mode, and two outgoing and one
incoming homogeneous modes. As far as we know this result has not appeared before
in the relativity literature, and so offers new insight into the propagation of waves on a
curved space-time background.

1.5 Outer boundary conditions

Numerical relativists face a difficult problem modelling radiation far from a compact
source, because a space-time grid cannot be arbitrarily large. There are various ways
to circumvent this problem e.g., conformal compactification or hyperboloidal slicing.
However a simple approach requires the specification of boundary conditions. Suppose
we use a spherical polar chaft, R, ©, ®), with R < R,. We would need to specify
boundary conditions on the timelike hypersurfd¢e= R,. We would like to specify
conditions at this artificial boundary which are transparent to “outgoing” radiation (in-
cluding possible backscattering), and do not produce spurious radiation flowing back into
the computational domain. There are very many approaches to this problem on a flat
space-time background, and perhaps the simplest is that of Bayliss & Turkel (1980). This
work has been generalised to propagation on a Schwarzschild space-time background
by Buchman & Sarbatch (2006), (2007), and this work is the inspiration for the current
study. In sectiold7 we use our techniques to extend their work to propagation on a Kerr
space-time background. The reader may be disappointed because we do not include a
detailed comparison with their results. They made clever use of the rich properties of
the Schwarzschild solution and offered a different representation of solutions of the per-
turbed theory. We have used only properties which generalise to the Kerr case, and so
our representation is different. One cannot recover their results by simply taking the limit
a — 0 of ours. Bearing this in mind our results, in this limit, appear to be fully consistent
with theirs. We find that the Bayliss-Turkel boundary conditions are indeed transparent
to homogeneous (flat space-time) outgoing modes and block (or at least reduce the mag-
nitude of) the incoming ones. The “reflection coefficient” for the incoming modes is of
the same order of magnitude as thal.in_Buchman & Sartiach!(2007). Miraculously the
Bayliss-Turkel conditions are transparent also to the inhomogeneous (curved space-time)
mixed modes! These results appear to be novel.
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2 Coordinatechart and tetrad for the Kerr space-time
We shall be considering perturbations on a background Kerr space-time. This is often

described using the Rayer & I indaulist (1967) chatt= (,7,0, ). A space-time con-
taining a mas$/ with angular momentum/a placed at the origin has line element

M7 52 AMaFsin?f - -
ds2:(1— T)dt”z—p—dfuﬂdtd(p

7 A a
_ 2Ma’t ., ~ 517
— prdF? — (f2 +a®+ ~§L " sin? 9) sin® 0 d¢?, 1)
P
where ~
A =72 — 2MF7 + d?, p° =%+ a’cos®f. (2)

It turns out that this chart is not well suited for our purposes. Following earlier work of
Rai et &l (2007), we introduce.a Newman & Wnti (1962) (NU) coordinate ¢hart 6, ¢)
together with an adapteéd Newman & Penrase (1962) NP tetradu-Eberdinate will be
aretarded time, i.e., a solution of the relativistic eikonal equation

g u,duj) = 07 (3)

which has, in the Boyer-Lindquist chart, the asymptotic farm ¢ — 7 asi — co. From
the work ofiBaiet all(200)7) it has an asymptotic expansion in the Boyer-Lindquist chart
asi — oo given byu = ¢ — 7 wherer*(r, §) is defined by

- FoooAM? —La?sin?0  aMB — Ma?
r :<7’+2Mlog2M— F — = —
4 2.2 | 3 4. 47
16M* —8M=a” + £a” sin 9_ @)
373
32M° — 24M3a? + Ma*(2 + Lsin* ) 1
— +0 | = .
474 7

(We could also define amdvanced time v = ¢ +7*.) Note that there is no natural place to
truncate this and subsequent asymptotic expansions. Truncating too early may lose useful
information and truncating late leads to unwieldy formulae. The underlying calculations
could be done to arbitrary accuracy, and indeed they included about twice as many terms
as those presented here.

Bai et al [2007) chose their NP tetrad as follows. Hirstdu, i.e.,l; is normal to the
hypersurfaces = const., viz.,

la = ug=(1,—hy, —hs,0), (5)

whereh, = 07*/0F andhy = 877*/85. Next they chosen o dv and the requirement

g‘%lani) =1 giVES
1
Ng = gf)é _ gﬁh12 _ g§§h22 (1, hq, hs,0). ©)




The requirements that andm be null, orthogonal té andn, andg‘igmam,; = —1fixm
andm up to (a) complex conjugatiom; — m, m — m, and (b) aspin m — e¥m where

1y is real. We choose
( 903Si 9\/ 227 911\/2g hy? +29 B2
B —hy? i ﬁZ
933 2g71ha? + 2g53hi®’ g33sin0 oy2 |

(whereX = (72 +a?)? — Aa? sin? §), which is the complex conjugate of Bai’s choice. We
can now computé = ¢%[; etc.

So far we have worked in the Boyer-Lindquist chaft = (¢, 7, 0, gE). Following
Newman & Unii [1962) we introduce a new chaft = (u,r,0, ¢) adapted to the NP
tetrad as follows. The first coordinateis= ¢ —* defined above. The surfaces- const.
are null hypersurfaces with geodesic null generaftorg/e choose the second coordinate
r to be an affine parameter along the geodesics, normalised so that as7 — oo.
(NotelBai et all(20017) wrote instead of-.)

The angular coordinategsand ¢ are required to be constant along the null geodesic
generators withf = lim;_, 0 etc.

Now consider the definition df,

(7)

ox®
or

= 1%(z°), (8)

where the right hand sides can be expressed as power serjgs By reversion of series
we can obtain asymptotic expansionsf6(z¢),

4M?  8M3 — Ma?(2 — 3sin?0)

f:u+7’+2Mlog<2§W>+

2r2
16M* — M?a?(8 — 9sin” 0)
3r3
8M® — 6M>3a? cos? 0 + 1= Ma*(8 — 40sin* 6 + 35sin* §) 1
1 +0( =),
T T
. a’sin?0  Ma®sin® 0 N a*sin? §(4 — 5sin? 0) n 5
e 2r 272 8r3 ©)
Ma*sin* (4 — 7sin® 6 1
a®sin” 0(4 — 7sin )—i—O—,
8r4 7o
~ a?cosfsinf  3a*cosfsinO(1 — 2sin? ) 1
0=0-— O —=
272 * 8r4 * (T5)
~ Ma 4M?a  8M3a — Ma3(4 — 5sin”0) 1
¢=9 72 3r3 4rt * (r5)

These expressions were generated using the computer algebra pREKAJEE 3.8
(script available on request), and are consistent with (and extend) the results given in
Bai et al [2007).



From [®) we can readily obtain an asymptotic expansion of the Jacobian for the trans-
formationz® — 2%, and its inverse. Thus we can re-express the components of the NP
tetrad [b){I7) in the basis defined by tifechart. Before we do so we make two changes.

In the original definitioni(Newman & Unti, 1952), andn were required to be parallely
transported along i.e. the NP scalars— € andn have to vanish. For the Bai tetrad this
is not the case. One can compute thate = O(r~5). We may enforce its vanishing by
means of a suitable spin. Here we are neglecting terms of arger’) and so we have
not done this. We also find = O(r~3). Following|Bai et al(20(07) we make a Lorentz
transformation, aull rotation about [,

[ — 1, n — n+cm+ cm + ccl, m — m + cl,

given by

3iMasin  Ma%cosfsin® iMa?sin (20 — 25sin? ) 1
o 93/2p2 91/2,3 97/24 +0 ’

which ensures = O(r~9).
Carrying out this transformation we find

la: (170a0(i7) 50>7
T

1 M  Mad?2—3sin’0 1
no — (___+ a*(2 — 3sin )+O< )’17

2 r 23 rs

3Ma%cosfsinf  5Ma* cosfsin (4 — 7sin? ) 1
- + +0 0

72 4t 7D

< iMasin®  2Y2Ma®cosfsin  3iMa®sin (4 — 5sin? ) ( 1 )
ma - - - —l_O 3

91/2p2 3 95/24 o
0 r Ma?sin®60  5iMa® cosfsin? 6
T 91/2 93/2p2 93/2):3 -
3Ma*sin® 0(6 — 7 sin* ) 0 1
Y772 +0(55)

irsinf iMa%sin®0  3Ma*sin® (6 — 7sin”0) 0 1
91/2 + 23/2p2 97/2,4 + ’

(10)



wie (1e0(L ,_1+%_Ma2(2—3sin29)+3M2agsin29+0 i,
r8 2 2r3 rd rd

_2Ma2(3()4595in€+0(l7)7M_3a+0(l5)>’
r r r r
o 1\ 3iMasingd Ma?cosfsinf  5iMa®sin (4 — 5sin? §) 0 1
T 91/2,2 91/2,:3 o 95/24 + 5]

m® =

r8 rd

1 Ma? sin® 0 O 1 i iMa?sin @ 0 1
21/2'rjL 23/2p4 + 76 ’_21/27*sin9+ 23/2p4 + )

The NP scalars for this tetrad will be given in the next section.

(11)

3 TheGHP formalism

The Kerr space time is of course of Petrov typeand so two preferred null directions

are singled out, and we have aligned thendn tetrad vectors along them. There is an

extension of the NP formalism duelto Geroch, Held & Penrose (1973) (GHP) which adds

additional structure in such situations, and we review, very briefly, its main features here.
The GHP formalism makes use of of three transformations, of which only two are

relevant here. The first, complex conjugation, is of course familiar,?@%g-+ m*. The

second, dash transform, can be defined by

(la)/ — ,,,LCL7 (na)/ — la’ (mCL)/ — ma’ (m(I,)/ — ma.

This can be used to relabel the NP scalars (connection coefficientsy as, 7, ¢, 5 and
their dash transforms, since

M= _plv A= _0/7 V= _0-,7 T = _T/7 Y= _6,7 a = _ﬁ/'
In addition the Weyl scalars satisfy/, = ¥,_,, for n € [0, 4].
Since the directions dfandn are determined as the repeated principal null directions
the only remaining gauge freedoms are boostsasfdn and spins ofn andm defined

by
l—1=A% non=A2n m-om=e"m, m—om=c™m, (12)

where the parameters and« are real. The GHP formalism copes with the tetrad gauge
(boost and spin) freedom described By (12) as follows ttansforms undeE{12) accord-
ing ton — APtaeiP—9¥y theny is said to be otype (p,q). Alternativelyrn hasboost
weight (p + ¢) andspin weight $(p — ¢). Clearly the types of, n, m andm are(1,1),
(=1,-1), (1,—1) and(—1, 1) respectively. All of the Weyl scalars and most of the NP
scalars transform homogeneously, and their types are shown infigure 1.
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Figure 1: The main part of this figure shows theq) types of those NP scalars which
transform homogeneously under boosts and spins . (The squares have side 1.) At bot-
tom left the effects of the GHP derivatiofis D', 8, 8" are shown. At bottom right the
conversion algorithm to boost and spin weight is illustrated.

The NP scalars, ¢, 3, 3’ and the NP directional derivativés, A, ¢, 6 do not trans-
form homogeneously unddi{12). However they can be composedaritations which
do transform homogeneously. Acting on a quaniityf type (p, ¢) define

by = (D —pe—qé)n,  DP'n=(A+pe+q&)n,

= (0—pB+qB)m,  On=(0+pf —qbn
The types of these derivations are shown in fidlire 1. CldadyndDb’ are boost weight
raising and lowering operators, atidindd’ are spin weight raising and lowering opera-

tors. (In all four cases the increment is 1.)
A routine calculation now gives the non-zero NP scalars for the null tdithd [ID), (11)

(13)
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3iMasinf 1
V1= m i O (ﬁ) ’
v, — _%3 32’Ma4cos€ Lo (%) | (14)
r r r
3iMasin 6 1
v = Ao ().
1
n=0(z),
and
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1
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4 Gravitational Perturbationsvia Hertz Potentials

The study of vacuum gravitational perturbations of the Schwarzschild space-time is rea-
sonably mature with many alternative formalisms, usually based on the pioneering work
of Regge & Wheeler (1957) and Zeflilli (1970). Because they make essential use of the
spherical symmetry, these approaches have not yet been extended to perturbations of Kerr
space-times.

However an alternative approach, Teukdlsky (1973) overcomes this difficulty, and
allows some discussion of perturbations of any vacuum Petrov type D space-time, of
which the most familiar examples are Minkowski, Schwarzschild and Kerr. For such
space-times a NP null tetrad can be chosen so that all of the Weyl scalars ex@ept
zero. Teukolsky examined the Bianchi identities for vacuum perturbations of such space-
times. He was able to construct decoupled wave equations for the perturbation of both
U, andV¥,. This is significant because these quantities are scalar fields which vanish in
the background. The Stewart-Walker lemma, _Stewart & Walker (1974), guarantees that
they are invariant under both infinitesimal coordinate transformations and infinitesimal
Lorentz transformations of the NP tetrad, and so should be physically meaningful.

SubsequentlizChrzanowsski (1975) realised that from either of the Teukolsky scalars
one could construct a (highly gauge dependent) perturbed metric tensor. _Later Wald
(1978) explained why this was possible using a very general argument.

Because the work cited above relies heavily on normal mode decomposition which
we eschew, we shall reintroduce a very different approach. Consider first the familiar
problem of vacuum perturbations of flat Minkowski space-time. One often sets

Gab = Tab + €hab + 0(62)'

Then if one imposes the de Donder gauge condifith,, = 0, the perturbed metric
satisfies
Dhay = 1°°V YV ghay = 0.

There are three technical problems with this approach:

e one is looking forh,, which satisfies not only the wave equation but also the de
Donder gauge condition,

e the tensor wave equation decomposes into uncoupled wave equations only in a
Cartesian chart,

e One needs to impose supplementary gauge conditions in order to identify the two
“gravitational degrees of freedom”.

Analogous problems arise in the solution of Maxwell’'s equations for the vacuum electro-
magnetic field, and of course in this context they have been resolved. The fundamental
insight was due tb_Heltz (1889). For a brief survey of further developmenis_see Stewart
(1979).

The firstimplementation of Hertz potentials for gravitational perturbations of Minkowski
space-time appears to be that.of Sachs & Bergimianni(1958). They considered a “superpo-
tential” H,,.q With the Riemann symmetries

Hapea = H[ab] [ed] — Hcdaln

11



and set
hab = chdHacbd'

Thenh,, is symmetric and satisfies the de Donder gauge condition. THu& jf.; = 0

we have a solution of the linearised Einstein equations on a flat space background. Of
course as a potentidl,,.; has gauge freedom. Suppose thRl.i; = Qlabdjdes] =
Q[defl[abq IS @rbitrary. Then

Habcd - Habcd + vevaabecdfu

generates the same metric perturbation. Using this gauge freedom there are many ways
to reduce the linearised Einstein equations to the solution of two decoupled scalar wave
equations, thus solving the technical problems enumerated above.

Manipulating valence 4 tensors with Weyl symmetry is always awkwaro,.and Eenrose
(1965) realised that these calculations could be simplified greatly using the language of
2-component spinors, and he constructed the Hertz potential theory for zero rest mass
fields of half-integer spin propagating on a flat space-time backgrdund. _Stewart (1979)
extended this theory to propagation of linearised zero rest mass fields with integer spin
on certain curved space-time backgrounds. Here we are concerned with spin 2 fields, and
the Penrose theory generalises to vacuum algebraically special space-time backgrounds.
Note that the Schwarzschild and Kerr space-times belong to the Petrov type D subclass.
These have two repeated principal spinetsand:#, and the Hertz spinoy.zcp itself
has to be of Petrov type N. We state here the results assumingpr = xtatsictp,
wherey is a scalar field of GHP typél, 0). InStewalt(1979) the results are given in
greater detail for the other cagqpcp = xoa0p0c0op, wWhich is the GHP-transform of
this one. The results stated here are more concise than the earlier version because of our
judicious use of the commutation relations between the GHP operators.

Supposey is a scalar field of GHP typgt, 0) which satisfies the wave equation

H[x] = (PP’ — 88 + 3p'P —pb' — 3780 + 78 — 6W,) x =0, (16)
where the quantities inside the round brackets are to be evaluated in the NP tetrad adapted
to the principal null directions, i.el, = 0404/, Ny = tala @aNdm, = o474 in the
background Petrov type D space-time with line eler@éﬁt Then
Gar = 9% + Gao (17)
is a solution of the linearised vacuum Einstein field equations, where
Tap = (X + X)ngnp + Ymgmy + Y my, — 27 amy) — 27n(amb), (18)
and
X =88 x+278y, Y = P'P'x+20' D'y, Z = DP'dx+(r+7)P'x+78x. (19)

(Here the gauge choice is such thain’ = g,* = 0.) Of course we can regard a per-
turbation to the metric tensor as being equivalent to a perturbation to the NP tetrad. The

relevant formulae are

=YX +X)n, — Zmg — Zia,  0a=0,  iy=—1Ym,  (20)
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and R o _ —
=X+ X", AT=0, @' =—Zn"+3Vm" (21)

The NP connection coefficients can be expressed in terms of antisymmetrised partial
derivatives of the tetrad vectols,.Caocke (1989), e.g.,

k= 2ma® M)

and these equations can be perturbed in a straightforward manner. The resulting perturbed
NP connection coefficients are given by

k= [%Db’é’ + 1T+ 27D — 178 + (b7 + Lp(F — 7)) D'~ (22)
(r7" — —\112)6'])( + [— %63 = %(7‘ +7)8% — 77'6] X,

R =0, (23)

6 =[PP’ + L(p—p)P”° + PP + (7 — 7)D'8+ (24)
(07 + 77 — 77 — 77" + pp’ — Ua)D' + p' (7 — 7)¥'] x,

o' = [3P7+ 5/ + )P + AP, (25)

D= [%D’c’)ﬂ + (TP - L8 (P T D - ﬁ’r’é’] X+ (26)

| = 4D'8? — 27D’ — 18P — r(27 + 7D — 73| ¥

p =0, (27)

7= [D + (47 + 7P + (DT + (7 — 7))P]x. (28)

T = [%D O+ (T4 1T’)ID’2 L®'T)P']x, (29)

B=[-1D" 4 (d+ 1) )Do+ (30)
(F+7Ve —pB +pET+7)) D + pd]x,

B =[5+ (1 — 13D+ (3p) — €)D'd (31)

+ (3P T+ p(r —308) — (7 + 7)) P — o)X,

€= [Py + %e’(’)' +7'(7" + 17D + €78 | x (32)
+ [ — %D’E‘)Q — (T + %?’)D'é + %6,62 —7(T+ %?’)D’ + e'?’é] X,

e =0. (33)

The perturbed Weyl tensor components are then given by
T, = 1p'y,
= [1p”8 + 3rD” + 3(D'r)P” + (D 1)P]7,
= [1p”8? + 2rD"0Y + 372D + (D'7)D'd + 37(D'r)P']¥,
_—5\1’2[136, (T+T)D,+P6]X (34)
[3P'8° + 2D'6” + 37°D'd + 37°D|x,
= 3W,[ — p'D + pb' + 7'0 — 7O + 20, ]y + 28'x.

*6)

@
v

é@)
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Although all of these equations are chart independent they do require the NP tetrad to
be aligned along the repeated principal null directions of the background.

We now consider solvind{16) with the tetrad given by (10} (11). This tetrad has
the alignment property only asymptotically, i.e.,ras» co. However the relative errors
we make by ignoring this effect can be estimatedds—°), and so will be ignored.
Note that the individual tetrad components are homogeneous polynomigls\inand
a. (Physically this is obvious since eachQfM anda has the dimensions of length.)
Thus the same is true for the NP scalars, as can be verified by inspectiad of (14) and
@{@3). It follows that the coefficients in the partial differential equaftiry] = 0, {[8), are
homogeneous polynomialsin M anda.

Consider first the simpler equatidny, [x] = 0, obtained by setting/ = a = 0. This
equation governs Hertz potentials on a Minkowski background. We write it as

Hulx] = Huplx] — Husl[x] =0, (35)

where N

Xu T X,r
HMD[X] = X,Tu - %X,TT + #7 (36)
and
1 1 cos 6 _cos b
Hurs[x] = 52 {X,ee + ERCIAS + D 42@%@5 —2(2cot”f + 1)X} :

(37)

In sectiorlb we examine the properties of the operatgg(]. This information is used in
the following sectiofll6 to construct the general solutioft(gf[x] = 0 and the Riemann-
Green function fofH ).

The equation we actually want to sol&[x]| = 0, can be written as

Hu[x] = (Ha — H)[x]- (38)

Becauseu, r, M anda all have the dimension of length we see that all terms on the

left hand side have dimensidg|/L?, and this must also be true for the terms on the right
hand side. These terms are homogeneous polynomidls mandr which vanish when

M = a = 0. It follows that they can be written as asymptotic expansiond fin anda/r

which will converge forr > M > q, i.e., in a neighbourhood of future null infinity .

In such a neighbourhood we should be able to sdi\e (38) by a Picard iteration. Setting
S=Hy—Handy =>.", x@) We try to solve the sequence

Harlxo)] =0, Hurlxgan] = Shxw), k=0,1,2,..., (39)

with suitable initial data. Recall that we will know the Riemann-Green functioffor
so that both equations above can be solved. Clearly we can solve this system for a finite
number of terms only, buj:éV X% should furnish a useful asymptotic expansionan
the neighbourhood of interest.

We shall implement this procedure after a minor change of coordinatesf, ¢) —
(u,v,0, ) wherev = u+2r. In Minkowski space-time is an advanced time coordinate.
Using this chart the right hand side €£X38), which we shall henceforth refer to as the
“source terms”, can be written as

S[X] = vaX,UU + CG@X,@G + C¢¢X,¢¢ + CuX,u + CUX,U + C@X,@ + C¢X,¢ + CX7 (40)
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4M  2Ma*(3cos®*0 —1)  6M?a*(1 — cos®0) 1
—— + +0 ,

r r3 réd

1 1 1

oM 1 Masin 6 1 AM 1
cvz—+o<—), cgz—W+o<—), Cy = 4“+0(—),

7D r

C— _4AM N 6iMa cos 0 +O(l).

r3 r4 rd

(41)

For the moment we shall ignore the “source terms”. We reconsider them in ddction 6.
We turn next to an analysis of the operatoy; s|x].

5 Spin weighted spherical harmonics

In this section we are examining the operatty;s defined by [(37) when acting on the
quantityy of spin weight 2. This equation originated frof1}(16) restricted to Minkowski
space-time where = 7/ = 0 (see [Ib)), i.e., from the termdd’y. Thus we need to
consider the restrictions of the derivatiahand®’ to Minkowski space-time. Using the
definitions [IB) and the scalalS115) we may write these restrictions acting on a quantity
n(u,v, 0, ) of spin weights as

5 1 cosf o1 N 1 cos 1
M7= E <n’6 " sme Zsin@n’qﬁ) oM = E (77,6 + "5 g * Zsinﬁn’¢) ’
(42)

which imply

(O On — Onryy) 1 = 7%77- (43)
In this section we regarg as a function defined on the unit sphere (with coordinates
f and ¢) depending on additional parametereandv. The reader is warned that there
is little consistency about these definitions in the literature and some authors have fre-
quently changed their conventions between papers! Including or omitting fédetor
is common as is complex conjugation while holdingixed. Our conventions follow
Penrose & Rindler (1984) and Stewart (11990).

Next we define the standard scalar spherical harmonic functions via

2L+ 1)(l —m)
A (I 4+ m)!

0Yim (0, 0) = Yin(0, ¢) = \/ !sz(COS 0)e™?, (44)

where P/"(z) is an associated Legendre function_(Abramowitz & Stegun, 119643,
0,1,2,..., andm is an integer withm| < [. These functions are orthonormal on the
unit sphere

ﬂ o Vi (0, )oY101(0, ¢) sin 0d0dd = 5,161, (45)
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and any smooth function of spin weightefined on the unit sphere can be expressed as
a linear combination of thgY,,,,, the completeness property. Further

I(1+1)

/
By o¥im = ~ =5

If we write this equation as an ordinary differential equationA#gi(x) (wherex = cos 6)
we see that we have a variant of the hypergeometric equation. It follows (Abramowitz &IStegun,
1964) that theP™ (z) satisfy various recurrence relations including

(L =m+ P () =21+ DB (x) = (I = m) B, (z), (47)
(1 —2®)(d/dz)P"(z) = — lwP"(x) + (1 + m) P (x),
which imply similar relations for thgY;,,,.

We now define the spin-weighted spherical harmoniGs (6, ¢) for integers with
0<[s|<lby

—1)5rs /B (8,)% o Yim (0, 6), 0< s <1,
sYlm(e, ¢) _ ( ) (I+s)! ( M) (RS ( ) (48)
: 0>=s>—L

Another way of writing this is

1 / l—s 1 [+ s
6M SYZmZ \/57’ Z+S+1S+1Y2m’ 6/]\43}/2711: _\/57" Z—S—f-ls*l}/lm’ (49)

which implies the eigenvalue equation

) [ — 1

272

Another form for the spin weighted spherical harmonics is

it = LD e,

whereP""*™~*(z) is a generalised associated Legendre function, Virchenko & Feflotova
(2001). Again these functions form a complete set of orthonormal functions on the unit
sphere.

Unfortunately a full set of the recurrence relations satisfied by the has not been
written down yet. From the work of Kuinérs (1959) we have deduced

cos SYEW(07 ¢) = sAlm SYE—I—lm(Q) ¢) + sBlm snm(ea gb) + sClm SYE—lm(Qa ¢)7 (52)

where
(+s+D{l=s+D)(l+m+1)(I—m+1)
— 53
s Aim \/ 20+ 1)(20 +3)(I + 1) ’ (3)
sm
= = A, . 4
sBlm l(l—l-l)’ sClm s{1]—1m (5 )



We have also found

.0
Slne@snm(ea (b) = lem 3Y2+1m<97 ¢) + sElm szlm<97 ¢) + Em szl 1m< ) (55)

where
lem - ZSAZTVH sElm = _sBlma sﬂm = _(l + 1) sClm . (56)

Note that [BR)-f{35) are the generalisationdaf (47) to the general spin case. As far as we
know they have not been published before. (For another approach to cross-coupling see
Nifiez et ali(2010).) The derivation of these results will be given elsewhere.

We now return to the study of the operathl,s[x] defined by [(37). It should be
obvious thatH;s[x] = 81,0}, x Wherex has spin weight 2. We use the completeness
property to expand

(o) l

X(,0,0,0) =3 D X" (,0) 2Yim (0, 9), (57)

=0 m=-—1
so that relation[{30) implies

1

Harsln] = —5,5 (1= D+ 2™ (1) 2Yin (6. 9). (59)

Im

We turn next to the operat@t,,|x].

6 The Euler-Poisson-Darboux equation

6.1 Minkowski space-time

We re-examine the operatdt,,; defined by [[3b),[[3d6) andIB7). Making the change of
coordinateu,r,0,¢) — (u,v,0,¢) wherev = u + 2r, and the spherical harmonic
expansion[[d7) we have

Huld =) (X“””(w ) o+ XD BT (59)

v —Uu
I,m

Suppose we set

N 0) = (0 = u) 2t (). (60)
Then [BD) becomes
Harl] = (0 = w) 2 (£ " (u,v)])oYim (6, ), (61)
lym
where 13 1
glmfetm] = lm ¢ L2 o LT D i (62)
’ v—u ’ v—u ’
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Concentrate first on the solution Bfy;[x] = 0. Then [B1) implies that for allandm,
E'™ ™ (u,v)] = 0. (63)

These are instances of tiiiler-Poisson-Darboux equation, IDarbouk (1899)|_Stewart
(2009). Because the originglhad spins = 2 we must haveé = 2,3, .. .. If [ is an integer

we can write down the general solution BIl(63). L&t:) andV (v) be arbitrary smooth
functions of one variable. Then the general solutiol.df (63) is

N (0 R (g CCTE ) P

Next we need to pose an initial value problem, e.dCaachy problem. However in
Minkowski space-time botlh andv are null coordinates. Thus it is marginally simpler
to set acharacterigtic initial value problem as follows. Choose initial null hypersurfaces
u = ug andv = vy whereuy andv, are constants. Specify

@' ™ (u,v) = F(u), @' ™ (up,v) = G(v), (65)

whereF'(ug) = G(v), and determine the solution in the regio® uy, v > v,. Note that
becauses!™ = const. is obviously a solution off83) we may, without loss of generality
assume'(ug) = G(vy) = 0.

We next relate’(u) to U(u) andG(v) to V (v). First assume tha¥(v) = 0. Then

Im [0 i U(u
F(u) =@ " (u,v9) = (—1) <3_u) (I + 2)!(20)_ w)H+3 (66)

and we can obtaifty (u) from F'(u) by quadratures. By next settifg(u) = 0 we can in
a similar fashion find

. (9" V(v)
G(v) = w' ™ (ug,v) = (%) (=2 —ug) 1" (67)

and we then obtaiv (v) from G(v) by quadratures. It should be clear tiaspecifies
the “outgoing wave” whilg specifies the “incoming wave”, and the general case is the
linear superposition of the two..

Consider first the case of purely outgoing wats) = 0, so that after some harmless

rescaling o\ "
wlm(u,v):( ) O (68)

ou v — )+

The casé = 2 is special, for the solution to the initial value probldml (6Bl (65) requires
Ulu) = (vg — u)°F(u).

Then if the data functio” has compact support, so ddésand we have "sharp propa-
gation”. This is not true if > 2. Consider e.g., the case- 3, F'(u) = 6(u — uy) where
uy > ug, for which

2™ (0, v) = (“ - “0)65(u —uy) — 6(v — UO)%H(U — ),

u—v
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where H(z) is the Heaviside step function. Fer> v, the support ofw!™ (u,v) in-
volves values of; with © > w;. This effect in Minkowski space-time will be called the
“geometric tail”.

Thus the propagation of solutions of a characteristic initial value problem for the Hertz
equation on a Minkowski background is extremely simple. We use the initial data to
determine the function& (u) andV (v) in the general solutiod{®4), and the solution is
fixed. Although geometric tails can occur there is no mixing of incoming and outgoing
modes.

6.2 Kerr space-time

We saw earlier that, at least in the neighbourhood of future null infiAityve can reduce
the problem of solving the Hertz equation on a Kerr background to solving a countable
sequence of problems of the forln}(39). Some care is needed in specifying initial data.
As in the Minkowski case: is a retarded time coordinate, but this is no longer the case
for v, although it does hold asymptotically as— oo holding u fixed. This means that
the limit v — oo holding u fixed is at future null infinity.#, but the limitu — —oo
holding v fixed is not past null infinity. Nevertheless the local operaf@f, regards
u andwv as characteristic coordinates. It is therefore appropriate to possyamptotic
characteristicinitial value problem, where we specify on the null hypersurface = g
and the asymptotically null hypersurface= v,, see figurdl2. We have discussed the
solution of the first problen{B9) in sectibnk.1, and here we show how to solve the second
problem

Hxw] = Skl (69)
with zero data on the initial surfacas= v, andv = v, for knownx e (u, v).

We have already discussed the operator on the left hand siffel of (69) in §€dtion 6.1.
There we wrotey ) as an expansion in terms of spin weighted spherical harmonics with
coefficientsy(g} which we denote by ) (u, v, 0, ¢) < {x(fj(u,v)}. See e.g.037). We
then chose to use new coefficients) via (g (u,v) = (v — u)*?w(j(u, v) so that
X(0) < {wéggl}. Now S[x )] was defined by[{40). Suppose we construct its spin-weighted
spherical harmonic decomposition

Slx] =Y 8" {x{f HaYim. (70)
lm

With these decompositionE69) becomes
Slm[wéfl(u,v)] = sourcé™ (u, v), (71)
where
sourcé™ (u,v) = (v — u)*(Hz)Slm[{(v — u)l+2wé$(u, v)}, (72)

a sequence of inhomogeneous Euler-Poisson-Darboux equations with known sources.
Without further restrictions solutions diZf71) are not unique. FOﬂéiB‘(u,v) is a
solution then so iso( 7' (u, v) +w@(f} (u, v), wherew{ [} (u, v) is any solution of the homo-
geneous equatioIﬁBB). We can make the solution unique by imposing data on the initial
surfacesu = up andv = vy. Taking into account the underlying iteration scheme the
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most obvious choice is to requicef{;l(u, v) to vanish on these initial surfaces, but the

choice is arbitrary. This imposition of data makes the solutio—df (71) unique, and it is

most elegantly expressed in terms of the Riemann-Green function, as we now explain.
The left hand side off{J1) is an Euler-Poisson-Darboux operatar,_Darboux (1899),

Stewalt(2009). The Riemann-Green function is

(UI o u/)21+2

R(u’)qﬂ; u,U) = (U’ — u)lfl(v — u/)

0 oFi(l—1,143;1;2), (73)

where
(v —v)(u —u)

(v —u)(w =)’

and, I is the hypergeometric function. For intedehis is a rational function, e.g.,

(74)

Zz =

(1—2)7° [ =2,
oFi(l—1,1+3;1;2) = ¢ (1 —2)77(1 +52) [ =3, (75)
(1—2)2(1 4122+ 152%) [ =4.

P(u,v)

V=11

S(UQ, Uo)

Figure 2: The characteristic initial value problem. The initial surfacesu, andv = v,
are shown. P with coordinatequ, v) is a typical field point to the future of the initial
surfaces. The line of constantthrough P meetsv = vy at ). The line of constant
throughP meetsu = uy at R. In order to determine the solutiongtof the homogeneous
problem we need to specify initial data alo§g) and SR. In order to determine the
solution atP of the inhomogeneous problem we need to specify initial data el6hgnd
SR and perform an integral involving the source terms over the rectahgiéq). For
simplicity, our inhomogeneous problems have zero datd@mandSR.

The solution of [I1) with zero (asymptotically) characteristic initial data is, se fig. 2,

wan(u,’v) = ff R, v'; u,v)sourc€™ (u',v') du'dv’
e, (76)
:/ du'/ dv' R(u',v'; u, v)sourcé™ (v, v'),
uo Vo
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where source® was defined in[[d2). (For non-trivial initial data we need to add on the
right hand side line integrals aloriy) andS R, see_Stewar: (2009).) It will be convenient
to denote the indefinite integral implied by the right hand sid&df (76) biufhs; u, v),

a function of(«’, v") and(u, v), so that

wf{’)‘(u, v) = rhs(u, v; u, v) — rhs(u, vo; u, v) — rhs(ug, v; u, v) + rhg(ug, vo; u, v)

(77)
= rhg(P) — rhs(Q) — rhy(R) + rhs(.9),

for short.
We now show how, at least for the simplest cases, we can com@g@, v)inclosed
form.

6.3 Outgoing solutions

For simplicity of presentation we shall consider in detailthe2, m = 0 flat space-time
outgoing solution
@ioy (u,v) = U (w) /(v — ), (78)

but the techniques we present can handle any choitaraim. We start by substituting
@) in the right hand side dEfl71) obtaining, at the pagirit v'),

sourcéu’,v') = [ea1(v) — /)% + e (v — )] UP (W), (79)

where
Co1 = —H6M, o2 = Ma(96i cos § — 48isin Ody + 64dy). (80)

Here ther,; term measures effects common to both Schwarzschild and Kerr backgrounds
while thec,, one includes angular momentum effects. The symiodsdd,, in ¢, mean
that,Y},, (0, ¢) is to be replaced by the partial derivativg$;,,) ¢ and(»Y},,) 4. Because

of (&2) and[(Bb), the first twe,, terms generate terms for neighbouring valuels which

we shall investigate later. We note also thatifer 2,

(v —uw)t(v — )

R(u',v;u,v) = (o) (81)
Now the indefinite integral ilI6)[¥ 7) becomes
rhs(u’, UI; u, U) = (U - U)75 [021147000 + 022148000] ) (82)

where
Lnpgr = / du' U (u')(u — /)P (v — u')q/ dv' (v —u)™ (v —0")" (v — )", (83)

(The terms with powers, ¢ andr do not occur for = 2 but are needed for other values
of [.)
It turns out that we can carry out théintegration explicitly. Let us define

Tmnpgr = (V' —w)™ (v —0")" / du' UP(u')(u — )P (v — o) —u') ™™ (84)
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Note that integration by parts df{83) gives

[mnpqr = (_Jmnflpqr + m[mfl n—1pgr — rjmmflpqrfﬁ /(TL - 1) (85)

In all cases of interest > m + r and so repeated application BIi85) convériategrals
to J-integrals. In particular

ths= —(v —u)™> [021 (%Jozooo + 11_5J13000 + %JMOOO + 12—5J35000 + %J46OOO) + (86)

1 1 2 2 1
Ca2 (ﬁJOBOOO + 3514000 + 35 J25000 + 5736000 + 7J47000) }

If I > 2 the expression above will include instances/gf,,, withp > 0 org > 0 or
both. By repeated application of the identities

Jmnpqr = _Jerlnpflqr + Jmnflpflqr forp > 07

Jmnpqr = dmnpqg—1r+1 + Jmn—lpq—lr for q> 07

we may assume that all terms in the expression analogolid to (86) kaye= 0.

In order to make further progress we need to spéifi(v’). Various choices are pos-
sible, but we have chosen to examine a Fourier mode of the initial data with wavelength
A,

’

UQO(u') — eik;u ’ (87)
wherek = 1/X, which implies
Jrnoor = (V) — u)™(v — )" (ik)" e D1 — n, ik — o)), (88)

wherel'(a, z) is thelncomplete Gamma function, lAbramowitz & Stequinl(1964). Eventu-
ally we shall need to impose < v < v, wherev, > M, a. Also we are interested in
the wave-zone wherg > \. Settingz = ik(v' — «') we see that we are interested in the
asymptotic limit|z| — oo with arg(z) = . In this limit (Abramowitz & Stegun, 1964),

F(a,z)wz“16Z(1+a_1+(a_1)(a_2)+...). (89)
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These formulae allow us to estimate asymptotic expansions for rhs, aftermm(th, v)
is found from [ZF).

We examine the first order co_rrection;@@f) (u,v) = (v—u)'w(y (u,v) = €™ /(v—u).
The contribution from the poin® is

00 €M (Fica AV — u) T2+ (3ic X — EeanA?) (v —u) P+ O (v —u)™))

X(1) = (v —u) , (90)
wherecy; andey; were defined inl{d0). This is a solution of the inhomogeneous equation,
a mixed mode, neither pure incoming nor pure outgoing. The leading term is of order
O(M/r)O(A/r) smaller tharp(%oo) (u,v). The “Kerr contribution” appears first in the sec-
ond term which is of orde©(Ma/r*)O(A/r) smaller than{j} (u, v). The contribution
from the pointQ) is also given by[{d0) provided we set— v, in the numerator. Since we
can write it in the formJ(u)/(v — ) it is a solution of the homogeneous EPD equation
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(&3), and represents a pure outgoing mode, again two orders of magnitude smaller than
X(200) (u,v). The leading term in the contribution from the poits

e (Lideqv™? — $[((4u — Tug)iX + TA?)car + idepJv™ + O(v™?))

This again is a solution of the homogeneous equalidn (63). If we temporarily ignore the
O(v~?) term we see that it can be written in the fol@l (95) where

; Co1 i\ 2/\2 62/\3 24A4
V — ikug | 21 - -
(W) =e [30 ((v —up)?  (v—wp)® (v—up)t + (v —1up)® +
(92)
Cop I\ B 32 B 12003 n 60\*
105 \ (v —ug)® (v—wp)* (v—wup)® (v—up)b/ |

Thus it is a pure incoming mode, again two orders of magnitude smallerxﬁ%&n, v).
The exponential dependence suggests that it is propagating information about the initial
data. Finally the leading term in the contribution from the pdint given by setting
v — 1o in the numerator off{31). This is of the forfi(u)/(v — «) and so is a pure
outgoing wave. It is clear that the contributidnl(90) frdtris the only inhomogeneous
one. The other three terms are a solution of the homogeneous equation required so that
the totalx(?l0 satisfies the initial conditions an= u, andv = vy.

Next we briefly summarise the results for purely outgdirg 3 data. Assuming for
simplicity a Fourier mode we set

, 1 6
30 o iku
X(o)(u,v) = Aze <v " + (o — u)Q) : (93)

In the wave zone the second terni$é)/v) smaller than the leading one which differs
from X(O) 0 (u,v) by the amplituded;. The contribution t(x?g (u,v) from the pointP is

. Liem A Licgp\ + Heg N2
XﬁnggelkU<(2 e e +O((v—u)_5)), (94)

v—u)d (v —u)?

which bears a striking similarity t€{P0). The contributionsﬁ% from the points), R
andsS behave similarly.

Next we describe the interaction between different “Kerr modes”, and for the sake of
generality we assume = 1, and small values df It is straightforward to show that?!
contains aly term—16i\e™** (v — u)~*sin §(9/90) 2Y>1(0, $), which originates from the
coo term in [@0). But from[[35) we have

0
sin @ 70 2Y51(0,9) = gy 2Y31(0, ¢) — é 2Y21(0, ¢).

This means that thé, term inX%f) has to be replaced by a term)iﬁll) and aterm ir}(?ll).
Thed, termin X(l) is easier; one replacelg by the factorim = <. Consider finally the
Coo term mX L which is proportional tod; cos § ,Y3 ;. From [B2) we know

cos 0 5Y31(0,0) = 22 3V (60,0) + § 2Va1(0,0) + 22 2Y21(6, 9),
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and so this term has to be reapportioned between three different modes. In principle this
process continues indefinitely involving arbitrarily high values. ¢f concrete problems

the! = 2 mode is likely to dominate with4,| < |A3] < 1, and so truncation can be a
good approximation.

6.4 Incoming solutions

We need also to examine pure flat space-time incoming modes with

o\ V)

=0 (5)
v) (v—u) (95)
24V
= (v —u)’VW —4(v — ) V® £ 120 — u)V® — 24V’ + o—a)

(If we were to require the usual peeling conditions to hold for the perturbed Weyl cur-
vature, in particular the requiremeti, = O(v=°) asv — oo, then we would need to
requireV ™ = O(v™") for 0 < n < 4. We could satisfy these conditions by requiring,

V(v) = Vag + Va1 /v + Vag Jv* + Vaz Jv? + Vg Jo* + -+ - (96)

for example.) Then just as for the outgoing modes studied in the previous subsection we
can compute the first order correction. All of the integrands are rational functiaris of
andv’ and so the quadratures can be performed analytically. The leading order terms in
the contribution from the poin® are

90 degy Vao(v —u) ™t + (%CQQ‘/QO - @021\/2121(1 —u/v)?) (v —u)"?
( _

H (0 — u) ’

wherecy; andcy, were defined by[(80). This is a solution of the inhomogeneous equation
and hence a mixed mode. The contribution from the pQiigt obtained by letting — v,

in the numerator offf37). It is a solution of the homogeneous equation and represents a
pure outgoing mode. The leading order terms in the contribution from the Bairg

X (97)

20 _4021‘/20(1)71 — (2u — 3ug)v™2) + %@2‘/201)72 — @021‘/21%1}72
(1) (v—u) )

This too is a solution of the homogeneous equatiah (63), and represents a pure ingoing
mode. Finally we obtain the contribution from the poftby lettingv — v, in the
numerator of[[d8), which gives a solution of the homogeneous equation, a pure outgoing
mode.

The treatment of incoming modes is thus seen to be very similar to that of outgoing
modes, and the interaction between modes with diffefremtd m parallels that for the
outgoing modes.

X (98)

7 Boundary conditionsfor numerical relativity

Buchman & Sarbach (2006) have given an excellent extensive review of the many varied
approaches to this problem and so we shall not present this material again. We shall
concentrate on simple local boundary conditions.
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7.1 Bayliss-Turkel boundary conditions

Notice that the principal part of our equatidnl(16) is, in a neighbourhoad ofasymp-
totically Minkowskian in form. This means that we can use results developed for the study
of wave-like equations in Minkowski space-time. Perhaps the simplest local outer bound-
ary conditions for wave-like equations are based on an idea_of Bayliss & ITlirke! (1980)
for the scalar wave equation. If we use characteristic coorditatest, ¢) consider an
expansion of the form

Y = 3 l0:0), (99)

m=k ( )m

We assume this is convergent, or at least asymptotic, in the [limitu| — co. With a
slight extension of the idea of Bayliss and Turkel, we introduce the operatdy defined

by

0 2n+k-—2
Liald] = (a— + "7) v, (100)
(% V—U
as well as the operatds,, ,,[] defined recursively by
Biilv] = Lia[v],  Brm[¥] = L [Bema[¥]l],  m=23,....  (101)

Notice thatBy 1 [¢..:] annihilates the leading term in,,; for any choice offy(u, 0, ¢),
while By, ,[tou:] removes the first leading terms, indeeBy, ,,[1o.:] = O((v—u)~Cn+k)),

To see the significance of these operators let us consider outer boundary conditions
for the Hertz potential equatioBi{38). We start by applying them to the zero order iterate
Hr[x] = 0. First consider pure outgoing modes in Minkowski space-time

-2

Xég’)‘(u,v) = (v—u)* (g—u) % (102)
These form a finite sum of the forfi99) and so are annihilatedy(] for suitablek
and sufficiently large:. Next consider the first order correction to the Hertz sc;aﬁgf.
The contributions from the poin®® for the case$ = 2 and! = 3 are given by[[d0) and
@3). They too are annihilated &y, ,,[] for suitablek andn. Since the contributions from
the points) and.S are pure outgoing modes they share the annihilation property. This is
not true for the contributions from the poiftwhich are pure incoming modes. So how
doesB ,,[] affect incoming modes?

The analogue of{¥9) for incoming modes is

B N (0,0, 0)
Yin = WZ; o (103)

but it is more profitable to study special cases, in particular the pure incoming mode for
the EPD equatior{®5),

e (3) 2%

24V
= (v—u)* VW —4(v —u)’V® 4 12(0 — u)VP — 24V’ 4 o—w)
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Itis easy to see thak, 1 x(;) = (v —u)’V®)(v), so requiring the left hand side to vanish
is equivalent to enforcing’®)(v) = 0. For the particular choice df (v) given by [@5),
the only solution is a constamt(v).

We see that in Minkowski space-time the boundary condifigp|] is transparent to
outgoing modes of the EPD equation and absorbs (at least partially) incoming modes of
Hulx] = 0.

Next consider the first order itera;(x—fzg generated fromy?;) which takes into account
the leading order corrections for a Kerr space-time background. This has to be the so-
lution of an inhomogeneous EPD equation given[hy (71) (72). In general a solution
will not be unique, for we may always add on an arbitrary solution of the homogeneous
equation, and we need to impose initial conditions to fix it. Recall that we chose bound-
ary conditions forx(?(g appropriate for an pure outgoing mode in Minkowski space-time,
and imposed trivial data for the correctiqfi’. This is required by the Riemann-Green
approach, which delivers a unique solution. Notice the way we have decomp?&ed
into four terms corresponding to the vertices of the characteristic rect&gies, see
figure2 and[[47). The contribution from the poiRtis a genuine solution of the in-
homogeneous equation, while the contributions fiQmRk and.S are the homogeneous
corrections needed to fit the solution to the initial data.

The contribution from the poin® given by [@D) is clearly of the forni.{P9) with = 1.
Somewhat miraculously it is totally transparent to the boundary condiiof]. As
pointed out in the last section the contributions frgjmand S are also pure outgoing
modes of the homogeneous equation, and by the reasoning above they are transparent for
the boundary condition. The contribution from the paihts a solution of the homoge-
neous equation and can be written as a pure incoming modelitith given by [G2).

This means that it can be very substantially dampe@py/].

There are several ways to interpret this result. We could interpret the boundary con-
dition as providing a “transmission coefficient” of— x5 (R)|/Ix{) + Xt = 1 —
O(AM/(v—u)?), or alternatively a “reflection coefficient” of magnitu@ 1/ (v—u)?),
consistent with the results bf Buchman & Sarbéch (2006), (2007).

From another point of view the transmitted solution, i.e., the corrected solution, omit-
ting the contribution '[Q(?B from the pointR, satisfies the inhomogeneous equation, but
for different initial conditions. To see this note that the solution of the homogeneous
equationc) satisfied [8b) with(u) = e**/(vy — u)® on SQ andG(v) = 0 on SR.
Equivalently we impose %00) = ek /(vg—u) onSQ andX%OO) = 0 onSR. The correction
satisfiedx(?g =00onSQ andx(?g = 0 on SR. The contribution from the poin® satisfies
the homogeneous equation for initial data appropriate to the faidm (95)ithgiven by
@3). The corresponding(v) can be obtained froni{l57). Thus we can mimic the effect
of deleting the contribution fron® by imposing notG(v) = 0 on SR butG(v) given by
the negative of the value specified in the previous sentence. By linearity we will obtain
the transmitted solution of the inhomogeneous equation.

This raises a third point—what are the appropriate initial conditions for the correction
terms? In sectiod 6 we chose, for simplicity, pure outgoing data for the Minkowski space-
time contribution and trivial data for the correction. We see that this arbitrary choice
led to a pure ingoing contribution term in the curved space-time correction. Had we
chosen initial data for the correction as in the previous paragraph, there would be no pure
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incoming mode. So what are the appropriate initial conditions?

In many problems in relativistic astrophysics we do not know what the initial condi-
tions were. We hope that solutions settle down to a form independent of the actual initial
conditions. We can model such situations by retaining only the contribution from the point
P to the correction term. For such a procedure the Bayliss-Turkel boundary conditions
are transparent to modes which would be pure outgoing im Minkowski space-time.

In practice numerical relativists do not evolve the Hertz potentialit would prefer
to apply outer boundary conditions to one of the Weyl curvature coefficieptbecause
they are Lorenz scalars and, apart friithey are coordinate gauge invariant quantities.
These are obtained fromby the formulael34). For each partgt® = x{j} + x{) the
expansiond(99) will still be valid, but the parametewill change away from. That is
why £ is included in the definition 0By ,,[|]. The same applies when we consider modes
with [ > 2.

7.2 Bayliss-Turkel boundary conditions for numerical relativity

We have introduced the Bayliss-Turkel boundary conditibnd (100fanH (101)(in,thed, ¢)
chart. They appear to be independentbtinda, but this is a feature of our chosen chart.
We need to transfer the definitions to a numerical relativity ctifui?, ©, ®) via the
sequence

(u,v,0,0) — (u,r,0,0) — (i,7,0,0) — (T, R, 0, d),

where(i, 7, 0, ¢) is the standard Boyer-Lindquist chart.
The first step is easy. Sinee= u + 2r

1{/0 2n+k—2
Lk,n“ = 5 [(5)%0#5 + T] ) (105)

and for convenience we drop the facgor
For the next step we start froiid (9). Clearly

o _(onyo (oo (oi\o  (05) 0
or u,9,¢>_ or ) ot or ) or or | 96 or | ¢

) 2 200 92
:[1+2M_4M +M(8M a(32 3sin 9))4_0(%)] 8_~+
r r ot
a? sin 0 Ma?sin® 6 1 0
1 _ I
[ 73 +0 <7’4)] 8f+
a”cosfsinf COSHSlDQ L0 i 8_~+ 2Ma+o i 8_~
)] o0 r? )] o¢
(106)

Next we see by invertingk9) that

74

_a*sin?f Ma®sin?f  a'sin®6(8 — 7sin? ) 1
+ ro(=),

2r 272 873 7
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and y s =
9:é+a cos@smGjLO(i).

272 7
Thus
oM AM?*  M(8M? —2a%cos?d) (1|0
L= |1 )
kel Tt E T 73 © (7"4) o
—1+a2sin20~+Ma251n20~+0 i 8_+
2772 73 )| or

—a2 cos 0 sin 1 0 2Ma 1 0
—  — + O = — + -+ @) = | =T
I T T 06 T r 0¢

1 a?sin?6 1
(2n+k—2) [%— 573 +O(ﬁ)]-

It is of course impossible to write down algorithms covering all of the possible co-
ordinate systems used by numerical relativists. We have chosen to use a standard chart
(T, R,©, ®) in which the metric is asymptotically Minkowskian

(107)

ds* ~ dT? — dR* — R*(d©? + sin” ©d®d?), (108)

see e.g., the extensive discussion.in_ Deadman & Sielvart: (2009). A numerical relativist
would need to consider the transformation between her/his chart and this one. The line
element[[T08) matches asymptotically the Boyer-Lindquist one if

= 72 2 - -
T=1 R=VP+dsin2d, sin@=,— % Gnd, d=¢ (109)

72 4+ a2sin 6

Carrying out a similar calculation to that used to derieX107) we obtain

2M  4AM?*  M(8M? — a*(2 — 3sin* ©)) 1\] o
0 [ [ i o ()]

Ma? sin® © 0
(R O(ﬁ)] R
g+a Cos@sm@ 8_ g 2Ma+0 i 8_+
R R3 @ R3 R 0P

(2n+k—2) [;+O<R4)}' (110)

Examining [IID) we see that to leading ordgr, [] takes on its Minkowskian form, as
expected. The next order makes a Schwarzschild correction to the coefficigntiof To
second order we have another similar correction to this coefficient. (Indeed i the
coefficient ofd /0T would appear to bél — 217/ R)~'.) These results are fully consistent
with those of_.Buchman & Sarbach (2006),(2007). However angular momentum effects
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creep into the coefficients of the angular derivatives. The second order correction to the
coefficient ofd/00© persists even i/ = 0. It occurs because the asymptotic form of
Boyer-Lindquist chart is not the usual Minkowski one in spherical polar coordinates, see
@{@3). The second order correction to the coefficien® Gi® is the first genuine Kerr
term. The third order correction introduces Kerr terms in all coefficients.

We have of course to insert this operator into the recursively defined_S&e (101),

Bk,l[w] - Lk,l[wL Bk,m[w] = Lk,m [Bk,mfl[w]] ) (111)
and the Bayliss-Turkel outer boundary condition is to impose
Bym[¢] =0, (112)

at the outer numerical boundary for suitable choices,of. andv. The choice of o

is determined by the choice of which Lorentz scalais to be subject to the boundary
condition. (Typicallyy is one of the perturbed Weyl scala¥s.) The choice of: is more
problematic, and there are two issues to be considered.

If the numerical relativist wishes to consider pure linearised theory then from a theo-
retical viewpoint the choice of is arbitrary. However most numerical relativists will hope
to solve the full nonlinear Einstein field equatiohs._Deadman & Stewarti(2009) looked at
the asymptotic expansion neaf* of vacuum asymptotically flat solutions of the full
field equations and, inter alia, compared them with the results deduced from linearised
theory. This suggests that only the first few terms in the asymptotic expansion of a given
1 are given by linearised theory. There is a surprisingly low upper bound, depending on
the choice of), for values ofn which can be justified theoretically.

The second issue is the practical one of the actual implementation of the condition
@{@™13@). This is discussed in general terms in e.q.._Givoli & Nbta (2C03),_Givoli (2004)
andlHagstrom & Warburtdri (2004). A general relativistic implementation is given in
Rinne et all(2009). Choosing a large value fidleads to a surprisingly complicated nu-
merical algorithm.
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