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ABSTRACT

Completing earlier work on three dimensional (3D) N = 1 supergravity with

curvature-squared terms, we construct the general supergravity extension of ‘cosmo-

logical’ massive gravity theories. In particular, we show that all adS vacua of “new

massive gravity” (NMG) correspond to supersymmetric adS vacua of a “super-NMG”

theory that is perturbatively unitary whenever the corresponding NMG theory is per-

turbatively unitary.
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1 Introduction

The local dynamics of Einstein’s general relativity for a three-dimensional spacetime

is trivial because Einstein’s equations imply that the spacetime curvature is zero in

the absence of sources [1–3]. The addition to the standard Einstein-Hilbert (EH)

action of curvature-squared terms leads to non-trivial dynamics but, typically, some

propagated modes have negative energy, implying ghost particles in the quantum theory

and a corresponding loss of unitarity. This is an inevitable feature in four spacetime

dimensions [4] but it was recently discovered [5] that ghosts can be avoided in three

dimensions (3D) if (i) the EH term has the ‘wrong’ sign and (ii) the curvature-squared

invariant is constructed from the scalar1

K = RµνRµν −
3

8
R2 , (1.1)

where Rµν is the Ricci tensor, and R its trace, for a metric g which we take to have

‘mostly plus’ signature. An equivalent expression is K = GµνSµν , where Gµν is the

Einstein tensor and Sµν the Schouten tensor (the 2nd order ‘potential’ for the 3rd order

Cotton tensor, which is the 3D analog of the Weyl tensor). The inclusion of this K-

term in the action introduces a mass parameter m and linearizing about the Minkowski

vacuum one finds that two modes of helicities2 ±2 are propagated, unitarily, with mass

m. This model is now generally referred to as “new massive gravity” (NMG). The

addition of a (parity violating) Lorentz Chern-Simons (LCS) term leads to a model

that propagates the helicity ±2 modes with different masses m± [5]; this has been

called “general massive gravity” (GMG). The limit of GMG in which m− → ∞ for

fixed m+ yields the well-known “topological massive gravity” (TMG) [8].

All these models have ‘cosmological’ extensions in which a cosmological constant

term is added to the Lagrangian density; we may take this to be −2m2λ times the

volume density, where λ is a dimensionless cosmological parameter. In this context it

is convenient to allow for an arbitrary coefficient σ of the EH term, so the Lagrangian

density for cosmological GMG is

LGMG =
√

− det g

[
−2λm2 + σR +

1

m2
K

]
+

1

µ
LLCS , (1.2)

where LLCS is the Lorentz-Chern-Simons density. When λ = 0 there is a Minkowski

vacuum in which are propagated two modes, of helicities +2 and −2, and these are

propagated unitarily as long as σ < 0 and m2 > 0; for σ = −1 this is the GMG model

described above, with masses m± such that m2 = m+m− and µ = m+m−/(m− −m+).

More generally, it is convenient to allow for either sign of m2, in addition to either sign

of σ, because one does not know, a priori, what unitarity will permit in non-Minkowski

vacua. Note, however, that a change in sign of both σ and m2 is equivalent to a change

1See also the discussion in [6, 7].
2We use “helicity” to mean “relativistic helicity”, i.e. the scalar product of the relativistic 3-

momentum with the Lorentz rotation 3-vector, divided by the mass.
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in the overall sign of the µ-independent terms in the action, from which it follows that

the dependence of the field equations on the signs of σ and m2 is entirely through

the sign of the product m2σ. The same is true of the space of solutions, in particular

vacuum solutions, although conclusions concerning the unitarity of modes propagated

in a given vacuum will depend on the individual signs of both σ and m2.

All maximally-symmetric vacua of GMG were found in [5]. By definition, such

vacua have the property that

Gµν = −Λgµν , (1.3)

where Λ is the cosmological constant, which is positive for de Sitter (dS) vacua and

negative for anti-de Sitter (adS) vacua, and zero for Minkowski vacua. When curvature-

squared terms are present it is important to distinguish the cosmological constant Λ

from the cosmological parameter λ, which becomes a quadratic function of Λ:

4m4λ = Λ
(
Λ + 4m2σ

)
. (1.4)

Observe that zero cosmological term allows non-zero cosmological constant; this is a

typical feature of higher-derivative gravity theories first pointed out in [9]. Of particular

interest in the present context are the adS vacua because of their possible association

with a holographically dual conformal field theory (CFT) via the adS3/CFT2 corre-

spondence [10,11]. In this connection, it was shown for NMG in [12] (completing earlier

partial results [13]) that the boundary CFT is non-unitary whenever the ‘bulk’ gravity

theory is unitary, and vice-versa, although there is a special case (recently analyzed

in more detail [14–16, 43]) in which the central charge vanishes and the bulk massive

gravitons are replaced by bulk massive ‘photons’. This result was disappointing, but

perhaps to be expected in light of the similar difficulty afflicting cosmological TMG (we

refer the reader to [17–19] for up-to-date accounts). An obvious question is whether

this situation is any different in the context of a supergravity extension of GMG.

The off-shell N = 1 ‘graviton’ supermultiplet [20, 21] comprises the dreibein (from

which one constructs the metric), the 3D Rarita-Schwinger potential and a scalar

field S. The off-shell supersymmetry transformations are independent of the choice

of action and it is possible to determine the general supersymmetric field configuration

without reference to the action [22]. In particular, a maximally symmetric vacuum is

supersymmetric provided that

S2 = −Λ , (1.5)

which is, of course, possible only when Λ ≤ 0, i.e. for Minkowski or adS vacua. In the

absence of the supergravity cosmological term, which is proportional to S, one does

not need the details of the non-linear theory to see that S = 0 is a solution of the

field equation for S, and hence that there exists a supersymmetric Minkowski vacuum.

The general conditions for unitarity of the linear theory in this vacuum were obtained

in [22], extending an analysis applied earlier to NMG [23]. Generically, the scalar field

S has a kinetic term, and there is one unitary model of this type: the supersymmetric

extension of the R+R2 model. Otherwise, unitarity in the Minkowski vacuum requires
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that S be “auxiliary”, in the sense that there is no (∂S)2 term, and this is indeed the

case for any supersymmetric extension of GMG, as was established already in [5] by

adapting earlier general results [24].

A fully non-linear N = 1 3D supergravity model with generic curvature-squared

terms was constructed in [22]. This was partly motivated by the fact that the non-

linear details are crucial to an understanding of the physics in adS vacua. One question

of obvious interest is whether a given adS vacuum of GMG is supersymmetric in the

context of a supergravity extension of GMG. However, this question was not answered

by the construction of [22]. For the question to make sense one needs a supergravity

model that has (cosmological) GMG as its bosonic truncation after elimination of any

auxiliary fields, and it is implicit in the results of [22] that, apparently, there is no

such model! There is no difficulty in the absence of curvature-squared terms; the EH

invariant includes an S2 term and eliminating S converts the supergravity cosmological

term proportional to S into a standard cosmological term allowing (supersymmetric)

adS vacua. However, the supersymmetric extension of the NMG curvature-squared

scalar K presented in [22] includes both an S4 and an RS2 term, so the S equation of

motion is now cubic with R-dependent coefficients. Elimination of S then leads to an

infinite power series in R (irrespective of the ambiguity in the choice of solution to a

cubic equation). This means that none of the supergravity models constructed in [22]

can really be considered to be a “super-GMG” model, except in the super-TMG limit

(which has been known for some time [25–27]).

This state of affairs suggests that there was some ingredient missing from the anal-

ysis of [22]. In this paper we supply the missing ingredient, and this allows an analysis

of unitarity for massive supergravity theories in adS vacua. The crucial observation is

that there is an additional super-invariant that includes both RS2 and S4 terms but

no curvature-squared term. This was missed in [22] because that paper only aimed to

construct a supersymmetric extension of the K and R2 invariants; this was achieved

but without the appreciation that the result is not unique. Taking into account the new

super-invariant, one can find a supersymmetrization of the K invariant that includes

an S4 term but not an RS2 term3. There is a similar new invariant that can contribute

at the same dimension as the LCS term; although it includes an apparently undesir-

able RS term, its effects may cancel against those of the RS2 term for special values

of S. This possibility motivates us to start with the most general model containing

no terms of dimension higher than R2 but all terms of this dimension or less. This

general supergravity model contains two additional mass parameters as compared with

the model constructed in [22].

Of most interest are those special cases of the general model for which S can be elim-

inated by an algebraic equation with constant coefficients; in such cases, the bosonic

truncation yields a model of precisely GMG type. As will become clear, there is a

simple subclass of such models, which we refer to collectively as “super-GMG”, that

3Or vice versa. As already observed in [5], one of the two must be present because S can be entirely
absent only from super-conformal invariants.
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is parametrized by the same two mass parameters (m,µ) as GMG itself. It turns out

that not all maximally symmetric vacua of GMG are solutions of super-GMG; some

dS vacua are excluded. In contrast, all adS vacua of GMG continue to be solutions of

super-GMG, although some map to two adS vacua of super-GMG because the latter

are distinguished by their dependence on a cosmological mass parameter M that differs

from (and is non-linearly related to) the cosmological parameter λ of GMG. This result

allows us to address the question of which adS vacua of GMG are supersymmetric so-

lutions of super-GMG. What we find can be summarized by saying that all adS vacua

of GMG are supersymmetric vacua of super-GMG but super-GMG has additional adS

vacua that are not supersymmetric.

Given a vacuum solution, the next step is to determine the quadratic approximation

to the action linearized about it, and thence the nature of the modes propagated, in

particular whether they are physical or ghosts. This settles the issue of perturbative

unitarity. Perturbative unitarity is a necessary condition for unitarity, and may be

sufficient in Minkowski vacua, but it is not sufficient in adS vacua because there are

then non-perturbative excitations to take into account; viz. BTZ black holes. In the

context of TMG there is the, by now well-known, problem that the ‘wrong-sign’ of

the EH term needed for perturbative unitarity implies a negative mass for BTZ black

holes, which translates to a negative central charge of the boundary CFT, although it

has been suggested that a superselection principle may allow the consistent exclusion

of BTZ black holes [28]. In any case, we limit ourselves in this paper to a discussion

of perturbative unitarity.

In the supergravity context an analysis of perturbative unitarity generally requires

an analysis of fermionic field fluctuations, as well as bosonic field fluctuations, but

supersymmetric vacua are exceptional because perturbative unitarity of the bosonic

fluctuations implies perturbative unitarity of the fermionic fluctuations. This feature

of supersymmetric vacua greatly simplifies the analysis, and for this reason we consider

here only supersymmetric vacua. The results of [22] for the supersymmetric Minkowski

vacuum are still valid for the larger class of supergravity models found here, for reasons

already explained, so that leaves the supersymmetric adS vacua. For NMG, a complete

analysis of perturbative unitarity for the adS vacua of NMG was presented in [12].

No analogous analysis for supergravity was attempted in [22], mainly because of the

problems already mentioned with the model constructed there. Here we shall show how

the analysis of [12] for perturbative unitarity of NMG extends to the supersymmetric

adS vacua of super-NMG. In particular, we shall show that the super-NMG model is

perturbatively unitary in a supersymmetric adS vacuum whenever the corresponding

NMG model is perturbatively unitary.

This paper is organized as follows. In section 2 we determine the new super-

invariants by means of the superconformal approach. These are then used in section 3 to

construct the bosonic truncation of the general curvature-squared supergravity model,

in which context we determine all maximally-symmetric vacua and revisit pp-wave

solutions. In section 4 we specialize to models in which the scalar field S is “auxiliary”
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in the sense explained above. It turns out that this condition still allows propagating

fluctuations of S; we refer to those cases in which this does not happen as “generalized

super-GMG” and it is in this context that we find the“super-GMG” models that have

GMG as a bosonic truncation. In section 5 we further specialize to super-NMG, and

its “generalized” extension, determining the conditions for perturbative unitarity in

supersymmetric adS vacua. We present our conclusions, with some further discussion,

in section 6.

2 3D supergravity invariants

In order to determine the bosonic terms of 3D supergravity actions involving curvature

squared terms, it is convenient to combine global supersymmetry with local conformal

symmetry. In the conformal approach one first constructs a superconformal gauge

invariant action involving one or more compensating multiplets, which are then used to

gauge fix the superfluous superconformal symmetries to arrive at a standard Poincaré

supergravity invariant. For our purposes, we do not need to perform the complete

conformal programme. We only need to construct globally supersymmetric actions that

can be made invariant under local conformal transformations. This is because global

supersymmetry connects the S-dependent terms in the action to the (possibly higher-

derivative) kinetic terms for the compensating supermultiplet, and local conformal

invariance connects these kinetic terms to the R-dependent terms. After fixing the

compensating fields one ends up with an action containing all relevant R2 and S-

dependent terms. The results are consistent with the bosonic truncations of the super-

invariants found in [22] but, surprisingly, we also find the bosonic truncation of a new

super-invariant. We will begin by recalling the essentials of the conformal procedure

and then show how the bosonic truncations of all relevant super-invariants may be

determined.

2.1 N = 1 superconformal tensor calculus

One starts with a (globally) supersymmetric action, involving one or more compen-

sating multiplets. These can then be coupled to the conformal supergravity multiplet,

that consists of the dreibein eµ
a and the gravitino ψµ, with the following transformation

rules under fermionic symmetries:

δeµ
a =

1

2
ε̄γaψµ , δψµ = Dµ(ω)ε+ γµη , (2.1)

where ε is the ordinary Q-supersymmetry parameter and η is the parameter of the

special S-supersymmetries.

In the following we will be mainly interested in the bosonic part of the action.

Restricting our attention to the bosonic level, conformal invariance means invariance

under dilatations D and special conformal transformations Ka. Invariance of a La-

grangian under these transformations can be achieved in three steps:
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• In a first step, one ensures that all terms in the Lagrangian have the correct

behavior under global dilatations. Under these scale transformations, a field φ

transforms with a certain weight wφ:

δDφ = wφζφ , (2.2)

where ζ denotes the parameter of the dilatations. Invariance of the action under

global scale transformations is then accomplished when the sum of the weights of

all fields in each term adds up to the space-time dimension d (where derivatives

∂µ have weight one).

• In a second step, one takes care of the invariance of the action under local dilata-

tions by introducing a gauge field bµ that transforms as follows:

δDbµ = ∂µζ . (2.3)

All derivatives can then be turned into dilatation-covariant derivatives. E.g. for

a field φ with weight wφ this implies the following substitution:

∂µφ → Dµφ = (∂µ − wφbµ)φ . (2.4)

In a similar manner one can replace 2φ by a dilatation-covariant expression 2Cφ:

2Cφ = ηabDaDbφ = eaµ
(
∂µDaφ− (wφ + 1)bµDaφ+ ωµ abD

bφ
)
. (2.5)

• In the last step, one takes care of the invariance under special conformal trans-

formations Ka. This can be achieved by adding terms involving the Ricci tensor

and scalar and by taking into account the following transformation rules under

Ka:

δKbµ = 2ΛKµ ,

δKDaφ = −2wφΛKaφ ,

δK2Cφ = −2wφ(D
cΛKc)φ+ 2(d− 2 − 2wφ)Λ

c
KDcφ ,

δKRab = −2ηabDcΛ
c
K − 2(d− 2)DaΛKb ,

δKR = −4(d− 1)DcΛKc , (2.6)

where ΛKa are the parameters of the special conformal transformations. The

fact that bµ transforms with a shift under the special conformal transformations

means that, writing out all covariant derivatives, one finds that the dilatation

gauge field drops out in any conformal action.

These three steps are enough to ensure invariance under conformal transformations.

In particular, the last step allows one to extract the dependence of the conformal

Lagrangian on the curvatures. By employing a suitable gauge fixing, the (bosonic)

Lagrangian invariant under local super-Poincaré transformations can then be extracted.
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In order to discuss this gauge fixing in more detail, let us note that in the following

we will always use an off-shell N = 1 scalar multiplet as compensating multiplet. This

consists of a real scalar φ, a Majorana fermion λ and a real auxiliary scalar S. The

transformation rules under ordinary and special supersymmetry are then given by

δφ =
1

4
ε̄λ , δS = −ε̄D/ λ− 2(wφ − 1) λ̄η ,

δλ = D/φ ε− 1

4
Sε− 2wφφ η . (2.7)

We choose the following gauge fixing conditions:

Ka − gauge : bµ = 0 ,

D − gauge : φ = φ0 = constant ,

S − gauge : λ = 0 . (2.8)

As the S-gauge is not invariant under supersymmetry, the super-Poincaré rules will

involve a compensating S-transformation, with parameter

η = −1

8

S

wφφ0
ε . (2.9)

In the following, we will always choose φ0 such that4

wφφ0 = −1

4
. (2.10)

Let us illustrate this procedure by constructing the ordinary two-derivative N = 1,

3D super-Poincaré action. We start from the (globally supersymmetric) action

Lrigid
EH = φ2φ− 1

4
λ̄γµ∂µλ+

1

16
S2 . (2.11)

From now on, we will concentrate on the bosonic terms only. The action corresponding

to the Lagrangian (2.11) is not yet invariant under local conformal transformations. In

order to render it conformally invariant, we first note that it is invariant under global

scale transformations. These transformations consist of a scaling of the coordinates

and a scaling of the fields according to the following weights:

wφ =
1

2
, wλ = wφ +

1

2
= 1 , wS = wφ + 1 =

3

2
. (2.12)

One then has to replace the derivatives by covariant ones and add extra terms involving

curvatures. Using the rules (2.6), one can check that the action corresponding to

Lconf
EH = −32φ2Cφ− 2S2 + 4Rφ2 (2.13)

4This convention is such that according to (2.1) the final supersymmetry rule of the gravitino is
given by : δψµ = Dµ(ω)ε+ 1

2Sγµε, as used in [22].
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is conformally invariant, provided the metric transforms as usual with weight −2. The

super-Poincaré theory can now easily be recovered by using the gauge fixing conditions

(2.8) with, as a consequence of (2.10),

φ0 = −1

2
. (2.14)

One thus finds the following Lagrangian

LEH = R − 2S2 + (fermionic terms) , (2.15)

which is a standard result [20]. We next consider a curvature squared term.

2.2 A supersymmetric curvature squared action

One can employ a similar reasoning as above starting from the higher-derivative su-

persymmetric action

Lrigid
Ric = 2φ2φ− 1

4
λ̄γµ∂µ2λ+

1

16
S2S . (2.16)

To ensure conformal invariance, one now has to choose different weights:

wφ = −1

2
, wλ = wφ +

1

2
= 0 , wS = wφ + 1 =

1

2
. (2.17)

One can again replace all derivatives by covariant ones and add terms involving the

curvatures to obtain a conformally invariant action. Focusing on the bosonic terms,

one obtains the following result:

Lconf
Ric = 4

(
2Cφ

)2
+

1

4
S2CS + 4φ2

[
RµνRµν −

23

64
R2

]
− 1

32
S2R . (2.18)

Note that we have only written the relevant bosonic terms in this Lagrangian. The full

result contains extra terms5 that vanish upon using the gauge fixing condition (2.8).

The third term cancels the Ka-variation of the (2Cφ)2 term, while the last term cancels

the S2CS variation. Upon using the gauge fixing condition

φ0 =
1

2
, (2.19)

one finds that

LRic = RµνRµν −
23

64
R2 +

1

4
S2S − 1

32
S2R + (fermionic terms) . (2.20)

5Of the form RabDaφDbφ, Rφ2Cφ and R(Dφ)2.
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2.3 A new supersymmetric Sn action

An indication for the existence of a new supersymmetric invariant can be obtained by

comparing LRic constructed above with the following two supersymmetric invariants

constructed in [22]:

LK = K − 1

2
S2R− 3

2
S4 + (fermionic terms) ,

LR2 = R2 + 16S2S + 12S2R + 36S4 + (fermionic terms) . (2.21)

If these were the only two invariants then LRic would have to be a linear combination

of LK and LR2 , but this is not the case! In particular, the RS2 terms do not fit.

This means that there must exist a third invariant containing RS2 but no curvature-

squared terms. To construct this invariant we need a globally supersymmetric invariant

not containing a quartic term in the compensating scalar φ. Starting from a superfield

Φ = φ + θαλα + θ2 S, one finds that there are two independent superspace actions of

this type:

Irigid
1 =

∫
d3x d2θ (D2Φ)3 Φ , Irigid

2 =

∫
d3x d2θ (D2Φ)2DαΦDαΦ . (2.22)

These yield the component Lagrangians

Lrigid
1 = S4 + 48S2φ2φ− 12S2λ̄∂/λ− 48Sφ(∂µλ̄)γµγν(∂νλ) + · · · ,

Lrigid
2 = S4 − 16S2(∂φ)2 − 12S2λ̄∂/λ− 32S2φλ̄λ− 16(∂S · ∂φ)λ̄λ

+ 32S∂µφλ̄γ
µν∂νλ+ · · · , (2.23)

where the dots indicate terms quartic in fermions. The next step consists in construct-

ing a conformally invariant Lagrangian out of Lrigid
1 and Lrigid

2 . It turns out that it is

not possible to make them conformally invariant separately; only the combination

Lrigid
1 + 9Lrigid

2 = 10S4 + 48S2φ2φ− 144S2(∂φ)2 + (fermionic terms) (2.24)

can be made conformally invariant. This follows from the observation that

δK

(
S2φ2Cφ− 3S2(Dφ)2 +

1

16
RS2φ2

)
= 0 . (2.25)

The combination Lrigid
1 + 9Lrigid

2 can thus be made conformally invariant by taking the

following weights:

wφ = −1

4
, wλ = wφ +

1

2
=

1

4
, wS = wφ + 1 =

3

4
, (2.26)

by turning all derivatives into covariant ones and then adding the curvature-dependent

term 3RS2φ2. Upon using the gauge fixing condition φ0 = 1, one ends up with the

following Lagrangian:

LS4 = S4 +
3

10
RS2 + (fermionic terms) , (2.27)
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which was not considered in [22].

The new S4 invariant presented above can be generalized by noting that the fol-

lowing component Lagrangians are also invariant under rigid supersymmetry:

L
(n)
1 = Sn + 16(n− 1)Sn−2φ2φ− 4(n− 1)Sn−2λ̄γµ∂µλ

−8(n− 1)(n− 2)Sn−3φ(∂µλ̄)γµγν(∂νλ) + · · · ,
L

(n)
2 = Sn − 16Sn−2(∂φ)2 − 4(n− 1)Sn−2λ̄γµ∂µλ− 16(n− 2)Sn−32φλ̄λ

−8(n− 2)(n− 3)Sn−4(∂S · ∂φ)λ̄λ

+16(n− 2)Sn−3∂µφλ̄γ
µν∂νλ+ · · · . (2.28)

Again, only one linear combination of L
(n)
1 and L

(n)
2 can be made conformally invariant.

This conformal combination leads to the following generalization of (2.27):

LSn = Sn +
n− 1

6n− 14
RSn−2 + (fermionic terms) . (2.29)

Choosing n = 1 we recover the supergravity cosmological term

LS ≡ LC = S + (fermionic terms) . (2.30)

Choosing n = 2 we recover the standard EH terms

LS2 ≡ −1

2
LEH , (2.31)

where LEH is given in (2.15). Choosing n = 3 we arrive at a new invariant with

Lagrangian

LS3 = S3 +
1

2
RS + (fermionic terms) . (2.32)

Finally, we recover LS4 of (2.27) by choosing n = 4.

3 The general ‘curvature-squared’ model

We have now shown that there exist three locally supersymmetric actions with La-

grangians that have the same dimension as R2. The three Lagrangians are

LK = K − 1

2
S2R− 3

2
S4 + (fermionic terms) ,

LR2 = R2 + 16S2S + 12S2R + 36S4 + (fermionic terms) ,

LS4 = S4 +
3

10
RS2 + (fermionic terms) . (3.1)

We also found a fourth Lagrangian LRic of the same dimension but

LRic ≡ LK +
1

64
LR2 +

15

16
LS4 . (3.2)

11



In fact, all Lagrangians at this dimension are linear combinations of LK , LR2 and

LS4 . Similarly, at one lower dimension we will have a linear combination of the scalar

density
√
− det g LS3 and the supersymmetric extension Ltop of the Lorentz-Chern-

Simons Lagrangian density LLCS.

Introducing the gravitational coupling constant κ, and the notation e =
√
− det g

for the volume density, we may now write the action for the most general 3D super-

gravity with no terms of dimension higher than R2 as

I[g, S] =
1

κ2

∫
d3x

{
e

[
MLC + σLEH +

1

m2
LK +

1

8m̃2
LR2 +

1

m̌2
LS4 +

1

µ̌
LS3

]

+
1

µ
LLCS

}
, (3.3)

where (M,m, m̃, m̌) are mass parameters, as are (µ, µ̌) although the action depends

only on the dimensionless combinations (κ2µ, κ2µ̌), and

LLCS =
1

2
ελµνΓρ

λσ

[
∂µΓσ

ρν +
2

3
Γσ

µτΓ
τ
νρ

]
. (3.4)

The bosonic Lagrangian density is

Lbos = e

{
MS + σ

(
R− 2S2

)
+

1

m2

(
K − 1

2
RS2 − 3

2
S4

)
+

1

m̌2

(
S4 +

3

10
RS2

)

− 2

m̃2

[
(∂S)2 − 9

4

(
S2 +

1

6
R

)2
]

+
1

µ̌

(
S3 +

1

2
RS

)}
+

1

µ
LLCS . (3.5)

This has six independent mass parameters (M,m, m̌, m̃, µ̌, µ), not counting the overall

gravitational coupling constant κ, and one dimensionless constant σ. In all, there are

therefore seven dimensionless parameters. We recall that we allow m2 to be negative

as well as positive, and we will similarly allow m̃2 and m̌2 to take either sign.

3.1 Some notation

Before proceeding, we gather together here some useful definitions. First we recall the

definition of m̂2 from [22]:
1

m̂2
=

1

m2
− 3

m̃2
. (3.6)

Three new definitions are
1

(m̂′)2
=

1

m̂2
− 2

3m̌2
,

1

(m̂′′)2
=

1

m̂2
− 3

5m̌2
,

1

(m̂′′′)2
=

1

m̂2
− 27

40m̌2
. (3.7)

In the case that m̃2 = ∞, we drop the hats; for example

1

(m′)2
=

1

m2
− 2

3m̌2
,

1

(m′′)2
=

1

m2
− 3

5m̌2
. (3.8)
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3.2 Field equations

We now turn to the field equations of the general model with Lagrangian density (3.5).

The S field equation is
(
M − 4σS − SR

15m̌2

)
+ 3

(
S2 +

1

6
R

) (
1

µ̌
− 2S

(m̂′)2

)
= − 4

m̃2
D2S . (3.9)

The metric field equation may be written as

0 =

(
−1

2
MS + σS2 − S3

2µ̌
+

3S4

4(m̂′)2

)
gµν + σGµν +

1

µ
Cµν +

1

2m2
Kµν +

1

2m̃2
Lµν

− 2

m̃2

[
∂µS∂νS − 1

2
gµν (∂S)2

]
+

1

2µ̌

[
GµνS −

(
DµDν − gµνD

2
)
S
]

− 1

2(m̂′′)2

[
GµνS

2 −
(
DµDν − gµνD

2
)
S2

]
, (3.10)

where (as in [22])

eCµν = εµ
τρDτSρν , Sµν = Rµν −

1

4
gµνR , (3.11)

Kµν = 2D2Rµν −
1

2
DµDνR− 1

2
gµνD

2R− 13

8
gµνR

2

+
9

2
RRµν − 8Rµ

λRλν + 3gµν (RρσRρσ) , (3.12)

Lµν = −1

2
DµDνR +

1

2
gµνD

2R− 1

8
gµνR

2 +
1

2
RRµν . (3.13)

The trace of the metric field equation can be written as
(
M − 4σS − 1

15m̌2
SR

)
S +

(
S2 +

1

6
R

) (
2σ +

S

µ̌
+

R

12m̂2
− 3S2

2(m̂′)2

)

− 1

3m2

(
K +

1

24
R2

)
=

1

3m̃2

[
2 (∂S)2 +D2R

]
+

2

3µ̌
D2S − 2

3(m̂′′)2
D2S2 .

(3.14)

3.3 Maximally symmetric vacua

The field equations simplify considerably for maximally-symmetric vacua, which are

characterized by the cosmological constant Λ. The S equation simplifies to
(
M − 4σS − 2

5m̌2
SΛ

)
+ 3

(
S2 + Λ

)(
1

µ̌
− 2S

(m̂′)2

)
= 0 . (3.15)

For maximally symmetric spacetimes, the metric equation is implied by its trace. Using

the fact that

R = 6Λ , K = −3

2
Λ2 , (3.16)

for maximally symmetric metrics, the trace of the metric equation can be seen to reduce

to
(
M − 4σS − 2

5m̌2
SΛ

)
S +

(
S2 + Λ

)(
2σ +

Λ

2m̂2
+
S

µ̌
− 3S2

2(m̂′)2

)
= 0 . (3.17)
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Combining this with the S equation, we deduce that

(
S2 + Λ

) [
S2 − 4(m̂′)2

9µ̌
S +

(m̂′)2

9

(
4σ +

Λ

m̂2

)]
= 0 . (3.18)

There are therefore two classes of maximally symmetric vacua, as found for the less

general model of [22] but the present analysis is slightly simpler and better adapted to

the more general case now under consideration. We consider these two classes in turn.

• Supersymmetric vacua with

S2 = −Λ ≥ 0 . (3.19)

In this case both S and metric equation are solved when S solves the cubic

equation

M − 4σS +
2

5m̌2
S3 = 0 . (3.20)

Using the fact that S2 = −Λ, we can rewrite this cubic equation as

M =

(
4σ +

2Λ

5m̌2

)
S . (3.21)

Squaring both sides we then deduce that

Λ

(
σ +

Λ

10m̌2

)2

+
1

16
M2 = 0 . (3.22)

This is a cubic function of Λ that can be plotted as a curve in the (Λ,M2)

plane. In the limit that m̌2 → ∞ this curve reduces to the straight line of [22]

representing supersymmetric vacua.

• The remaining maximally symmetric vacua are generically non-supersymmetric,

and correspond to solutions of the quadratic equation

S2 − 4(m̂′)2

9µ̌
S +

(m̂′)2

9

(
4σ +

Λ

m̂2

)
= 0 . (3.23)

Using this in (3.15), we deduce that

M − 4(m̂′)2

27µ̌

(
σ − 20Λ

(m̂′′′)2

)
=

4S

3

(
σ +

4Λ

(m̂′′′)2
− (m̂′)2

9µ̌2

)
, (3.24)

where S is a solution to (3.23). In the limit that |µ̌| → ∞, we have the following

cubic equation for Λ in terms of M2:

m̂2 (m̂′′′) 4

(
9M

16

)2

= − (m̂′) 2
(
Λ + 4m̂2σ

) [
Λ +

1

4
(m̂′′′) 2σ

]2

. (3.25)

As expected, the sign of M is relevant only when µ̌ is finite because otherwise the

field redefinition S → −S flips the sign of M without causing any other change.

In the further limit that m̌2 → ∞, the cubic reduces to the cubic found in [22]

and plotted there in the (Λ,M2) plane.
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3.4 Review of supersymmetry-preservation conditions

The necessary and sufficient conditions for any bosonic field configuration of 3D su-

pergravity to be supersymmetric were found in [22]. We shall review the result here as

we will want to know whether the solutions of the field equations that we consider are

supersymmetric solutions. A useful necessary condition for supersymmetry is that

16 (∂S)2 =
(
R + 6S2

)2
. (3.26)

When S is constant this implies that R + 6S2 = 0, and this reduces to the condition

(1.5) for maximally symmetric vacua, defined by the condition (1.3). In this case,

one can show (by constructing the Killing spinors) that maximally symmetric vacua

satisfying (1.5) are also maximally supersymmetric.

More generally, a bosonic configuration of 3D supergravity is supersymmetric if the

metric and scalar field S take the form

ds2 = dx2 + 2f(u, x) dudv + h(u, x)du2 , S = −∂x log
√
f , (3.27)

where the functions f and h are arbitrary, except that f is nowhere vanishing. This

implies that

∂xS =
1

4
(R + 6S2) , (3.28)

which is obviously compatible with (3.26) but is a stronger condition.

All cases that we will consider here have constant S; in this case the configuration

(3.27) can be put into the form

ds2 = dx2 + 2e∓2x/`dudv + h(u, x)du2 , S = ±`−1 , (3.29)

for constant ` (with dimensions of inverse mass). Introducing the new coordinate

r = e∓x/` , (3.30)

we see that the supersymmetric configurations for constant S can be put into the

pp-wave form

ds2 = `2
dr2

r2
+ 2r2dudv + h(u, r)du2 , S = ±`−1 . (3.31)

When h = 0 we have an adS spacetime with adS radius `.

3.5 The pp-wave solution revisited

We know from [22] that there are supersymmetric pp-wave configurations, of the type

first discussed in [29], that solve the equations of motion of the curvature-squared

supergravity model constructed there. We now investigate this issue in the context of

the more general model. To this end, we first rewrite the metric of (3.31) as

ds2 = 2e+e− + e∗e∗ , S = ±`−1 , (3.32)
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where

e+ = rdv +
h(u, r)

2r
du , e− = rdu , e∗ =

`

r
dr . (3.33)

The non-vanishing components of the Ricci and Cotton tensors are

R+− = R∗∗ = −2`−2 , R−− = −`
−2

2r2

(
r2∂2

r − r∂r

)
h ,

C−− = `−1(r∂r + 1)R−− . (3.34)

The Ricci scalar is then given by R = −6/`2.

Using these results, we find that the S field equation (3.9) reduces to

M ∓ 4σ`−1 ± 2`−3

5m̌2
= 0 . (3.35)

We also find that all components of the metric equation (3.10) are satisfied trivially

except the −− component, which gives

[
1

m2
r2∂2

r +

(
3

m2
+
`

µ

)
r∂r + `2

(
σ̂ +

1

µ`

)][
∂2

r −
1

r
∂r

]
h = 0 , (3.36)

where

σ̂ = σ ± `−1

2µ̌
+

3`−2

10m̌2
. (3.37)

Trying a solution of the form h ∝ rn, we find that it solves the fourth-order ODE

as long as the power n satisfies the quartic characteristic equation

n(n− 2)

(
1

m2
n(n− 2) +

`

µ
(n− 1) + `2σ̂

)
= 0 , (3.38)

which has roots 0, 2, n+, n−, where

n± = 1 − `m2

2µ
±

√
1 +

m4`2

4µ2
−m2`2σ̂ . (3.39)

Thus, the generic supersymmetric pp-wave solution has

h(u, r) = h+(u)`2−n+rn+ + h−(u)`2−n−rn− + r2f2(u) + `2f3(u) , (3.40)

where h±, f2, f3 are arbitrary dimensionless functions of u. One can arrange for f2

and f3 to vanish by local coordinate transformations, so the solution is essentially

determined by the two dimensionless functions h±(u).

The solution (3.40) assumes that the four roots 0, 2, n+ and n− are all different.

Several critical points can be identified, where some of these roots become degenerate.

We can distinguish the following cases:
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• n+ = n−, n± 6= 0, 2

In this case the characteristic equation has a doubly degenerate root; this arises

for

m2 = 2µ2

(
σ̂ ±

√
σ̂2 − 1

`2µ2

)
≡ m2

± , (3.41)

in which case the generic solution (after setting f2 = f3 = 0) is

h(r, u) = `2−k±rk± [h1(u) log (r/`) + h2(u)] , (3.42)

where

k± ≡ 1 − (`m2
±/2µ) = 1 − `µσ̂ ∓

√
`2µ2σ̂2 − 1 , (3.43)

and h1(u), h2(u) are arbitrary dimensionless functions of u.

• n− = 0 or n− = 2, n+ 6= 0, 2

This case occurs when `µσ̂ = +1 (for n− = 0) or `µσ̂ = −1 (for n− = 2). In case

the root 0 becomes doubly degenerate, the generic solution (with f2 = f3 = 0) is

h(r, u) = `2−k1rk1h1(u) + `2h2(u) log(r/`) , (3.44)

where

k1 = 2 − `m2

µ
, (3.45)

and h1(u), h2(u) are arbitrary dimensionless functions of u. For n− = 2, the

generic solution is given by

h(r, u) = `2−k2rk2h1(u) + r2 log(r/`)h2(u) , (3.46)

where

k2 = −`m
2

µ
. (3.47)

• n+ = 0 or n+ = 2, n− 6= 0, 2

This case is analogous to the previous one, with n− and n+ interchanged. It thus

occurs when `µσ̂ = +1 (for n+ = 0) or `µσ̂ = −1 (for n+ = 2). The generic

solutions are given by (3.44) (for n+ = 0) and (3.46) (for n+ = 2).

• We can also consider the case for which the roots n = 0 and n = 2 become triply

degenerate. The conditions n+ = n− = 0 occur for `µσ̂ = 1 and `m2 = 2µ, while

n+ = n− = 2 is obtained by taking `µσ̂ = −1 and `m2 = −2µ. At these critical

points, the pp-wave solutions disappear and become diffeomorphic to adS3. New

doubly logarithmic solutions arise given by

`µσ̂ = +1 : h(r, u) = `2 log (r/`) [h1(u) log (r/`) + h2(u)] ,

`µσ̂ = −1 : h(r, u) = r2 log (r/`) [h1(u) log (r/`) + h2(u)] , (3.48)

where, again, h1(u), h2(u) are arbitrary dimensionless functions of u.
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All of the pp-wave solutions presented above reduce to those found in [22] in the

limit µ̌→ ∞ and m̌2 → ∞, and for h 6= 0 they all preserve half the supersymmetry of

the adS3 vacuum with Λ = −1/`2; in the conventions of [22] the Killing spinor is

εKill. =

√
r

`

(
ψ0

0

)
, (3.49)

where ψ0 is an arbitrary constant. For h = 0 the solution degenerates to the supersym-

metric adS3 vacuum, which preserves both supersymmetries; the generic Killing spinor

now takes the form

εKill. =

√
r

`

(
ψ0 +

√
2vχ0

`χ0/r

)
, (3.50)

for arbitrary constants ψ0 and χ0.

4 Models with auxiliary S

In this section we will study special cases of the model defined by (3.5) for which

m̃2 = ∞ . (4.1)

This defines a six-parameter subclass of models, all with the feature that the equation

for S is algebraic, in fact a cubic equation. However, the coefficients are not necessarily

constant and this will generically lead to a propagating scalar mode. This can be

avoided by imposing additional conditions on the parameters that define the following

classes of models:

Super − GMG : m̃2 = ∞ , µ̌2 = ∞ (m′′)2 = ∞ (4.2)

Super − NMG : m̃2 = ∞ , µ̌2 = ∞ , (m′′)2 = ∞ , |µ| = ∞

Note that

(m′′)2 = ∞ ⇔ m̌2 =
3

5
m2 . (4.3)

We shall see that there are other “generalized” cases, with finite µ̌, in which a prop-

agating scalar can be avoided, but these arise as a consequence of a relation between

the parameters of the model and the vacuum value of S; see eq. (4.34) below.

4.1 Super-GMG

We begin with the super-GMG model. In this case the Lagrangian density (3.5) sim-

plifies to

L = e

{(
MS − 2σS2 +

1

6m2
S4

)
+ σR +

1

m2
K

}
+

1

µ
LLCS , (4.4)
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which contains the four independent parameters M ,σ ,m and µ. The S equation of

motion is the cubic equation

M − 4σS +
2S3

3m2
= 0 . (4.5)

The special feature of super-GMG is that the coefficients of this cubic equation are

constants, which means that S is constant. There is always at least one solution, and

it is unique when

9M2 > 128m2σ3 . (4.6)

This is satisfied automatically when m2σ < 0.

Given a solution S = S̄ of (4.5), back-substitution into the Lagrangian density

yields6

LGMG = e

{
−2λm2 + σR +

1

m2
K

}
+

1

µ
LLCS , (4.7)

where λ is related to S̄ via the quartic equation

4m4λ = S̄4 − 4m2σS̄2 . (4.8)

This is just the cosmological GMG Lagrangian density of [5], hence the terminology

“super-GMG” for the model with bosonic Lagrangian density (4.4). The special case

in which |µ| = ∞ is then “super-NMG”.

4.1.1 Field equations and vacua

The metric equation of the general model simplifies enormously for super-GMG:

(
−1

2
MS + σS2 − 1

12m2
S4

)
gµν + σGµν +

1

µ
Cµν +

1

2m2
Kµν = 0 . (4.9)

The trace of this equation can be written as

(
M − 4σS +

2S3

3m2

)
S +

(
S2 +

1

6
R

) (
2σ +

R

12m2
− S2

2m2

)
=

(
K +

1

24
R2

)
. (4.10)

Remarkably, the first-parenthesis terms vanish on using the S field equation (4.5).

Given that S = S̄ solves that cubic equation, we see that the trace of the metric

equation further simplifies to

(
S̄2 +

1

6
R

) (
2σ +

R

12m2
− S̄2

2m2

)
=

(
K +

1

24
R2

)
. (4.11)

6As the equation for S is cubic rather than quadratic, this back-substitution is not equivalent to
Gaussian integration over S in the path integral. However, substitution into the field equations rather
than the action I [g, S] yields equations that are equivalent to those found from the action I [g, S̄], so
the back-substitution is still justified classically.
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For maximally symmetric vacua, for which

K +
1

24
R2 = 0 , (4.12)

this equation reduces to

(
S̄2 + Λ

) (
4m2σ + Λ − S̄2

)
= 0 , (4.13)

which also follows from a comparison of (4.8) with (1.4). There are therefore two classes

of vacua of super-GMG:

• Supersymmetric vacua with S̄2 = −Λ. In this case

9m4M2 = −4Λ
(
Λ + 6m2σ

)2
, (4.14)

with Λ < 0, so these vacua are either Minkowski or adS.

• Non-supersymmetric vacua with S̄2 = 4m2σ + Λ 6= −Λ. In this case

9m4M2 = 4
(
Λ + 4m2σ

) (
Λ − 2m2σ

)2
, (4.15)

with Λ > −4m2σ; for m2σ < 0 this implies that all non-supersymmetric vacua

are dS, but there are also non-supersymmetric adS vacua (with λ < 0) when

m2σ > 0.

A consequence of the restriction on Λ in each of these cases is that λ ≥ 0 when m2σ < 0.

Thus, not all of the vacua of GMG are vacua of super-GMG; the dS vacua for λ < 0

and m2σ < 0 are excluded.

As a simple illustration of the fact that there exist supersymmetric adS vacua,

consider

m2σ < 0 , M2 �
∣∣m2σ

∣∣ . (4.16)

In this case there is a unique solution S̄ of the cubic equation (4.5), and it takes the

form

S̄ =
M

4σ

[
1 +

M2

96m2σ3
+ O

(
M4

m4σ2

)]
. (4.17)

The cosmological constant is therefore

Λ = − M2

16σ2

[
1 +

M2

48m2σ3
+ O

(
M4

m4σ2

)]
≤ 0 . (4.18)

It follows that S̄2 = −Λ to the approximation at which we are working, whereas

S̄2 6= Λ + 4m2σ within the same approximation. We thus deduce that these adS vacua

are supersymmetric. The limit M → 0 yields the supersymmetric Minkowski vacuum.

To proceed further, it is convenient to define the two dimensionless parameters

y =
9M2

32m2σ3
, x = 1 +

Λ

2m2σ
. (4.19)
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Figure 1: Graphical representation of the maximally-symmetric vacua of super-GMG in the
(x, y)-plane, with x and y defined in (4.19). Supersymmetric vacua correspond to
points on the solid curve y = 4− 3x2 −x3; all are adS except for the special point
g on this curve, which is Minkowski. The thick part of this curve corresponds to
supersymmetric adS vacua in which NMG is perturbatively unitary, as discussed
in section 5. All other vacua correspond to points on the dashed/dotted curve
y = 4 − 3x2 + x3. Those on the (thick) dashed line are dS, while those on the
(thin) dotted line are adS. The points a and h are dS vacua, while b, d, e and i are
supersymmetric adS. The point f is a non-supersymmetric Minkowski vacuum.
The point c can be dS or non-supersymmetric adS depending on the sign of m2σ.

Note that y ≥ 0 when m2σ > 0 and y ≤ 0 when m2σ < 0, and hence that m2σ may

have either sign when y = 0.

All maximally-symmetric vacua correspond to points in the (x, y)-plane that lie on

one of the two cubic curves

y = 4 − 3x2 ∓ x3 , (4.20)

where the upper sign yields the supersymmetric vacua. Taken together, these two cubic

curves yield a figure in the (x, y) plane, as shown in Fig 1. This figure is symmetric

under (x, y) → (−x, y), although this transformation exchanges a supersymmetric with

a non-supersymmetric vacuum, except at the fixed point (x, y) = (0, 4) where the two

cubic curves cross. This crossing point corresponds to a supersymmetric adS vacuum

with λ = −σ2, as follows from

λ+ σ2 = σ2x2 . (4.21)
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This is the unique vacuum on the y-axis, from which we deduce that the dS vacuum

of cosmological GMG with λ = −σ2 and m2σ < 0 is not a solution of super-GMG.

As pointed out in [12], the adS vacuum at λ = −σ2 and m2σ > 0 has very special

properties; in particular it admits a class of asymptotically adS black hole solutions,

with the extremal black hole solution interpolating between the adS vacuum and a

Kaluza-Klein solution with adS2 × S1 spacetime (see also [30, 31]).

Let us now consider the possible vacua on each of the two cubic curves separately.

All points on the ‘supersymmetric’ cubic curve correspond to adS vacua except, of

course, the point at which this curve crosses the x-axis; at this point x = 1, so Λ = 0.

This is the supersymmetric Minkowski vacuum with M = 0, and λ = 0, although we

could consider this point as representing two vacua since it is valid for either choice of

sign of m2σ. There is also a supersymmetric adS vacuum for m2σ > 0 when M = 0;

this corresponds to the point (x, y) = (−2, 0) at which the curve just touches the x-axis.

This has Λ = −6m2σ, and λ = 3σ2.

The analogous analysis for points on the ‘non-supersymmetric’ cubic curve is a

little more complex. Points on this curve with |x| > 1 correspond to dS vacua, either

with m2σ > 0 (for y > 0) or m2σ < 0 (for y < 0). The limiting point (x, y) = (1, 2)

corresponds to a non-supersymmetric Minkowski vacuum with m2σ > 0 and λ = 0.

The other limiting point (x, y) = (−1, 0) corresponds to a dS vacuum with m2σ < 0

and λ = 0 if it is approached from the y < 0 side. However, it can also be approached

from the y > 0 side, in which case it corresponds to an adS vacuum with m2σ > 0 and

λ = 0. Elsewhere on this cubic curve, i.e. for y > 0 and x < 1, points on the curve

correspond to adS vacua that are not supersymmetric except at the crossing point

(x, y) = (0, 4).

To make contact with the analysis in [12] of the maximally-symmetric vacua of

GMG, we first recall that (1.4) has the solution

Λ = −2m2
[
σ ±

√
σ2 + λ

]
, (4.22)

which shows that there are two possible vacua for each λ > −σ2. However, this becomes

4 vacua for each λ if one allows either sign of m2σ. This result is manifest from Fig.

1 since each value of λ > −σ2 corresponds to two (vertical) lines in the (x, y) plane

that are parallel to, but not coincident with, the y-axis, and each of these vertical

lines cuts each of the two cubics curves once. Actually, this is not quite right for

λ = 0, but let us postpone consideration of this special case, and illustrate the generic

case with λ = 3σ2, which corresponds to x = ±2. The choice x = 2 yields a non-

supersymmetric dS vacuum at (x, y) = (2, 0) (and hence Λ = 2m2σ > 0 and M = 0)

and a supersymmetric adS vacuum at (x, y) = (2,−16) (and hence Λ = 2m2σ < 0 and

M 6= 0). As shown in [12], the latter vacuum has very special properties; in particular,

linearization about it yields a quadratic model describing massive particles of spin 1

rather than spin 2. The other choice x = −2 yields a supersymmetric adS vacuum

at (x, y) = (−2, 0) (and hence Λ = −6m2σ < 0 and M = 0) and a dS vacuum at

(x, y) = (−2,−16) (and hence Λ = −6m2σ > 0 and M 6= 0). There is complete
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agreement with [12] and we now learn that the two adS vacua are supersymmetric in

the context of GMG.

The λ = 0 case, which corresponds to |x| = 1, is special because the point (x, y) =

(−1, 0) represents two possible non-supersymmetric vacua, either dS or adS, depending

on the sign of m2σ, as we already observed above, and the same can be said of the

point (x, y) = (1, 0) although both vacua are Minkowski. Taking this into account,

we have six vacua for λ = 0. One may ask how this is compatible with our earlier

conclusion that each value of λ > −σ2 corresponds to four distinct vacua, allowing for

either sign of m2σ. The answer to this question is that two vacua may be equivalent

in the context of GMG but distinct in the context of super-GMG. For example, in

the GMG context the adS vacuum at (x, y) = (−1, 2) would have to be considered

equivalent to the adS vacuum at (x, y) = (−1, 0) because both have the same value of

Λ and λ. But these two vacua have different values of M2 in the super-GMG context;

moreover, one is supersymmetric and the other is not. Similarly, the Minkowski vacuum

at (x, y) = (1, 2) is equivalent to the m2σ > 0 Minkowski vacuum at (x, y) = (1, 0)

in the GMG context, but they differ as vacua of super-GMG because they again have

different values of M2 and one is supersymmetric and the other not.

4.1.2 Other solutions

Let us now turn to solutions of super-GMG that are not maximally symmetric. Of

particular interest are solutions that preserve some fraction of the supersymmetry of

a supersymmetric vacuum solution; this fraction is necessarily either 1/2 or 1. Let us

begin with the observation that since S = S̄, a constant, in any solution of super-GMG

(in contrast to the general model) all supersymmetric solutions have

R = −6S̄2 . (4.23)

Using this to eliminate R from (4.12), we deduce that

K = − 1

24
R2 = −3

2
S̄4 . (4.24)

In other words, both R and K must be constants, such that the vacuum relation

(4.24) holds. This is a very strong condition that eliminates some otherwise plausible

candidate solutions.

For example, for the special case of λ = −1 and m2σ > 0, for which there is a

unique adS vacuum, there is also an adS2 × S1 ‘Kaluza-Klein’ vacuum [30]. In this

vacuum

R = −4m2σ , K = 2m4σ2 . (4.25)

Since the relation (4.24) does not hold, this vacuum is not supersymmetric. It follows

immediately that the static extreme black hole that interpolates between the adS vac-

uum (at infinity) and the ‘Kaluza-Klein’ vacuum (near the horizon) [12] is also not

supersymmetric.
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GMG has extremal BTZ black holes that are supersymmetric solutions of super-

GMG. This is because, firstly, the BTZ black holes are isometric to an adS vacuum

and hence solutions of super-GMG (because all adS vacua of GMG are solutions)

and, secondly, because the analysis of whether global identifications of adS preserve

some fraction of supersymmetry is independent of the choice of action. This argument

actually applies to the general curvature-squared model, but we concentrate on super-

GMG. Are there any other supersymmetric black holes?

To be supersymmetric a black hole must have zero Hawking temperature. This

immediately excludes the class of stationary black hole solutions of NMG found in [30].

It does not exclude the class found in [32], which all have zero Hawking temperature,

but we have not attempted to determine whether any of these are supersymmetric; it

would be a surprise if they were given the absence of non-BTZ supersymmetric static

black holes.

4.2 Generalized super-GMG

We turn now to the more general models for which S is auxiliary. Given only the

condition (4.1), the bosonic truncation of the general action (3.3) is

I[g, S] =
1

κ2

∫
d3x

{
e

[(
MS − 2σS2 +

S3

µ̌
− 3S4

2(m′)2

)
+ σR +

1

m2
K

+
1

2µ̌
RS − 1

2(m′′)2
RS2

]
+

1

µ
LLCS

}
, (4.26)

where m′ and m′′ are as defined in (3.8). The S-equation of motion is algebraic:

M − 4σS +
3S2

µ̌
− 6S3

(m′)2
=

(
S

(m′′)2
− 1

2µ̌

)
R , (4.27)

and it can be solved as a power series in R as long as

0 6= A ≡ 2σ − 3S̄

µ̌
+

9S̄2

(m′)2
. (4.28)

To see this, we set

S = S̄ + αR +
1

2
βR2 + O

(
R3

)
, (4.29)

where S̄ is a constant solution of the cubic equation

M − 4σS̄ +
3S̄2

µ̌
− 6S̄3

(m′)2
= 0 . (4.30)

Substitution into (4.27) yields

α =
1

2A

(
1

2µ̌
− S

(m′′)2

)
, β =

α

A

[
3α

(
1

µ̌
− 6S̄

(m′)2

)
− 1

(m′′)2

]
. (4.31)
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There is no solution of the assumed form if A = 0; in this case the series must involve

fractional powers of R. Assuming A 6= 0, elimination of S yields a Lagrangian density

of the form

L = e

[
−2λ̄m2 + σ̄R +

1

m2
K

]
+

(
1

2µ̌
− S̄

(m′′)2

)2
R2

4A
+ O

(
R3

)
+

1

µ
LLCS , (4.32)

where

−2λ̄m2 = MS̄ − 2σS̄2 +
S̄3

µ̌
− 3S̄4

2(m′)2
, σ̄ = σ +

S̄

2

(
1

µ̌
− S̄

(m′′)2

)
. (4.33)

We now have a model that involves, generically, an additional R2 term as compared

with GMG, as well as higher powers of R. This leads to a loss of perturbative unitarity

in a Minkowski vacuum and we shall see in the following section that the same is true

for an adS vacuum. However, the additional R2 term in the action is absent in the

special case that
1

2µ̌
=

S̄

(m′′)2
, (4.34)

and it is then obvious from (4.27) that all higher powers of R are also absent. The

Lagrangian density (4.32) is therefore precisely of GMG form in this case, with coeffi-

cients

−2λ̄m2 = MS̄ − 2σS̄2 − 3S̄4

2(m′)2
+

2S̄4

(m′′)2
, σ̄ = σ +

S̄2

2(m′′)2
. (4.35)

For the analysis of the following section, it is convenient to introduce the new dimen-

sionless parameter

a = 2m2`

(
S̄

(m′′)2 − 1

µ̌

)
(4.36)

The condition (4.34) can then be written more simply as a = 0. This condition defines

what we shall call the “generalized super-GMG” case. We say “case” rather than

“model” because the condition (4.34) is not just a relation between the parameters of

the general ‘auxiliary-S’ model but also involves S̄.

Observe that one way to achieve a = 0 is to set (m′′)2 = ∞ and |µ̌| = ∞. We

can view this as the special case in which both a = 0 and |µ̌| = ∞ since these two

conditions imply (m′′)2 = ∞. What is special about it is that no condition is imposed

on S̄, so we have a relation between the parameters of the general ‘auxiliary-S’ model

that define a subclass of models. This is precisely the “super-GMG” subclass, which

therefore arises as the |µ̌| = ∞ subcase of the a = 0 “generalized super-GMG” case.

Except for this special subcase, S̄ is constrained by the relation

S̄ = (m′′)2/2µ̌ . (4.37)

Consistency with (4.30) then requires that

µ̌M = (m′′)2

(
2σ − (m′′)4

20µ̌2m̌2

)
. (4.38)
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If the various mass parameters of the model defined by (4.26) satisfy this equation then

there exists a (constant) solution S̄ of the equation for S for which I[g, S̄] is a GMG

action. One simple way in which this condition on the parameters can be satisfied is

to take m̌2 = ∞ and µ̌M = 2σm2.

5 Perturbative unitarity of generalized super-NMG

We now turn to the issue of linearized perturbations about supersymmetric adS vacua.

One of our purposes is to make contact with the results of [12] on linearized pertur-

bations of NMG about adS vacua. The auxiliary tensor field method used there was

covariant, off-shell, and led to complete results that were easy to interpret. Here we

show how this method applies to super-NMG, and extend it to deal with the generalized

super-NMG case. However, we take as our starting point the generic parity-preserving

‘auxiliary-S’ model for which the Lagrangian density is obtained by taking the |µ| → ∞
in (4.26):

L = e

[(
MS − 2σS2 +

S3

µ̌
− 3S4

2(m′)2

)
+ σR +

RS

2µ̌
− RS2

2(m′′)2
+

1

m2
K

]
. (5.1)

As explained in the previous section, elimination of S leads generically to an infinite

series in powers of R. As each term could contribute to the quadratic approximation

in an expansion about an adS vacuum, it is simpler to retain S as an independent field

for the purposes of computing the quadratic action. It is also simpler to replace the

curvature-squared term K by an equivalent Lagrangian involving an auxiliary symmet-

ric tensor field fµν [5]; the resulting action is

I[g, f, S] =
1

κ2

∫
d3x e

[(
MS − 2σS2 +

S3

µ̌
− 3S4

2(m′)2

)
+ σR +

RS

2µ̌
− RS2

2(m′′)2

+ fµνG
µν − 1

2
m2gµνgρσfµ[ρfν]σ

]
. (5.2)

We wish to find the quadratic approximation to this action in a supersymmetric adS

vacuum with cosmological constant Λ = −1/`2.

5.1 Quadratic approximation

We now set

gµν = ḡµν + κhµν , S = ±`−1 + κs ,

fµν = − 1

`2m2

[
ḡµν + κhµν + `2κkµν

]
, (5.3)

where hµν , kµν and s are independent fluctuation fields7, and ḡµν is the background

adS metric. We shall use the notation D̄ to indicate a covariant derivative with respect

7The mass dimensions of these fluctuation fields are: [h] = 1
2 , [s] = 3

2 and [k] = 5
2 .

26



to the standard Levi-Civita connection for the background metric. Expanding the full

Ricci tensor about the adS background we find that

Rµν = −2`−2ḡµν + κR(1)
µν + κ2R(2)

µν + O(κ3) , (5.4)

where

R(1)
µν = −1

2

(
D̄2hµν − D̄ρD̄µhρν − D̄ρD̄νhρµ + D̄µD̄νh

)
. (5.5)

We will need only the trace of the κ2 term, which is

ḡµνR(2)
µν =

1

2
hµν

(
R(1)

µν − 1
2
R(1)ḡµν

)
+ total derivative , (5.6)

where R(1) is the trace of R
(1)
µν in the background metric.

At this point it is useful to recall the gauge symmetries at the linearized level

and what the gauge-invariant objects are. The metric fluctuation transforms in the

standard way under linearized diffeomorphisms,

δξhµν = D̄µξν + D̄νξµ , (5.7)

while kµν and s have been defined such that they are gauge-invariant. The invariant

curvature of hµν is given by the linearized Einstein tensor modified by the cosmological

constant,

Gµν(h) ≡ G(1)
µν (h) + Λhµν

= R(1)
µν − 1

2
R(1)ḡµν − 2Λhµν + Λhḡµν ,

(5.8)

which is the tensor that defines the linearized field equations of pure Einstein gravity

with cosmological constant.

Expanding the action about the vacuum, we find that all terms linear in the fluc-

tuations cancel provided

M = ±4σ

`
∓ 2

5m̌2`3
, (5.9)

which is the S field equation in a supersymmetric vacuum with S̄ = ±`−1; this confirms

the existence of these vacua. For the quadratic terms in the Lagrangian we find the

manifestly gauge-invariant expression

L(2) = −1

2
σ̂hµνGµν(h) +

a

`m2
sḡµνGµν(h) −

1

m2
kµνGµν(h) (5.10)

− 1

4m2

(
kµνkµν − k2

)
−

(
2σ ∓ 3

`µ̌
+

6

`2m2
− 21

5`2m̌2

)
s2 ,

where a, the parameter defined in (4.36), is now given by

a = −m2

(
`

µ̌
∓ 2

(m′′)2

)
= m2

(
− `

µ̌
± 2

m2
∓ 6

5m̌2

)
. (5.11)
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In the present context, the condition a = 0 yields the quadratic approximation for

the “generalized super-NMG” case, and the two conditions a = 0 and |µ̌| = ∞ yield

the quadratic approximation to super-NMG. As the analysis of propagating modes

will depend crucially on whether a is zero or non-zero, and as the a = 0 case is of

more relevance to “massive gravity”, it is useful to note that the parameter σ̂ may be

rewritten as

σ̂ = σ +
1

2`2m2
± 1

4`µ̌
∓ a

4`2m2
. (5.12)

Our next goal is to analyze the modes propagated by the Lagrangian (5.10). After

some field redefinitions, we will be able to do this by comparison with Proca and Fierz-

Pauli theory in anti de Sitter space. For the convenience of the reader, we first review

this topic; one of our aims will be to determine the bounds on the masses of spin-1 and

spin-2 particles in adS that are implied by the absence of tachyons.

5.2 Review of Proca and Fierz-Pauli in adS

For a vector field Aµ the massive Proca Lagrangian in an adS background is given by

LProca = −1

4
F µνFµν −

1

2
M2AµAµ . (5.13)

It propagates massive spin-1 modes; in 3D this means that there are two modes, one

of helicity +1 and one of helicity −1. The existence of two modes can be seen by

inspecting the field equations. Variation with respect to Aµ yields

D̄µFµν −M2Aν = 0 ⇒ D̄µAµ = 0 , (5.14)

where the second equation (the subsidiary condition) follows by taking the divergence

of the first equation. The dynamical equation can then be written as

(
D̄2 − 2Λ −M2

)
Aµ = 0 . (5.15)

The subsidiary condition yields one constraint, which implies that there are in total

two propagating degrees of freedom.

For a symmetric tensor field ϕ and mass parameter M, the FP Lagrangian in an

adS background is

LFP(ϕ;M2) = −1

2
ϕµνGµν(ϕ) − 1

2
M2ḡµνḡρσϕµ[ρϕν]σ . (5.16)

For M2 6= Λ this Lagrangian propagates, massive spin-2 modes; in 3D this means that

there are two modes, one of helicity +2 and one of helicity −2. The presence of two

propagating degrees of freedom can be seen by inspecting the field equation

Gµν(ϕ) +
1

2
M2 (ϕµν − ḡµνϕ̄) = 0 , (ϕ̄ ≡ ḡµνϕµν) . (5.17)
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Taking the divergence of this equation and using the Bianchi identity D̄µGµν = 0, we

obtain

D̄µϕµν − D̄νϕ̄ = 0 ⇒ D̄µD̄νϕµν − D̄2ϕ̄ = 0 . (5.18)

On the other hand, taking the trace of (5.17) and using the explicit form of R(1) in

(5.5), we get

D̄µD̄νϕµν − D̄2ϕ̄ = 2
(
Λ −M2

)
ϕ̄ , (5.19)

where Λ < 0 is the cosmological constant. Combining this with (5.18) we conclude that

ϕ̄ = 0 provided that M2 6= Λ and hence that the symmetric tensor field ϕ is subject

to the subsidiary conditions

D̄µϕµν = 0 , ϕ̄ = 0 . (5.20)

The remaining, dynamical, equation is

(
D̄2 − 2Λ −M2

)
ϕµν = 0 . (5.21)

The subsidiary conditions impose 3 + 1 constraints, so just two degrees of freedom are

propagated, and these can be shown to have helicities ±2. Observe that the specific

Fierz-Pauli mass term is crucial to this result because with a different relative coefficient

it would not be possible to derive (5.18), and the subsidiary condition ϕ̄ = 0, needed

to eliminate scalar modes, would not be a consequence of the field equations.

In the special case of M2 = Λ, the FP field equation does not imply that ϕ̄ = 0.

In this case there is a ‘hidden’ gauge invariance,

δζ k̄µν = D̄µD̄νζ + Λḡµνζ , (5.22)

with scalar gauge parameter ζ. This allows the trace ϕ̄ to be set to zero by a gauge-

fixing condition. Theories of this type are known as partially massless [33, 34], and in

3D they propagate a single mode without a well-defined helicity.

There is obviously a need for some lower bound on M2, in order to avoid tachyons.

Let us consider the generalization of (5.21) to arbitrary integer spin |s| [35]

[
D̄2 + |s| (3 − |s|) −M2

]
ϕ(s) = 0 , (5.23)

where ϕ(s) denotes a traceless totally symmetric rank-|s| tensor satisfying the ‘divergence-

free’ condition D̄µϕ
(s)
µν1...νs−1 = 0. For |s| > 0, the action from which this field equation

is derived is gauge invariant when M2 = 0. Expanding the field ϕ(s) in terms of the uni-

tary irreducible representations (UIRs) of the adS3 isometry group Sl(2; R)×Sl(2; R),

we find [36]

D̄2ϕ(s) = E0(E0 − 2) − |s| , (5.24)

where (E0, s) denotes the lowest weight UIR with lowest energy E0 and helicity s.

These UIRs are nonsingular at the origin and normalizable with respect to the SO(2, 2)

invariant measure [37, 38]. Using the above formula in (5.23), we find

M2 = (E0 − |s|) (E0 + |s| − 2) . (5.25)
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Now, it is well known that the unitarity of the representation with lowest weight (E0, s)

is given by [39]

E0 ≥ |s| . (5.26)

For s = 0 we deduce that M2 ≥ −1, which is the 3D version of the 4D Breitenlohner-

Freedman bound [38, 40]. For s ≥ 1 we deduce that M2 ≥ 0, as claimed for s = 1, 2.

5.3 Diagonalization

We are now ready to continue with our analysis of the quadratic Lagrangian (5.10).

The results depend crucially on whether the parameter a, defined in (5.11), is zero or

non-zero, so we consider these cases separately.

5.3.1 a = 0

When a = 0 the field s may be trivially eliminated and the quadratic Lagrangian (5.10)

reduces to

L(2) = −1

2
σ̂hµνGµν(h) −

1

m2
kµνGµν(h) −

1

4m2

(
kµνkµν − k2

)
. (5.27)

This is precisely eq. (4.17) of [12] when |µ̌| = ∞, which corresponds to the super-

NMG model; this was to be expected because super-NMG has NMG as its bosonic

truncation. The only difference between super-NMG and generalized super-NMG in

the context of a quadratic approximation is in the definition of the parameter σ̂. How

we now proceed depends on whether or not σ̂ vanishes. We shall consider these two

subcases separately.

• σ̂ 6= 0 : In this case we define a new symmetric tensor fluctuation field h̄ by

hµν = h̄µν −
1

m2σ̂
kµν . (5.28)

The quadratic Lagrangian then takes the diagonal form

L(2) = −1

2
σ̂ h̄µνGµν(h̄) −

1

m4σ̂
LFP(k;−m2σ̂) , (5.29)

where LFP was defined in (5.16). We see from this result that σ̂ has the interpreta-

tion as the effective EH coefficient in a non-Minkowski vacuum. Because this term

propagates no modes, we effectively have an FP Lagrangian with M2 = −m2σ̂.

As we explained earlier, the absence of tachyons requires M2 ≥ 0 (which is a

stronger condition that used in [12]) and hence m2σ̂ < 0. We also require σ̂ < 0

for positive kinetic energy (no ghosts) so we deduce that the combined conditions

for no ghosts and no tachyons are

m2 > 0 , σ +
1

2`2m2
± 1

4`µ̌
< 0 . (5.30)
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Note that these conditions imply that σ < 0 in the NMG limit |µ̌| → ∞, but

σ > 0 is possible in the “generalized” case.

We should recall here that the case M2 = Λ is special because it corresponds to

a partially massless mode [34]. It is not clear to us whether our earlier conclusion

that M2 ≥ 0 is required for the absence of tachyons also applies in this special

case.

• σ̂ = 0 :

In this special case, we see from (5.27) that the fluctuation field hµν is a Lagrange

multiplier; the constraint it imposes has the general solution

kµν = 2D̄(µAν) , (5.31)

for arbitrary vector field Aµ. Using this solution we arrive at the equivalent

Lagrangian

L(2) = − 1

4m2
F µνFµν −

2

`2m2
AµAµ , (5.32)

where we have discarded a total derivative. This is a Proca Lagrangian for Aµ,

with positive kinetic energy provided m2 > 0 and a specific value for the mass.

Alternatively, the Proca equations may be deduced from the equations of motion

of (5.27). The k field equation is

Gµν(h) +
1

2
(kµν − kḡµν) = 0 . (5.33)

When combined with the Bianchi identity D̄µGµν = 0 and the h field equation

(5.31), this implies the Proca equations that follow from (5.32). Provided m2 > 0

these equations propagate non-tachyonic modes of helicity ±1. This is consistent

with the corresponding result for NMG [12]; however, whereas σ̂ = 0 was there

found to imply σ < 0, this is not true in the “generalized” case since it follows

from (5.12) that σ̂ = 0 and a = 0 imply

σ = − 1

2`2m2
∓ 1

4`µ̌
, (5.34)

and this allows σ < 0 when µ̌ is finite.

Finally, we remark that the equation (5.33) does not propagate any modes if one

adopts the standard Brown-Henneaux boundary conditions for the metric [10]

but weaker boundary conditions allow well known logarithmic bulk modes [42]. It

may be verified that the Proca modes mentioned above are mapped by (5.31) into

the first descendants of the logarithmic modes; see [44] for a detailed description

of precisely such a descendant mode.

The occurrence of different formulations at the linearized level is similar to what

happens in TMG, in which case there exists a map of the linearized field equation
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at the chiral point to that of a topologically massive photon [45]. Alternatively,

the linearized theory can be mapped, non-covariantly, to a scalar field satisfying

the Breitenlohner-Freedman bound [46]. The linearized solution of these equa-

tions are related to the logarithmic solutions of the metric formulation, as has

been shown in [46] for the scalar parametrization.

5.3.2 a 6= 0

When a 6= 0 we must return to the quadratic Lagrangian (5.10). Again we must

distinguish between the σ̂ 6= 0 and the σ̂ = 0 cases, so we consider them in turn.

• σ̂ 6= 0 : When σ̂ 6= 0 the Lagrangian becomes diagonal in terms of the new sym-

metric tensor fluctuation fields (h̄, k̄), defined by

hµν = h̄µν −
1

m2σ̂
k̄µν , kµν = k̄µν + a`−1s ḡµν , (5.35)

where a is the mass parameter defined in (5.11). The quadratic Lagrangian then

takes the form

L(2) = −1

2
σ̂ h̄µνGµν(h̄) −

1

m4σ̂
LFP(k̄;−m2σ̂) +

a

`m2
k̄s− bs2 , (5.36)

where

b =
1

2
σ̂ − (3a∓ 2) (a∓ 2)

2`2m2
. (5.37)

If b 6= 0 then s may be trivially eliminated; this will give rise to an additional k̄2

mass term which will lead to a non-unitary theory (since the specific FP mass

term is crucial for unitarity).

If b = 0 then the field s becomes a Lagrange multiplier for the constraint k̄ = 0,

which is one of the subsidiary conditions of the FP equations. However, the k̄µν

field equation now reads

Gµν(k̄) = m2σ̂
(

1
2
k̄µν − a`−1s ḡµν

)
. (5.38)

Taking the divergence we deduce that

D̄µk̄µν = 2a`−1∂νs ⇒ D̄µD̄ν k̄µν = 2a`−1D̄2s . (5.39)

Taking the trace, one finds

D̄µD̄ν k̄µν = 6`−1m2σ̂as , (5.40)

and in combination with (5.39) this gives

(
D̄2 − 3m2σ̂

)
s = 0 . (5.41)
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In other words, the fluctuation s about the vacuum value of S is now a propagat-

ing mode! Whether the theory is ghost-free in presence of this mode, however,

remains to be investigated.

The fact that the ‘auxiliary’ field propagates is surprising in view of the fact that

the field equation for S is algebraic, a cubic equation in fact, but the coefficients

of this cubic equation are not constants when a 6= 0. We earlier argued that one

may solve for S as a power series in R in this case, but all orders of this series

are relevant to an expansion about adS, so it is not guaranteed that the solutions

for fluctuations of S will be local functions of the coefficients. We now see that

an ‘auxiliary S’, in the generalized sense that we have permitted in this section,

is not equivalent to ‘non-propagating S’.

• σ̂ = 0 : Setting σ̂ = 0 in the Lagrangian (5.10), but now allowing for a 6= 0, we

find that the fluctuation field hµν becomes a Lagrange multiplier, as before. The

constraint it imposes has the general solution

kµν = a`−1sḡµν + 2D̄(µAν) , (5.42)

for arbitrary vector field Aµ. Using this solution we arrive at the equivalent

Lagrangian

L(2) = − 1

4m2
F µνFµν −

2

`2m2
AµAµ +

2a

`m2
sD̄µAµ − bs2 , (5.43)

where we now have

b = −(3a∓ 2) (a∓ 2)

2`2m2
(5.44)

If b 6= 0, then the field s can be trivially eliminated, as before, and this will give

rise to additional (D̄ · A)2 terms which will lead to a non-unitary theory (since

the standard Proca form of the action is needed for unitarity).

If b = 0, then the field s becomes a Lagrange multiplier for the constraint D̄ ·A =

0, which is the Proca subsidiary condition. Furthermore, the Proca equation is

now modified to

D̄µFµν − 4`−2Aν = 2a`−1∂νs . (5.45)

Taking the divergence of this equation we deduce that

D̄2s = 0 . (5.46)

So the fluctuation field s propagates a scalar mode. The unitarity of the model

in presence of this mode remains to be investigated.

5.4 Summary

A curiosity that our analysis has uncovered is that a scalar field may be “auxiliary”

in the sense of having no kinetic term but still propagate modes in a non-Minkowski
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vacuum if it is coupled to scalar products of propagating fields. The distinction between

“auxiliary” and “non-propagating” boils down, in the cases analysed, to whether a

dimensionless parameter a is non-zero (the generic case) or zero (the “non-propagating”

case). The latter option yields the cases that we have referred to as those of “generalized

super-NMG”. The more general “auxiliary S” models, with a 6= 0, propagate scalar

modes and are generically non-unitary although there may be special subcases that are

perturbatively unitary.

Within “generalized super-GMG” we find the “super-NMG” models. Since these

have NMG as a bosonic truncation (albeit with a restricted range of the NMG pa-

rameters) we should expect agreement with the results found for NMG in [12] . We

do, except for the stricter condition on perturbative unitarity that follows from the

stronger bound on the spin-2 Fierz-Pauli mass in adS vacua that we have justified

here.

We have also shown that the super-NMG results extend to “generalized super-

NMG”, the only difference being that the “effective” EH coefficient σ̂ now depends on

an additional parameter. This allows perturbative unitarity to be made consistent with

σ > 0, i.e. with “right-sign” EH term in the action. However, it should be recalled

that “generalized super-NMG” is not actually a class of “models” because its definition

depends on a choice of adS vacuum; in particular, the conclusion that σ < 0 is needed

for perturbative unitarity in Minkowski vacua is unchanged.

6 Discussion

In this paper we have completed a study of three-dimensional (3D) N = 1 supergravity

theories with generic curvature-squared terms that was begun in [22]. That paper was

titled “Massive 3D supergravity” but contact was made with the massive gravity models

introduced in [5] only in the context of an expansion about Minkowski spacetime,

where non-linear features are not crucial. The space of non-Minkowski vacua found

in [22] had no obvious relation to the space of non-Minkowski vacua found in [5], and

neither did there appear to be any supergravity model with a bosonic truncation that

could be identified with a massive gravity model. As we said in the introduction,

these unsatisfactory features suggest that there is some ingredient missing from the

analysis of [22], and we have shown here that this is indeed the case. The supergravity

results of [22] are correct but incomplete because there is an additional super-invariant

involving the auxiliary scalar field S of N = 1 supergravity that contributes to the

terms with the dimension of curvature-squared terms but not to the curvature-squared

terms themselves. Incorporating this invariant into a more general action allows the

choice of a special case in which S can be eliminated, at least classically, to yield a

model that is identical to the ‘cosmological’ extension of the “general massive gravity”

(GMG) model introduced in [5], and this includes as a special case the ‘cosmological’

extension of the parity-preserving “new massive gravity” (NMG) model studied in
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detail in [12].

Actually, it is overstating the case to say that the new results of this paper are

suggested by complications for non-Minkowski found in [22] because it is far from

obvious, a priori, that a higher-derivative gravity model should arise as the truncation of

a supergravity model. In fact, the results of this paper confirm the contrary conclusion

for generic curvature-squared models, since the supergravity extension of the generic

model necessarily involves a kinetic term for the ‘auxiliary’ scalar, thus propagating a

field that was not present initially. The special feature of the NMG and GMG models,

already noted in [5], is that this term is absent, so that the ‘auxiliary’ field S really does

remain auxiliary in the sense that its field equation is algebraic, in fact cubic. However,

the incomplete results of [22] led to the conclusion that this cubic equation necessarily

has coefficients that are not all constant but depend upon the scalar curvature R.

Elimination of S then leads to an additional power series in R contribution to the

action; in particular, it leads to an additional unwanted R2 term. Had this been the

last word on the matter, it would have encouraged the view that that massive 3D

gravities are mere curiosities. Conversely, the fact that one can recover NMG or GMG

as bosonic truncations of a 3D supergravity model, as shown in this paper, paves the

way to a further study of extended super-GMG models and encourages the belief that

these models should have a role to play in some ‘bigger picture’.

The main point of interest in the new massive gravity models such as NMG and

GMG is the fact that the higher-derivative terms are consistent with unitarity, at least

in the Minkowski vacuum. This result was shown in [22] to extend to the spin-3
2

sector

of the supergravity models, as is of course implied by supersymmetry. The issue of

unitarity in adS vacua was studied in detail in [12] for NMG and we have here ex-

tended this analysis to super-NMG and some variants of it that also preserve parity.

As the bosonic truncation of super-NMG is equivalent to NMG after elimination of the

supergravity auxiliary field S, and as all adS vacua of NMG correspond to a supersym-

metric adS vacuum of super-NMG, the results of [12] for linearization about an adS

vacuum extend immediately to linearization of super-NMG about a supersymmetric

adS vacuum; in particular, there is no need to consider the spin-3
2

sector because this

is determined by supersymmetry in a supersymmetric vacuum.

There is one caveat: we have shown here that the Fierz-Pauli mass M for a spin-2

field in adS3 must satisfy M2 ≥ 0 in order that the associated spin-2 particle not be

a tachyon8 whereas we allowed (provisionally) for a weaker bound in [12]. This means

that the range of parameters for which the linearized theory is perturbatively unitary

is more restricted than stated in [12]. Another subtlety is that although super-NMG

has been defined as the model as for which the bosonic truncation yields NMG after

elimination of the auxiliary field S, there is a larger class of models for which the field

linearized equations coincide with those of NMG if the parameters are tuned to the

choice of vacuum; specifically, we can tune the parameters so that the field equation

8We presume that this result is known but there are suggestions in the literature of a “Breitenlohner-
Freedman bound for spin 2” that allows M2 ≥ −1, as for spin zero.
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for the fluctuation of S is algebraic. In this way, we slightly enlarge the class of models

that are perturbatively unitary in an adS vacuum. Within this larger class perturbative

unitarity is consistent with either sign of the Einstein-Hilbert term provided the new

parameter µ̌ introduced in (3.3) is chosen appropriately.

Finally, we briefly consider the two-dimensional CFTs that might be holographically

related to the massive gravity models above when expanded about a supersymmetric

adS vacuum. Actually, we should expect a holographically dual superconformal field

theory, i.e. an SCFT, but it is unclear to us how the fermions may be taken into

account in a semi-classical approximation to the bulk supergravity theory, so we instead

consider only the bosonic truncations. According to the Brown-Henneaux analysis, for

generic adS3 gravity theories the asymptotic symmetry group consists of two copies of

the Virasoro algebra corresponding to the two-dimensional conformal symmetry [10].

Their central charges encode important information about unitarity and the entropy of

BTZ black holes. In the case of parity-preserving gravity theories that contain higher

powers of the curvature tensor the (left and right) central charges are given by [47,48]

cL = cR =
`

2G3

gµν
∂L3

∂Rµν

. (6.1)

In the presence of the Lorentz Chern-Simons term, we need to add the contributions

±3/(2G3µ) to cL,R [49]. Taking all these considerations into account, and starting from

the general model (3.1), we obtain the following values for the central charges

cL,R =
3`

2G3

(
σ +

3

10(m̌)2`2
± 1

2µ̌`
± 1

µ`

)
≡ 3`

2G3

(
σ̂ ± 1

µ`

)
, (6.2)

where we used Λ = −1/`2. In the special case of super-GMG we have

σ̂ = σ +
1

2`2m2
, (6.3)

and hence agreement with the results of [22]. Perhaps the most significant feature

of the formula (6.2) is that σ̂ is the parameter determining the sign of the effective

linearized EH term in the chosen adS background, which must be negative for pertur-

bative unitarity. This means that the difficulty encountered in all previous massive 3D

gravity models, that one must choose between non-unitary gravitons or negative mass

BTZ black holes, is a rather general one that is not resolved in supergravity, no matter

how one adjusts the parameters.
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