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Patchy patterns due to group dispersal

Samuel Soubeyrand1, Lionel Roques, Jérôme Coville and Julien Fayard
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Abstract

The presence of multiple foci in population patterns may be due to various

processes arising in the population dynamics. Group dispersal, which has

been lightly investigated for airborne species, is one of these processes.

We built a stochastic model generating the dispersal of groups of particles.

This model may be viewed as an extension of classical dispersal models based

on parametric kernels. It has a hierarchical structure: at the first stage group

centers are drawn under a classical dispersal kernel; at the second stage the

particles are diffused around their group centers. Analytic and simulation

results show that group dispersal is a sufficient condition to generate patterns

with multiple foci, i.e. patchy patterns, even if the population can remain

particularly concentrated.
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1. Introduction

1.1. Patterns with foci and groups of particles

Snapshots of epidemics and invasions often show multiple foci (for real

examples, see Heesterbeek and Zadoks, 1987; Nash et al., 1995). A typi-

cal situation is the presence of one primary focus and several secondary foci

which will eventually merge with the primary focus (Shigesada and Kawasaki,

1997, chap. 5). The reasons why such patterns are generated are diverse. For

organisms taken into account in this article, i.e. airborne plant pathogens

and plant propagules, the main reasons invoked to explain multiple foci pat-

terns may be (i) spatial heterogeneity in host receptivity or environmental

conditions (Kauffman and Jules, 2006; Laine and Hanski, 2006; Soubeyrand

et al., 2009), (ii) long distance dispersal (Aylor, 1987; Cannas et al., 2006;

Ferrandino, 1993; Filipe and Maule, 2004; Marco et al., 2009; Minogue, 1989),

(iii) stratified dispersal (Sapoukhina et al., 2010) and (iv) density-dependence

(Bolker and Pacala, 1997, 1999; Dieckmann and Law, 2000). Here, we are

interested in another potential reason: group dispersal.

Group dispersal occurs when several entities move or are moved together

from one area to another one. This mechanism has been mainly studied

for animals, e.g. juvenile tarantulas (Reichling, 2000) and female viscachas

(Branch et al., 1993), and for seeds eaten and transported by large mammals

(Howe, 1989; Takahashi et al., 2008) or birds (Pizo and Simão, 2001). Here,

we are interested in group dispersal of propagules like seeds, pollen grains

or spores dispersed by wind. It is assumed that several of these propagules

may be released because of a single wind gust, transported in the air into

a more or less limited volume and deposited over a more or less limited
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area. Such a group of propagules deposited far enough from the primary

focus will generate, in a single generation, a secondary focus. Then, because

of local reproduction, the secondary focus will be amplified. Intuitively, to

generate a secondary focus distinguishable from the primary focus, a group

of propagules does not need to be dispersed as far as a single propagule since

the group has a numerical advantage that the single individual has not.

The complete observation of groups of very small particles during the dis-

persal process (release, transport and deposit) is not easy to achieve. How-

ever, there are several articles presenting the visualization of the joint release

of particles, often due to an explosive discharge; e.g. see Roper et al. (2010)

and Trail et al. (2005) for fungal spores, Aylor et al. (2003), Bianchini and

Pacini (1996) and Whitaker et al. (2007) for pollen grains, Whitaker and

Edwards (2010) and Sundberg (2010) for sphagnum spores. Then, during

the transport stage under the wind effect (turbulence), there is no clear ev-

idence that the group formed at the release stage remains in a limited air

volume. Experiments assessing the cohesion (or, conversely, the break up)

of the group should be carried out. Nevertheless, in favor of the group dis-

persal hypothesis, there is the special case of particle clumps (e.g. spores

attached by a mucilaginous liquid): the dispersal of this sort of groups have

been observed until the deposit stage (Aylor and Ferrandino, 1986; Martin

et al., 2009). The model that we propose in this article encompasses this

special case and the case where the spore groups break up at a determined

speed during the transport.
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1.2. An approach for the modeling of group dispersal

In propagation models for airborne plant pathogens and plants, propagule

transports are usually assumed to be independently and identically drawn

from a density probability function called dispersal kernel. The dispersal

kernel generally decreases along the radial directions (Austerlitz et al., 2004;

Klein et al., 2006a; Tufto et al., 1997) and can be anisotropic (Klein et al.,

2003; Soubeyrand et al., 2007, 2008). If group dispersal occurs, then propag-

ule transports are not independent anymore. Therefore, we resort to an as-

sumption reflecting a hierarchical structure of dependence: at the first stage

of the hierarchy, groups are independently dispersed; at the second stage,

propagules within each group are dispersed independently but conditionally

on the group transport.

More explicitly, the group dispersal model (GDM) that we propose relies

on the following principles: (i) the numbers of propagules in the groups are

independently generated from a counting distribution and the barycenters

of the groups are independently transported according to a dispersal kernel;

then, (ii) within each group, propagules follow independent Brownian mo-

tions. The Brownian motions are centered around the group barycenter and

are stopped when the group is deposited. The stopping time is assumed to be

proportional to the distance between the source and the deposit location of

the group barycenter (the dispersal distance is viewed as a time surrogate or

a time proxi). Thus, the further the group is deposited, the larger the deposit

area is. This is justified as follows: The paths of the propagules of a single

group deviate, time after time, from the group barycenter (these deviations

are relativistic). Therefore, the volume of air containing all the propagules
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of a single group increases with time. When the parameter determining the

intra-group diffusion is zero, the propagules of any group are all located at

the group barycenter and the model can generate patterns with clumps.

Based on this model, group dispersal and dispersal under the indepen-

dence assumption are compared in a spatial context (dispersal from a single

point source) and in a spatiotemporal context (multiple generations). Using

probabilistic and simulation tools, we especially show that group dispersal is

a sufficient condition to generate secondary foci in propagation processes.

2. Group dispersal model (GDM) in the case of a single source

2.1. Deposit equation for particles

Consider a single point source of particles located at the origin of the

planar space R2. Let J denote the number of groups of particles released by

the source and Nj the number of particles in group j ∈ {1, . . . , J}.
The deposit location vector Xjn of the n-th particle of group j is assumed

to satisfy

Xjn = Xj +Bjn(ν||Xj||), (1)

where Xj is the final location vector of the center of group j, Bjn is a centered

Brownian motion describing the relative movement of the n-th particle in

group j with respect to the group center, ν is a positive parameter and || · ||
denotes the Euclidean distance.

We use the term “group center” to denote Xj for the sake of shortness.

Indeed, Xj is not the average of the particle locations Xjn, n = 1, . . . , Nj ,

but only the conditional expectation of Xjn given Xj, i.e. Xj = E(Xjn | Xj).
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2.2. Assumptions about the deposit equation (1)

The random variables J , Nj , Xj and the random processes {Bjn : n =

1, . . . , Nj} are mutually independent. It has to be noted that the motion Bjn

is independent from Xj but, obviously, the value of this motion Bjn(ν||Xj||)
at the stopping time ν||Xj || is not.

The number of groups J is Poisson distributed with mean value λ.

The Nj are independently drawn from the counting distribution pμ,σ2

defined over N with mean and variance parameters μ and σ2, respectively.

The group center locations Xj are independently and identically drawn

from the probability density function (p.d.f.) fXj
: R2 �→ R+. This function

can be characterized by features usually associated with classical dispersal

kernels: the decrease of fXj
at the origin is more or less steep, the tail of fXj

is more or less heavy, the shape of fXj
is more or less anisotropic.

The Brownian motions Bjn defined over R
2 are centered, independent and

with independent components. They are stopped at time tj = ν||Xj||. The
distance between the source and the location Xj is used, up to the scaling

parameter ν, as a time surrogate. Thus, the further a group is transported,

the most the particules forming the group are spread with respect to the

group center. The value of ν determines the strength of the relative spread

from the group center. It follows that Bjn(ν||Xj ||) follow independent and

centered normal distributions with variance matrices ν||Xj||I where I is the

2× 2 identity matrix.

Remark: Klein et al. (2003) and Stockmarr (2002) represent particle

transports as 3D Brownian motions, the vertical dimension being used to

define the times when the motions are stopped. Here, the particle motions
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are stopped with the use of the final locations Xj of the group centers. Ap-

pendix A makes the link between the two approaches and motivates the

deterministic linear relationship between ||Xj|| and the stopping times of the
Brownian motions Bjn. It has to be noted here that this relationship could

be nonlinear and stochastic and could even depend not only on the distance

||Xj|| but on the components of Xj.

2.3. Probability density functions characterizing the dispersal

The conditional p.d.f. fXjn|Xj
of the deposit location Xjn of a particle

given the group center Xj is the p.d.f. of the normal law with mean vector

Xj and variance matrix ν||Xj||I:

fXjn|Xj
(x | y) = φν,y(x)

=
1

2πν||y|| exp
(
−(x− y)′(x− y)

2ν||y||
)

,

where (x− y)′ denotes the transpose vector of x− y.

Let X denote the deposit location of a particle whose group it belongs to

is unknown. The conditional p.d.f. fX|{Xj :j=1,...,J} of X given the locations

of the group centers is the p.d.f. of a mixture of normal distributions, the

mixture weights being similar:

fX|{Xj :j=1,...,J}(x | {xj}j) =
1

J

J∑
j=1

φν,xj
(x).

Figure 1 shows the density of such a mixture (left) and the deposit locations

of the particles (right) obtained by simulating the GDM. The components

of the mixture has the same weights (1/J) but the further the group center

from the point source, the larger the variance of the corresponding mixture

component.
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Figure 1: Simulation of the group dispersal model with a single point source. Left: con-

ditional density of the deposit location of a particle whose group it belongs to is unknown

given the locations of the group centers. Right: deposit locations of particles obtained

under the density shown on the left.

The unconditional p.d.f. fXjn
of Xjn, that is to say the dispersal kernel

of any particle, is

fXjn
(x) =

∫
R2

fXjn|Xj
(x | y)fXj

(y)dy

=

∫
R2

φν,y(x)fXj
(y)dy.

The particles are not independently but identically distributed (n.i.i.d.) from

this p.d.f. while in the classical dispersal models the particles are indepen-

dently and identically distributed (i.i.d.) from a dispersal kernel which may

be of the form of fXj
or fXjn

.
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3. Comparison with independent dispersal models (IDM)

In propagation models for airborne plant pathogens and plants, propagule

transports are usually assumed to be independent. Thereafter, such models

are called independent dispersal models (IDM). This section is devoted to

the comparison of our GDM with two IDMs which are particular cases of the

GDM:

• IDM1: the number of particles in each group is assumed to be one (i.e.

μ = 1 and σ2 = 0). Thus, particles are independently drawn under the

p.d.f. fXjn
.

• IDM2: the number of particles in each group is assumed to be one and

the Brownian motions are deleted (i.e. μ = 1, σ2 = 0 and ν = 0).

Thus, particles are independently drawn under the p.d.f. fXj
.

3.1. Analysis of moments

Moments allows the characterization of patterns generated by dynamical

models (Bolker and Pacala, 1997, 1999; Dieckmann and Law, 2000). The

three models (GDM, IDM1 and IDM2) are compared using six criteria based

on moments:

1. The expectation E(X) of the deposit location X of any particle;

2. The variance matrix V (X) of the deposit location of any particle;

3. The expectation of the squared dispersal distance;

4. The expectation of the number of particles Q(x + dx) deposited in the

infinitesimal surface x+ dx centered around x;

9



5. The variance of the number of particles deposited in the infinitesimal

surface x+ dx centered around x;

6. The covariance between the numbers of particles deposited in the disjoint

infinitesimal surfaces x1 + dx and x2 + dx centered around x1 and x2.

The first three criteria concern the deposit location of a single particle. The

last three criteria concern the number of propagules deposited in infinites-

imal surfaces. The spatial covariance (criterion 6) is especially interesting

to quantify the association or segregation between individuals (Bolker and

Pacala, 1999). Table 1 gives the expressions of the criteria for the three

models; see Appendix B for the proofs.

We can see that the GDM and the IDM1 which share the same dispersal

function also share the same characteristics about the deposit location X of

any single particle (first three criteria). Compared to the IDM2, the GDM

and the IDM1 have an additional term in V (X) and E(||X||2) because of
the extra-dispersal caused by the Brownian motion (whatever the numbers

of particles within the groups).

The characteristics about the number of particles deposited in infinites-

imal surfaces are, however, different between the three models. The most

noticeable differences are on criteria 5 and 6: assume that μ = 1 (so that the

expected number of released particles is the same in the three models), the

variance of the local number Q(x + dx) of deposited particles is greater in

the GDM than in the two other models and the spatial covariance is positive

under the GDM while it is zero in the two the models.

The extra-variance (criterion 5) as well as the positive spatial covariance

(criterion 6) characterizing the GDM induce the occurrence of aggregates
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Criterion Model Value

E(X) GDM ( 0
0 )

IDM1 ( 0
0 )

IDM2 ( 0
0 )

V (X) GDM V (Xj) + νE(||Xj||)I
IDM1 V (Xj) + νE(||Xj||)I
IDM2 V (Xj)

E(||X||2) GDM E(||Xj||2) + 2νE(||Xj||)
IDM1 E(||Xj||2) + 2νE(||Xj||)
IDM2 E(||Xj||2)

E{Q(x+ dx)} GDM λμfXjn
(x)dx

IDM1 λfXjn
(x)dx

IDM2 λfXj
(x)dx

V {Q(x+ dx)} GDM λ[μfXjn
(x)dx+ (σ2 + μ2 − μ)E{φν,Xj

(x)2}(dx)2]

IDM1 λfXjn
(x)dx

IDM2 λfXj
(x)dx

cov{Q(x1 + dx) GDM λ(σ2 + μ2 − μ)E{φν,Xj
(x1)φν,Xj

(x2)}(dx)2

, Q(x2 + dx)} IDM1 0

IDM2 0

Table 1: Expressions of the six criteria based on moments and used to characterize the

patterns generated by the GDM, IDM1 and IDM2. For E(X) and E(||X ||2) fXj
is assumed

to be isotropic. For V {Q(x+dx)}, E{φν,Xj
(x)2} =

∫
R2 φν,y(x)2fXj

(y)dy. For cov{Q(x1+

dx), Q(x2 + dx)}, E{φν,Xj
(x1)φν,Xj

(x2)} =
∫
R2 φν,y(x1)φν,y(x2)fXj

(y)dy.
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(or clusters) in space after a single generation, while such aggregates are not

expected under the IDMs. These aggregates may be at the origin of secondary

foci visible after several generations without resorting to a dispersal function

with a heavy tail or to spatial heterogeneity.

It has to be noted that for a counting distribution over N characterized

by mean μ > 0 and variance σ2, the quantity σ2 + μ2 − μ is positive; it is

zero if and only if μ = 0 (which implies that σ2 = 0) or (μ, σ) = (1, 0). This

implies that the covariance given above for the GDM is non-negative.

3.2. Concentration of particles

The previous section states that the GDM allows to generate aggregates

in a single generation, contrary to the IDM1 (and the IDM2). Below, by

investigating the properties of the furthest forward particle, we show that

these patterns with aggregates occur with the GDM while the particles re-

main quite concentrated: under the GDM, the furthest forward particle stays

in average closer to the point source than under the IDM1 (when the GDM

and the IDM1 share the same marginal dispersal function fXjn
).

Distribution of the distance to the furthest particle. Consider the dispersal

of particles from a point source. In what follows, we are interested in the

properties of the distance from source to the furthest particle denoted by

Rmax = max{Rjn : j ∈ J, n ∈ Nj},

where Rjn = ||Xjn|| is the distance between the source (at the origin) and

the n-th deposited particle of group j, J = {1, . . . , J} if J > 0 and the empty

set otherwise, and Nj = {1, . . . , Nj} if Nj > 0 and the empty set otherwise.
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By convention, if no particle is dispersed (J = 0 or Nj = 0 for all j), then

Rmax = 0.

Under the three dispersal models, the distribution of the distance between

the origin and the furthest deposited particle is zero-inflated and satisfies (see

Corollary 1 in Appendix C.1)

P (Rmax = 0) = exp [λ{pμ,σ2(0)− 1}]
fRmax(r) = λfRmax

j
(r) exp{λ(FRmax

j
(r)− 1)}, ∀r > 0,

(2)

where fRmax
j

is the p.d.f. of the distance Rmax
j = max{Rjn : n ∈ Nj} between

the origin and the furthest deposited particle of group j, and FRmax
j

is the

corresponding cumulative distribution function (FRmax
j

(r) = P (Rmax
j = 0) +∫ r

0
fRmax

j
(u)du).

Under the IDMs, Nj = 1 for all j ∈ J and, consequently, pμ,σ2(0) = 0

and fRmax
j

(r) = fRjn
(r) in Eq. (2); see Appendix C.2 for details. Under

the GDM, the distribution of Rmax (Eq. (2)) takes a more complicated form

which is provided in Appendix C.3.

Analytic comparison. The material provided in the previous paragraph and

in the appendices is used in the following to compare the concentration of

the particles in the three models (IDM1, IDM2 and GDM).

Here, we provide an analytic comparison of the probability that Rmax is

larger than a distance r > 0:

P (Rmax ≥ r) =

∫ +∞

r

fRmax(s)ds,

whose expression is derived in Appendix C.4 for the three models. We ob-

tained the two following properties (see Appendix C.4 for the proofs):
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Property 1. Consider a GDM and an IDM1 characterized by the same pa-

rameter values except that E(J) = λ̃, E(Nj) = μ̃ and V (Nj) = σ2 for the

GDM, and E(J) = λ̃μ̃, E(Nj) = 1 and V (Nj) = 0 for the IDM1. Then,

for all r > 0 the probability P (Rmax ≥ r) is lower for the GDM than for the

IDM1.

Property 2. Consider an IDM1 and an IDM2 characterized by the same pa-

rameter values except that ν > 0 for the IDM1 and ν = 0 for the IDM2.

Then, for all r > 0 the probability P (Rmax ≥ r) is lower for the IDM2 than

for the IDM1.

Property 1 means that for a GDM and an IDM1 characterized by the

same dispersal kernel for the particles and the same expected number of

dispersed particles λμ, the furthest particle under the GDM has less chance

to be at a distance greater than any r > 0 than the furthest particle under

the IDM1. Therefore, the population of particles is expected to be more

concentrated under the GDM than under the IDM1. In other words, the

average expansion speed under the GDM is expected to be lower than the

average expansion speed under the IDM1.

Property 2 means that the extra-diffusion term included in the IDM1 but

not included in the IDM2 implies that the population of particles is expected

to be more spread under the IDM1 than under the IDM2.

Numerical comparison. Here, we make a numerical comparison between the

three models of the expectation of the distance to the furthest particle

E(Rmax) =

∫ ∞

0

rfRmax(r)dr.
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To carry out this comparison, we used the negative binomial distribution for

pμ,σ2 and the exponential kernel over R
2 parametrized by β for fXj

. The

expressions and the reasons motivating this choice are given in the next

section; see equations (3) and (4). Parameter values are provided in Figure 2

which shows that

• E(Rmax) is smaller in the case of the GDM than in the case of the

IDM1 with the same marginal dispersal function fXjn
(this corroborates

Property 1);

• E(Rmax) is smaller in the case of the IDM2 than in the case of the IDM1

with additional diffusion of the particles (this corroborates Property 2);

• E(Rmax) decreases with the variance σ2 of the number of particles per

group for the GDM;

• Depending on the parameter values, E(Rmax) can be smaller or higher

for the GDM than for the IDM2.

4. Group dispersal model in the case of multiple generations

The analytic results provided above show that group dispersal from a

single point source leads to several expected aggregates while independent

dispersal does not, even with a fat-tailed dispersal kernel. Therefore, it is

expected that group dispersal as defined in the GDM may generate patterns

with secondary foci over multiple generations, that is to say when particles

play the role of sources of particles once they are deposited.
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Figure 2: Expected distance to the furthest particle for the IDM1, the IDM2 and three

GDMs characterized by different variances σ2 of the number of particles per group. The

diffusion parameter ranges from 0 to 0.1 and the other parameters are equal to (λ, μ, β) =

(1, 1, 0.05) for the left panel and (λ, μ, β) = (10, 1, 0.05) for the right panel. The curve

is constant for the IDM2 because in this case there is no diffusion of the particles with

respect to the group center.

To investigate this conjecture, we build in this section a spatiotemporal

GDM and assess its ability to generate secondary foci. Then, we compare the

GDM to an IDM with long distance dispersal. We also study the modification

of the patterns when density-dependence is added to the GDM.

4.1. Spatiotemporal GDM

In the spatiotemporal model, the spread occurs at a discrete time basis

in a square domain S with bottom left corner (-1,-1) and top right corner

(1,1).

The spread is initialized at time zero by a single point source located at

the center (0,0) of the square S. Particles are emitted and dispersed from this
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source under the GDM. The particles deposited within the square S become

sources of particles while those deposited outside S are lost.

At the following time step particles are emitted and dispersed under the

GDM from each source, i.e. the initial source located at (0,0) as well as the

particles deposited within S. For each source, the dispersal under the GDM

is centered around the source location. The new particles deposited within

the square S become new sources of particles while those deposited outside

S are lost.

The process is then repeated again and again. At each time step the set

of sources is the union of the set of sources at the previous time step and the

set of particles emitted from these sources and deposited within S.

Two functions have to be specified to simulate this model: the counting

distribution pμ,σ2 of the number of particles per group and the probability

density function fXj
of the final locations of the group centers. In the follow-

ing, pμ,σ2 is the negative binomial distribution with mean parameter μ and

size parameter s = μ2/(σ2 − μ):

pμ,σ2(n) =
Γ(n+ s)

Γ(s)n!
(μ/σ2)s(1− μ/σ2)n. (3)

When μ = 1 and σ → 0+, this distribution converges to the discrete Delta

distribution with all the mass at n = 1 and the GDM approximates the IDM1

(Indeed, using Taylor’s expansions, p1,σ2(1) = 1+ (σ2 log σ2)(1 + o(1)) which

tends to one when σ2 → 0+).

Besides, fXj
is the exponential kernel defined over R2:

fXj
(x) =

1

2πβ2
exp(−||x||/β), (4)
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which is not heavy tailed (Klein et al., 2006a) and is not known as a dispersal

kernel leading to patterns with multiple foci (Minogue, 1989).

Figure 3 shows simulations of the spatiotemporal versions of the GDM,

the IDM1 and the IDM2. For the set of parameters (λ, β, ν, μ, σ2), we used

(1, 0.05, 0.005, 1, 25) for the GDM, (1, 0.05, 0.005, 1, 0) for the IDM1, and

(1, 0.05, 0, 1, 0) for the IDM2. We ran each model until the cumulated number

of deposited particles within the square domain S was greater than 5,000.

4.2. Definition of foci

Generally speaking, a focus is a place where there is a concentration of

entities. In the context we consider here —the spread of a population—

there are plenty of possibilities for defining a concentration of entities. The

concentration has to be related to a threshold representing a standard number

of entities but this standard number may be spatially dependent. In addition,

the spatial supports used to compute the concentration or the threshold may

vary. For this study, we chose to characterize the occurrence of foci under

the spatiotemporal GDM, IDM1 or IDM2 with the following procedure.

• We ran the model until the cumulated number of deposited particles

within the square domain S was greater than 5,000 —let X denote the

spatial point pattern giving the locations of the particles.

• We computed the kernel smoothed intensity of X at the nodes of a

regular square grid G of size 100×100 covering the square domain S with

a Gaussian kernel of standard deviation 0.02 (using the density.ppp()

function of the Spatstat R package; Baddeley and Turner, 2005).
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Figure 3: Spatiotemporal simulations of the GDM (first row), the IDM1 (2nd row) and the

IDM2 (3rd row). Left: Pattern of particles; Right: Estimated point intensity obtained by

kernel smoothing with a Gaussian kernel of standard deviation 0.02. In the grey rectangles

of the left panels: shape of the dispersal function used in the simulation and deposit areas

with probabilities 0.952 for the particles of groups deposited at various distances from the

source. In the third row these areas are reduced to points (no diffusion).
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• For a given threshold value δ, we determined the δ-nodes, i.e. the nodes

of the grid G for which the local intensities were greater than δ, and

determined the sets of connected δ-nodes (two δ-nodes are connected

if they are neighbors in the abscissa or ordinate direction).

• To explore the ability of a model to generate foci of various concentra-

tions, we counted the sets of connected δ-nodes for different values of

δ. For the sake of shortness, sets of connected δ-nodes are thereafter

called δ-foci.

4.3. Numerical comparison of the number of foci

Figure 4 shows, for various parameter values, the average number of δ-

foci when the threshold δ varies. The averages were computed from 1,000

simulations for each set of parameter values. In all the simulations of this

paragraph, the dispersal parameter is β = 0.05, the expected number of

groups per source and per time step is λ = 1 and the expected number

of particles per group is μ = 1. Thus, the expected number of particles

at each generation is the same for the IDM1, the IDM2 and the GDM.

Remark: When all the simulations are merged together, the median number

of generations required to achieve a population of size equal or greater than

5,000 is 15 (First quartile: 13, third quartile: 24).

Firstly, it has to be noted that the curves obtained under the IDM1 with

(ν, σ2) = (0.005, 0) and the IDM2 with (ν, σ2) = (0, 0) are not significantly

different. Thus, the over-dispersal of particles in the IDM1 is not significant

when ν = 0.005 but it can be significant with other values of ν.

Secondly, more δ-foci are obtained under the GDMs with diffusion param-
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Figure 4: Variation in the average number of δ-foci (sets of connected nodes with estimated

intensities greater than δ) with respect to the threshold δ. These variations are shown for

various values of ν and σ2 (see the top right corners of the panels), the other parameters

being fixed at (λ, μ, β) = (1, 1, 0.05). The averages are computed from 1,000 simulations

and the grey zones provide the 95%-confidence envelopes for the averages.

eter ν = 0.005 (curves corresponding to σ2 > 0 in the left panel) than under

the IDM1 with the same diffusion parameter. In addition, more δ-foci with

high concentrations of particles are generated when σ2 is large (the emission

of large groups of particles is more probable with large σ2 than with small

σ2).

Thirdly, the increase of ν (increase of the diffusion within the groups) has

a negative effect on the generation of δ-foci; see the right panel of figure 4.

The reason is that the particles of a group whose barycenter is deposited at

a given distance are less concentrated when ν is large than when it is low.
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4.4. GDM versus IDM with long distance dispersal (IDM–LDD)

The main difference between the two models is that, in one generation, the

GDM can generate particle clusters whereas the IDM–LDD cannot (see the

analysis of moments in section 3). This is the reason why the comparison

between the GDM and the IDM–LDD is proposed for the spatiotemporal

versions of these models.

An exhaustive comparison of the GDM and the IDM–LDD would require

much more place than a single paragraph because there are many GDMs

(using various dispersal kernels) and IDMs with LDD (Austerlitz et al., 2004;

Klein et al., 2006b; Tufto et al., 1997). Here, we only compare the GDM with

the exponential kernel given by Equation (4) to the IDM2 with a logistic

kernel parameterized by βLDD (Klein et al., 2006b):

fXj
(x) =

2βLDD

π2(1 + β2
LDD||x||4)

.

The logistic kernel is a power-law kernel and is heavy-tailed. For the GDM,

the parameter vector is set to (λ, β, ν, μ, σ2) = (1, 0.05, 0.005, 1, 25); a real-

ization is provided in Figure 3 (top). For the IDM2 the parameter vector is

set to (λ, βLDD, ν, μ, σ2) = (1, 2300, 0, 1, 0); a realization is given in Figure 5.

With these sets of parameters, the two models have the same median dis-

persal distance in one generation (MedGDM(||X||) = MedIDM2−LDD(||X||) ≈
0.0099). However, the mean dispersal distance in one generation is smaller for

the GDM than for the IDM2–LDD (EGDM(||X||) ≈ 0.0091 andEIDM2−LDD(||X||) ≈
0.0110); the first quartile of the dispersal distance in one generation is larger

for the GDM than for the IDM2–LDD (Q1
GDM(||X||) ≈ 0.0073 andQ1

IDM2−LDD(||X||) ≈
0.0051); the expectation of the distance to the furthest particle in one gener-
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ation is lower for the GDM than for the IDM2–LDD (EGDM(R
max) ≈ 0.015

and EIDM2−−LDD(R
max) ≈ 0.023).

This example allows us to see a noticeable difference in the clustered

patterns generated by the two models: compared with the GDM, the IDM2–

LDD induces, most of the time, a higher concentration of particles close to

the primary source (lower first quartile) and foci further from the source

(large expectation of Rmax). In Figure 5 for the IDM2–LDD, we can see a

clear separation between the primary focus and the secondary foci whereas,

in Figure 3 for the GDM, the secondary foci are in the slope of the primary

focus.

4.5. Density-dependence

In the previous simulations, there is no limit to the growth of the popula-

tion except the domain boundaries: We used a simple birth process without

death and interaction. In this paragraph, we introduce in the model a simple

sort of interaction (a density-dependence) causing the immediate death of

some particles and we investigate how the ability of the model to generate

foci bears the density-dependence.

The GDM was modified as follows: We set a regular square grid made

of cells with side ρ and covering the square domain S and, at each genera-

tion and for each occupied grid cell, we deleted all the particles except one

among the old and new particles (this is a non-local density-dependence with

maximum range ρ
√
2). Thus, at each generation there is either zero or one

particle per cell. This sort of density-dependence may occur in the case of

resource limitation.

We carried out simulations under this spatiotemporal GDM incorporating
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Figure 5: Spatiotemporal simulation of the IDM2–LDD. Top left: Pattern of particles; Top

right: Estimated intensity of the point pattern. The plots were constructed as in Figure

3 except that the domain is [−2, 2]× [−2, 2] to take into account long distance dispersal

events, and that the grey scale for the intensity map is nonlinear to take into account the

very high concentration of particles near the source point. Bottom panels: plots drawn

at the top restricted to the domain [−1, 1]× [−1, 1] to allow the comparison with plots of

Figure 3.
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density-dependence for various parameter values and applied the same pro-

cedure than above to investigate the ability of this model to generate foci.

Figure 6 shows how the curve of the average number of δ-foci against the

threshold δ is modified in the presence of density-dependence in the case of

independent dispersal (left panel) and group dispersal (right panel). All the

simulations were performed with (λ, μ, ν, β) = (1, 1, 0.005, 0.05) while σ2 and

ρ were varied. Remark: The continuous lines in figure 6 used as benchmarks

(no density dependence, i.e. ρ = 0) were already given in the left panel of

figure 4 but the range of the abscissa was modified.
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Figure 6: Variation in the average number of δ-foci (sets of connected nodes with estimated

intensities greater than δ) with respect to the threshold δ in the presence of density-

dependence (ρ > 0) for the IDM1 (left panel, σ2 = 0) and the GDM (right panel, σ2 = 50).

For the two models (λ, μ, ν, β) = (1, 1, 0.005, 0.05) and the other parameters are specified

in the top right corners of the panels. The averages are computed from 1,000 simulations

and the grey zones provide the 95%-confidence envelopes for the averages.

Qualitatively, the effect of density-dependence is the same under the
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IDM1 and the GDM: the number of δ-foci is increased for small δ and de-

creased for large δ. This observation is patent for large ρ. Let us explain

these observations. Because of the density-dependence, there is less grid

nodes with high intensities of particles and, consequently, less δ-foci with

large δ. For small δ, the δ-foci which existed when ρ = 0 remain almost

unchanged when ρ > 0, since density-dependence has a small effect on low-

density regions. Besides, some large-δ-foci which existed when ρ = 0 are

converted into small-δ-foci when ρ > 0; this conversion explains the increase

of δ-foci for small δ when ρ increases.

5. Discussion

5.1. Role of group dispersal in population dynamics

Determining the roles played by some components of population dynam-

ics is of primary importance for species conservation and pest control. For

example, there exist numerous studies highlighting the consequences of spe-

cific habitat spatial structures, environmental heterogeneities, genetic struc-

tures and dispersal modes on population spread and population persistence

(see e.g. Filipe and Maule, 2004; Hamel et al., 2010; Kendall and Fox, 1998;

Plotkin et al., 2006; Real and Biek, 2007; Roques and Stoica, 2007; Smith,

2006). The work presented in this article is in this vein since we considered a

specific dispersal mode, namely group dispersal, and studied its consequences

on the population spread. We showed that group dispersal, as it is defined

in this article, can generate multiple foci without introducing long-distance

dispersal, spatial heterogeneity or density-dependence. This property holds

while the population can remain particularly concentrated. In addition, this
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property can persist with competition between individuals.

5.2. Generation of patchy patterns

Many dispersal or diffusion models can generate patchy patterns (see the

introduction and the next paragraph). The GDM is one of these models but

its interest depends on the situation. If the aim is to reproduce patterns with

multiple foci in a case where we do not know enough about how the agents

disperse, then more parsimonious models (e.g. IDMs with long distance

dispersal) may fit the population data at least equally well and a model

selection procedure taking the number of parameters into account could be

carried out; see Section 5.4. If the aim is to reproduce patchy patterns

generated by dynamics characterized by group dispersal, then the GDM may

be a realistic quasi-mechanistic model adapted to the situation, in particular

in the case of a single generation. Besides, in such a situation, the use of

the GDM could lead to better interpretation of parameters and improved

predictions.

5.3. Comparison with other approaches

Pattern formation has been a core topic in mathematical biology (see e.g.

Ben-Jacob et al., 2001; Cannas et al., 2006; Mimura et al., 2000; Mimura,

2004; Molofsky, 1994; Murray et al., 1998). This type of approaches is often

based on systems of several reaction-diffusion equations and the pattern for-

mation is for example due to species-nutrient interactions (Mimura, 2004),

multispecies interactions (Morozov and Petrovskii, 2009) or chemotactic in-

teractions between particles (Keller and Segel, 1970).
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Nevertheless, patchy patterns can be achieved with single-species reaction-

diffusion models such as the model of Murray and Sperb (1983). This model

is based on a reaction-diffusion equation with a convection term which plays

a role comparable to the dispersal kernel associated with group centers in

the GDM; and a diffusion term which has a role comparable to the Brownian

motion of the particles in the GDM. Despite these similarities, the way the

foci are generated is very different. Indeed, a key ingredient in the model

of Murray and Sperb (1983) is the boundary effect: in their case, complex

pattern formation (i.e. with more than one focus) cannot appear with lethal

boundaries. Conversely, in the GDM, boundaries are lethal and foci forma-

tion is therefore only driven by dispersal.

In this article we mentioned the IDMs with long distance dispersal (LDD)

which allow the generation of patchy patterns. The models we had in mind

are based on spatial point processes as in Section 4.4 and in Austerlitz et al.

(2004), Klein et al. (2006a), Minogue (1989) and Tufto et al. (1997). There

also exist models including LDD which are based on Gaussian puff or dif-

ferential equations (Aylor, 1987, 2003; Ferrandino, 1993). In these models,

which take the vertical dimension into account, the turbulence allows the

particles to escape the canopy and to be transported over long distances.

The approach presented by Bolker and Pacala (1997, 1999) and Dieck-

mann and Law (2000), based on point processes, also allows the creation of

patchy patterns. However, these patterns are achieved thanks to an interac-

tion kernel included in their time-continuous model and governing density-

dependent death and competition.
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5.4. Statistical inference

This study shows that group dispersal is one of the causes which can be

invoked to explain patchy patterns. Thus, one may be interested in testing

if the group dispersal hypothesis is not rejected based on observed patterns.

Besides, if this hypothesis is not rejected, one may be interested in estimating

the GDM parameters. The characteristics and properties that we provided in

this article could be used to develop testing and estimation procedures. For

example, a moment method could be developed using the material provided

in Section 3. Alternatively, the inference tools developed for mixture models

(Fraley and Raftery, 2002) and spatial point processes (Illian et al., 2008;

Stoyan et al., 1995) could be exploited.

For the reasons explained in Section 5.2, issues of model selection can

arise. Since the IDM is a special case of the GDM (setting (μ, σ2) = 0 in

the GDM leads to an IDM), procedures for nested models as the likelihood

ratio test and the Akaike’s criterion can be used, eventually associated with

bootstrap. For nonnested models (e.g. the GDM and the model of Dieck-

mann and Law, 2000), a procedure based on a prediction criterion and cross

validation can be used; see Burnham and Anderson (2002) for details about

model selection.

5.5. Generalization of the model

The model that we proposed benefits from the simplicity and flexibility

of parametric dispersal kernels and may become a useful model for dispersal

studies. Several generalizations can be proposed to extend the relevancy of

the model. One can use various probability distributions for the number of
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groups, the number of individuals per group and the locations of group cen-

ters. These distributions can depend on exogenous factors which may depend

on time and space. Moreover, the stopping times of the Brownian motions

can be changed (see Appendix A) and the Brownian motions themselves can

be transformed into other diffusive processes. In the spatio-temporal GDM

as it stands in this article, time is discrete and a new generation occurs at

each time step. Time could be continuous by using spatio-temporal Poisson

point processes (like in Soubeyrand et al., 2009) and overlapping generations

could arise. Furthermore, the dispersal events occurring at the same time

could be spatially correlated to take into account the similarity of environ-

mental conditions affecting neighbor sources. Then, we could analyze the

effects of these modifications on the properties of the GDM as we analyzed

the effect of density-dependence. Both analytical and simulation procedures

could be carried out for these analyses.
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Corn pollen dispersal: quasi-mechanistic models and field experiments.

Ecological Monographs 73, 131–150.

Klein, E. K., Lavigne, C., Gouyon, P.-H., 2006a. Mixing of propagules from

discrete sources at long distance: comparing a dispersal tail to an expo-

nential. BMC Ecology 6, 3.

33



Klein, E. K., Lavigne, C., Picault, H., Renard, M., Gouyon, P.-H., 2006b.

Pollen dispersal of oilseed rape: estimation of the dispersal function and

effects of field dimension. Journal of Applied Ecology 43, 141–151.

Laine, A.-L., Hanski, I., 2006. Large-scale spatial dynamics of specialist plant

pathogen. Journal of Ecology 94, 217–226.

Marco, D. E., Cannas, S. A., Montemurro, M. A., Hu, B., Cheng, S.-H.,

2009. Comparable ecological dynamics underlie early cancer invasion and

species dispersal, involving self-organizing processes. Journal of Theoretical

Biology 256, 65–75.

Martin, M. D., Chamecki, M., Brush, G. S., Meneveau, C., Parlange, M. B.,

2009. Pollen clumping and wind dispersal in an invasive angiosperm. Amer-

ican Journal of Botany 96, 1703–1711.

Mimura, M., 2004. Pattern formation in consumer-finite resource reaction-

diffusion systems. Publications of the Research Institute for Mathematical

Sciences 40, 14131431.

Mimura, M., Sakaguchib, H., Matsushita, M., 2000. Reactiondiffusion mod-

elling of bacterial colony patterns. Physica A 282, 283–303.

Minogue, K. P., 1989. Diffusion and spatial probability models for disease

spread. In: Jeger, M. J. (Ed.), Spatial Components of Plant Disease Epi-

demics. Prentice Hall, pp. 127–143.

Molofsky, J., 1994. Population dynamics and pattern formation in theoretical

populations. Ecology 75, 30–39.

34



Morozov, A., Petrovskii, S., 2009. Excitable population dynamics, biological

control failure, and spatiotemporal pattern formation in a model ecosys-

tem. Bulletin of Mathematical Biology 71, 863–887.

Mörters, P., Peres, Y., 2010. Brownian Motions. Cambridge University Press,

Cambridge.

Murray, J. D., Cook, J., Tyson, R., Lubkin, S. R., 1998. Spatial pattern for-

mation in biology: I. dermal wound healing. ii. bacterial patterns. Journal

of the Franklin Institute 335, 303–332.

Murray, J. D., Sperb, R. P., 1983. Minimum domains for spatial patterns in

a class of reaction diffusion equations. Journal of Mathematical Biology

18, 169–184.

Nash, D. R., Agassiz, D. J. L., Godfray, H. C. J., Lawton, J. H., 1995. The

pattern of spread of invading species: two leaf-mining moths colonizing

Great Britain. Journal of Animal Ecology 64, 225–233.

Pizo, M. A., Simão, I., 2001. Seed deposition patterns and the survival of

seeds and seedlings of the palm Euterpe edulis. Acta Œcologica 22, 229–

233.

Plotkin, J. B., Shave, J., Ashton, P. S., 2006. Cluster analysis of spatial

patterns in malaysian tree species. The American Naturalist 160, 629–644.

Real, L. A., Biek, R., 2007. Spatial dynamics and genetics of infectious dis-

eases on heterogeneous landscapes. Journal of the Royal Society Interface

4, 935–948.

35



Reichling, S. B., 2000. Group dispersal in juvenile Brachypelma vagans

(Aranae, Theraphosidae). The Journal of Arachnology 28, 248–250.

Roper, M., Seminara, A., Bandi, M. M., Cobb, A., Dillard, H. R., Pringle,

A., 2010. Dispersal of fungal spores on a cooperatively generated wind.

PNAS 107, 17474–17479.

Roques, L., Stoica, R., 2007. Species persistence decreases with habitat frag-

mentation: an analysis in periodic stochastic environments. Journal of

Mathematical Biology 55, 189–205.

Sapoukhina, N., Tyutyunov, Y., Sache, I., Arditi, R., 2010. Spatially mixed

crops to control the stratified dispersal of airborne fungal diseases. Ecolog-

ical Modelling 221, 2793–2800.

Shigesada, N., Kawasaki, K., 1997. Biological Invasions: Theory and Prac-

tice. Oxford University Press, Oxford.

Smith, G. C., 2006. Persistence of disease in territorial animals: insights from

spatial models of tb. New Zealand Journal of Ecology 30, 35–41.

Soubeyrand, S., Enjalbert, J., Sache, I., 2008. Accounting for roughness

of circular processes: Using gaussian random processes to model the

anisotropic spread of airborne plant disease. Theoretical Population Bi-

ology 73, 92–103.

Soubeyrand, S., Enjalbert, J., Sanchez, A., Sache, I., 2007. Anisotropy, in

density and in distance, of the dispersal of yellow rust of wheat: Experi-

ments in large field plots and estimation. Phytopathology 97, 1315–1324.

36



Soubeyrand, S., Laine, A.-L., Hanski, I., Penttinen, A., 2009. Spatio-

temporal structure of host-pathogen interactions in a metapopulation. The

American Naturalist 174, 308–320.

Stockmarr, A., 2002. The distribution of particles in the plane dispersed by

a simple 3-dimensional diffusion process. Journal of Mathematical Biology

45, 461–469.

Stoyan, D., Kendall, W. S., Mecke, J., 1995. Stochastic Geometry and its

Applications, 2nd Ed. Wiley, Chichester.

Sundberg, S., 2010. Size matters for violent discharge height and settling

speed of Sphagnum spores: important attributes for dispersal potential.

Annals of Botany 105, 291–300.

Takahashi, K., Shiota, T., Tamatani, H., Koyoma, M., Washitani, I., 2008.

Seasonal variation in fleshy fruit use and seed dispersal by the Japanese

black bear (Ursus thibetanus japanicus). Ecological Research 23, 471–478.

Trail, F., Gaffoor, I., Vogel, S., 2005. Ejection mechanisms and trajectory

of the ascospores of Gibberella zeae (anamorph Fuarium graminearum).

Fungal genetics and biology 42, 528–533.

Tufto, J., Engen, S., Hindar, K., 1997. Stochastic dispersal processes in plant

populations. Theoretical Population Biology 52, 16–26.

Whitaker, D. L., Edwards, J., 2010. Sphagnum moss disperses spores with

vortex rings. Science 329, 406.

37



Whitaker, D. L., Webster, L. A., Edwards, J., 2007. The biomechanics of Cor-

nus canadensis stamens are ideal for catapulting pollen vertically. Func-

tional Ecology 21, 219–225.

A. Stopping times of the Brownian motions

In the deposit equation for particles defined by Eq. (1), i.e. Xjn = Xj +

Bjn(ν||Xj||), there is a linear relationship between the deposit distance of the
group center and the transport duration after which the Brownian motions

are stopped: The transport duration of group j, say Tj , satisfies Tj = ν||Xj||.
Thus, the relationship between Tj and ||Xj|| is deterministic and linear. It
can be noted that, if fXj

is isotropic then the p.d.f. of Tj satisfies

fTj
(t) = (1/ν)f||Xj||(t/ν)

= (2πt/ν2)fXj
{(t/ν, 0)},

where f||Xj|| is the p.d.f. of ||Xj||.
More generally, the deposit equation could be written:

Xjn = Xj +Bjn(Tj),

with Xj and Tj being related deterministically or not, linearly or not.

For example, consider the case where the group centers follow centered

Brownian motions with independent components in the 3D space and where

the stopping times, which determine the locations Xj , are defined with the

vertical component: The particles are released at the height h > 0 and are

deposited once they hit the ground at the height 0. Then, in this case, the
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relationship between Tj and ||Xj|| is not deterministic but stochastic and is
nonlinear in expectation:

E(Tj | ||Xj|| = r) = h2 + r2. (5)

Indeed,

E(Tj | ||Xj|| = r) =

∫ +∞

0

tfTj |||Xj ||(t | r)dt

=

∫ +∞

0

t
f||Xj |||Tj

(r | t)fTj
(t)

f||Xj ||(r)
dt,

where the p.d.f. in the preceding line satisfy (see Mörters and Peres, 2010,

especially chapter 2 including material about hitting times of one-dimensional

Brownian motions):

f||Xj |||Tj
(r | t) = (r/t) exp(−r2/2t)

fTj
(t) =

(
h/
√
2πt3

)
exp(−h2/2t)

f||Xj||(r) = (r/h2)(1 + r2/h2)−3/2.

Using these formulae, the above integral leads to Eq. (5). It has to be noted

that this result is obtained without drift and gravity and without scaling

parameters contrary to the results provided in Stockmarr (2002) and Klein

et al. (2003). Here, the marginal p.d.f. of Xj is a bivariate Student’s t (2Dt)

distribution: fXj
(x) = (1 + ||x||2/h2)−3/2/2πh2.

Now, assume that the stopping time Tj has the same marginal p.d.f.

than above but that the conditional p.d.f. of ||Xj|| given Tj is exponentially

distributed:

f||Xj |||Tj
(r | t) = (1/t) exp(−r/t).
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Then, the relationship between Tj and ||Xj|| is still stochastic but linear in
expectation:

E(Tj | ||Xj|| = r) = h2 + r/2.

In the simulations carried out for the preparation of this article, the results

were qualitatively similar when we used a deterministic linear relationship

between Tj and ||Xj|| and a deterministic quadratic relationship.

B. Expressions of moments: Proofs

Criterion 1. E(X) = (0, 0)′ holds if the marginal dispersal function fXjn
for

the GDM and the IDM1 or fXj
for the IDM2 is isotropic. This condition

is satisfied for the three models when fXj
and the Brownian motion are

isotropic.

Criterion 2. For the IDM2, X = Xj and, therefore, V (X) = V (Xj). For the

IDM1 and the GDM, X = Xj +
√

ν||Xj||Y , where Y is a centered bivariate

normal vector with identity variance-covariance matrix I. Then, using the

conditional variance formula leads to the result:

V (X) = V (E(X|Xj)) + E(V (X|Xj))

= V (Xj) + E(ν||Xj||I)
= V (Xj) + νE(||Xj||)I.

Criterion 3. For the IDM2, X = Xj and, therefore, E(||X||2) = E(||Xj||2).
For the IDM1 and the GDM, denote the bivariate vectorsX byX = (X(a), X(b))

′
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and Xj by X = (Xj,(a), Xj,(b))
′. Then,

E(||X||2) = E(X2
(a) +X2

(b))

= V (X(a)) + E(X(a))
2 + V (X(b)) + E(X(b))

2

= V (X(a)) + V (X(b)) (using criterion 1)

= V (Xj(a)) + V (Xj(b)) + 2νE(||Xj||) (using criterion 2)

= E(X2
j(a)) + E(X2

j(b)) + 2νE(||Xj||) (using criterion 1)

= E(||Xj||2) + 2νE(||Xj||)

Criteria 4, 5 and 6 for the IDM1 and the IDM2. For the IDM1 and the IDM2,

the particle locations form inhomogeneous Poisson point processes in R
2 with

intensity functions λfXjn
and λfXj

, respectively. Therefore, from the basic

properties of such processes (Illian et al., 2008, sec. 3.4.1), E{Q(x+ dx)} =
V {Q(x+dx)} = λfXjn

(x)dx for the IDM1, E{Q(x+dx)} = V {Q(x+dx)} =
λfXj

(x)dx for the IDM2, and cov{Q(x1 + dx), Q(x2 + dx)} = 0 for both

models.

Criterion 4 for the GDM. Let Qj(x + dx) =
∑Nj

n=1 1(Xjn ∈ x + dx) be the

number of particles of group j deposited in the infinitesimal surface x+ dx,

with 1(·) denoting the indicator function. Then, Q(x+dx) =
∑J

j=1 Qj(x+dx)
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and

E{Q(x+ dx)} = E[E{
J∑

j=1

Qj(x+ dx) | J}]

= E[
J∑

j=1

E{Qj(x+ dx)}]

= E[JE{E(
Nj∑

n=1

1(Xjn ∈ x+ dx) | Nj)}]

= λE[NjE{1(Xjn ∈ x+ dx)}]
= λμfXjn

(x)dx.

Criterion 5 for the GDM. For the variance V {Q(x+dx)} = E{Q(x+dx)2}−
E{Q(x+ dx)}2 we use the same tricks than above. Using the independence

between Qj(x+dx) and Qj′(x+dx) when j 	= j′ for line 2, the valueE(J(J−
1)) = λ2 for line 3 and the value E(Nj(Nj − 1)) = σ2 + μ2 − μ for line 5,

E{Q(x+ dx)2} =E{
J∑

j=1

Qj(x+ dx)2 +

J∑
j=1

J∑
j′=1,j′ �=j

Qj(x+ dx)Qj′(x+ dx)}

=E[JE{Qj(x+ dx)2}+ J(J − 1)E{Qj(x+ dx)}E{Qj′(x+ dx)}]

=λE[{
Nj∑

n=1

1(Xjn ∈ x+ dx)}2] + λ2(μfXjn
(x)dx)2

=λE[NjE{1(Xjn ∈ x+ dx)}+Nj(Nj − 1)E{1(Xjn, Xjn′ ∈ x+ dx)}]
+ (λμfXjn

(x)dx)2 with n 	= n′

=λμfXjn
(x)dx+ λ(σ2 + μ2 − μ)fXjnXjn′

(x, x)(dx)2 + (λμfXjn
(x)dx)2,
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where, for n 	= n′,

fXjnXjn′
(x, x)(dx)2 =E[E{1(Xjn, Xjn′ ∈ x+ dx) | Xj}]

=E[E{1(Xjn ∈ x+ dx)}E{1(Xjn′ ∈ x+ dx)}]
=E[{φν,Xj

(x)dx}2]

=

∫
R2

φν,y(x)
2fXj

(y)dy(dx)2,

because, given Xj, 1(Xjn ∈ x+dx) and 1(Xjn′ ∈ x+dx) are i.i.d. with p.d.f.

φν,Xj
(·). Consequently,

V {Q(x+ dx)} =E{Q(x+ dx)2} − E{Q(x+ dx)}2

=λμfXjn
(x)dx+ λ(σ2 + μ2 − μ)E[{φν,Xj

(x)dx}2].

Criterion 6 for the GDM. For the covariance cov{Q(x1+dx), Q(x2+dx)} =
E{Q(x1 + dx)Q(x2 + dx)} −E{Q(x1 + dx)}E{Q(x2 + dx)} where x1 + dx∩
x2 + dx = ∅

E{Q(x1 + dx)Q(x2 + dx)}

=E{
J∑

j=1

Qj(x1 + dx)Qj(x2 + dx)}+ E{
J∑

j=1

J∑
j′=1,j′ �=j

Qj(x1 + dx)Qj′(x2 + dx)}

=λE{Qj(x1 + dx)Qj(x2 + dx)}+ λ2E{Qj(x1 + dx)}E{Qj′(x2 + dx)}

=λE[{
Nj∑
n=1

1(Xjn ∈ x1 + dx)}{
Nj∑

n′=1

1(Xjn′ ∈ x2 + dx)}] + λ2μ2fXjn
(x1)fXjn

(x2)(dx)2

=λE{
Nj∑
n=1

Nj∑
n′=1,n′ �=n

1(Xjn ∈ x1 + dx, Xjn′ ∈ x2 + dx)}+ E{Q(x1 + dx)}E{Q(x2 + dx)}

=λE[Nj(Nj − 1)E{1(Xjn ∈ x1 + dx, Xjn′ ∈ x2 + dx)}]
+ E{Q(x1 + dx)}E{Q(x2 + dx)} with n 	= n′

=λ(σ2 + μ2 − μ)fXjnXjn′
(x1, x2)(dx)2 + E{Q(x1 + dx)}E{Q(x2 + dx)},
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where

fXjnXjn′
(x1, x2) = E{φν,Xj

(x1)φν,Xj
(x2)}

=

∫
R2

φν,y(x1)φν,y(x2)fXj
(y)dy.

Therefore, for x1 + dx ∩ x2 + dx = ∅,

cov{Q(x1 + dx), Q(x2 + dx)} =E{Q(x1 + dx)Q(x2 + dx)} − E{Q(x1 + dx)}E{Q(x2 + dx)}
=λ(σ2 + μ2 − μ)E{φν,Xj

(x1)φν,Xj
(x2)}(dx)2.

C. Distance to the furthest particle: Proofs

C.1. Distribution of Rmax

The following lemmas and corollaries are used to provide the distribution

of the distance between a point source and the furthest deposited particle

dispersed under the GDM and the IDMs.

Lemma 1. Consider J random variables R1, . . . , RJ in R+ independently

drawn under the following zero-inflated distribution:

P (Rj = 0) = q

fRj
(r) = f(r), ∀r > 0.

Let F be the cumulated distribution function of Rj: for all r ≥ 0, F (r) =

q+
∫ r

0
f(u)du. Assume that J has distribution p over N. Let J = {1, . . . , J}

if J ≥ 0 and J be the empty set otherwise. Then, the cumulated distribution

function of the maximum Rmax = max{Rj : j ∈ J}, J being unknown,

satisfies:

P (Rmax ≤ r) =

J∑
j=0

F (r)jp(j), ∀r ≥ 0.
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Proof of Lemma 1. The above equation is obtained by using the distribution

of the maximum of J i.i.d. statistics (David and Nagaraja, 2003, chap. 2),

namely R1, . . . , RJ , and by integrating this distribution with respect to J :

for all r ≥ 0

P (Rmax ≤ r) =

∞∑
j=0

P (Rmax ≤ r | J = j)p(j)

= p(0) +
∞∑

j=1

P (Rk ≤ r : k = 1, . . . , J | J = j)p(j)

=

∞∑
j=0

F (r)jp(j).

Corollary 1: Case where J is Poisson distributed. Assume that the hypotheses

of Lemma 1 are satisfied. In addition, assume that J is Poisson distributed

with mean λ, i.e. p(j) = e−λλj/j! for all j ∈ N. Then, the cumulated

distribution function of Rmax is:

P (Rmax ≤ r) = exp [λ{F (r)− 1}] , ∀r ≥ 0,

and its distribution is:

P (Rmax = 0) = exp [λ{F (0)− 1}]
fRmax(r) = λf(r) exp [λ{F (r)− 1}] , ∀r > 0.

Apply Lemma 1 to prove Corollary 1.
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C.2. Distribution of Rmax
j under the IDMs

Under the IDMs, Nj = 1 for all j ∈ J. Consequently, in Eq. (2), pμ,σ2(0) =

0 and

fRmax
j

(r) = fRjn
(r)

=

⎧⎪⎨
⎪⎩

∫ 2π

0
rfXjn

((r cos θ, r sin θ))dθ for the IDM1

∫ 2π

0
rfXj

((r cos θ, r sin θ))dθ for the IDM2.

(6)

If in addition fXj
is assumed to be isotropic, then fRmax

j
(r) = 2πrfXjn

((r, 0))

for the IDM1 and fRmax
j

(r) = 2πrfXj
((r, 0)) for the IDM2 (the simplification

holds also for the IDM1 because the isotropy of fXj
and the isotropy of the

Brownian motion imply that fXjn
is isotropic).

C.3. Distribution of Rmax
j under the GDM

Under the GDM, the distribution of Rmax
j is zero-inflated and satisfies:

P (Rmax
j = 0) = pμ,σ2(0)

fRmax
j

(r) =

∫
R2

fRmax
j

|Xj
(r | x)fXj

(x)dx

=
+∞∑
q=1

qpμ,σ2(q)

∫
R2

fRjn|Xj
(r | x)FRjn|Xj

(r | x)q−1fXj
(x)dx, ∀r > 0.

(7)

where fRjn|Xj
is the conditional distribution of Rjn given Xj satisfying

fRjn|Xj
(r | x) = 2r

∫ r2

0

h1(u, x)h2(r
2 − u, x)du,

hi(u, x) =
fi(
√

u, x) + fi(−
√

u, x)

2
√

u
, ∀i ∈ {1, 2},

fi(v, x) =
1√

2πν||x|| exp
(
−(v − x(i))2

2ν||x||
)

, ∀i ∈ {1, 2},

(8)
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x = (x(1), x(2)) and FRjn|Xj
(r | x) =

∫ r

0
fRjn|Xj

(s | x)ds. This result is

obtained by applying Corollary 2 given below whose assumptions are satisfied

by the sub-model which governs the dispersal of the particles of a given

group j.

It has to be noted that Equation (7) reduces to fRmax
j

(r) = fRjn
(r) when

pμ,σ2(j) = 1 if j = 1 and zero otherwise, i.e. when the GDM is an IDM.

Thus, we obtain the result given in Equation (6) for the IDMs.

Besides, Corollary 3 given below provides a closed form for Equation (7)

when the distribution of Nj is negative binomial as proposed in Equation (3)

for the simulation study.

Lemma 2. Consider N random vectors X1, . . . , XN in R
2 independently drawn

under the p.d.f. f : R2 → R+. Assume that N is drawn from a count-

ing distribution p : N → [0, 1] and that f is multiplicatively separable, i.e.

f(x) = f1(x
(1))f2(x

(2)) for all x = (x(1), x(2)) in R
2, where f1 and f2 are

real functions over R. Let N = {1, . . . , N} if N ≥ 0 and N be the empty

set otherwise. Then, the distribution of the maximum Euclidean distance

Rmax = max{||Xn|| : n ∈ N} between the origin and the N random vectors,

N being unknown, satisfies:

P (Rmax = 0) = p(0)

fRmax(r) =
+∞∑
q=1

qf||Xn||(r)F||Xn||(r)
q−1p(q), ∀r > 0,

(9)
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where F||Xn||(r) =
∫ r

0
f||Xn||(u)du and f||Xn|| is the p.d.f. of ||Xn|| satisfying

f||Xn||(r) = 2r

∫ r2

0

h1(u)h2(r
2 − u)du,

hi(u) =
fi(
√

u) + fi(−
√

u)

2
√

u
, ∀i ∈ {1, 2}.

Proof of Lemma 2. If N = 0, then Rmax = 0. If N = q > 0, then the p.d.f.

of Rmax is r �→ qf||Xn||(r)F||Xn||(r)
q−1; see David and Nagaraja (2003, chap.

2). This yields Eq. (9). The expression of f||Xn|| is obtained as follows. Let

r ≥ 0, we have:

f||Xn||(r) = 2rf||Xn||2(r
2),

f||Xn||2(r) = fX2

n,1+X2

n,2
(r)

=

∫ r

0

fX2

n,1
(u)fX2

n,2
(r − u)du,

where Xn = (Xn,1, Xn,2). In addition, for i ∈ {1, 2} and u > 0

fX2

n,i
(u) = fX2

n,i
|Xn,i≥0(u)P (Xn,i ≥ 0) + fX2

n,i
|Xn,i<0(u)P (Xn,i < 0)

=
1

2
√

u

[
fXn,i|Xn,i≥0(

√
u)P (Xn,i ≥ 0) + fXn,i|Xn,i<0(−

√
u)P (Xn,i < 0)

]
.

The density of the i-th component of Xn is fi (see the separability hypothesis

in the lemma), therefore, for v ∈ R,

fXn,i|Xn,i≥0(v) = fi(v)δv≥0/P (Xn,i ≥ 0)

fXn,i|Xn,i<0(v) = fi(v)δv<0/P (Xn,i < 0),

and

fX2

n,i
(u) =

1

2
√

u

[
fi(
√

u) + fi(−
√

u)δu �=0

]
,
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where δE = 1 if event E occurs, zero otherwise. The previous equations and

the fact that fX2

n,i
and hi : u �→ (1/2

√
u){fi(

√
u) + fi(−

√
u)} are different at

only one point lead to the expression of f||Xn|| provided in Lemma 1.

Corollary 2: Application of Lemma 2 to obtain fRmax
j

. Here, we use the no-

tation introduced for the spatial GDM. For group j and given Xj = x =

(x(1), x(2)), the family {Xjn : n ∈ Nj}, where N = {1, . . . , Nj} if Nj > 0 and

the empty set otherwise, satisfy the assumption of Lemma 1, and the p.d.f.

of the i-th component of Xjn, i ∈ {1, 2}, is

v �→ fi(v, x) =
1√

2πν||x|| exp
(
−(v − x(i))2

2ν||x||
)

,

because Xjn ∼ N(x, ν||x||I). This formula and Lemma 1 allows us to get

the expression of fRjn|Xj
provided in Eq. (8) (we recall that Rjn = ||Xjn||).

Then, Eq. (9) can be written

P (Rmax
j = 0 | Xj = x) = pμ,σ2(0)

fRmax
j

|Xj
(r | x) =

+∞∑
q=1

qfRjn|Xj
(r | x)FRjn|Xj

(r | x)q−1pμ,σ2(q), ∀r > 0.

It follows that

P (Rmax
j = 0) = pμ,σ2(0)

fRmax
j

(r) =

∫
R2

fRmax
j

|Xj
(r | x)fXj

(x)dx

=

+∞∑
q=1

qpμ,σ2(q)

∫
R2

fRjn|Xj
(r | x)FRjn|Xj

(r | x)q−1fXj
(x)dx, ∀r > 0.
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Corollary 3: Case where Nj follows a negative-binomial distribution and fXj

is isotropic. Let us now give the expression of fRmax
j

under the GDM when

the distribution of Nj is negative-binomial (see Eq. (3)) and fXj
is isotropic,

P (Rmax
j = 0) = as

fRmax
j

(r) =

∫ +∞

0

2πas(1− a)sg(r, z)z

{1− (1− a)G(r, z)}s+1
fXj

((z, 0))dz, ∀r > 0,

where a = μ/σ2 and s = μ2/(σ2 − μ) (μ and σ2 being the parameters of the

distribution of Nj, see Eq. (3)), G(r, z) =
∫ r

0
g(u, z)du and

g(r, z) = 2r

∫ r2

0

h1(u, z)h2(r
2 − u, z)du,

hi(u, z) =
fi(
√

u, z) + fi(−
√

u, z)

2
√

u
, ∀i ∈ {1, 2},

fi(r, z) =
1√
2πνz

exp

(
−(u− zδ1(i))

2

2νz

)
, ∀i ∈ {1, 2}.

C.4. Proofs of Properties 1 and 2

Properties 1 and 2 gives results about the probability that Rmax is larger

than a distance r > 0 which satisfies:

P (Rmax ≥ r) =

∫ +∞

r

fRmax(s)ds

= 1− exp[λ{FRmax
j

(r)− 1}],

=

⎧⎪⎨
⎪⎩
1− exp[λ{FRjn

(r)− 1}] for the IDMs

1− exp[λ{E(FRjn
(r)Nj )− 1}] for the GDM
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where E(FRjn
(r)Nj) =

∑+∞
q=0 FRjn

(r)qpμ,σ2(q) and

FRjn
(r) =

∫ r

0

∫ 2π

0

ufXjn
((u cos θ, u sin θ))du for the IDM1 and the GDM,

FRjn
(r) =

∫ r

0

∫ 2π

0

ufXj
((u cos θ, u sin θ))du for the IDM2.

Proof of Property 1. Let PIDM1(r) = P (Rmax ≥ r) under the IDM1 and

PGDM(r) = P (Rmax ≥ r) under the GDM. With the notation of Property 1,

PGDM(r)− PIDM1(r) = exp[λ̃μ̃{FRjn
(r)− 1}]− exp[λ̃{E(FRjn

(r)Nj)− 1}],

where the distribution of Nj is pμ̃,σ2(·). PGDM(r)−PIDM1(r) ≤ 0 if and only

if Δ(FRjn
(r)) ≤ 0 where

Δ(γ) = μ̃(γ − 1)− {E(γNj )− 1}.

Let us study the sign of Δ for γ ∈]0, 1] since FRjn
(r) ∈]0, 1] for all r > 0. As

μ̃ = E(Nj), Δ is equal to

Δ(γ) =
+∞∑
n=0

pμ̃,σ2(n){n(γ − 1)− γn + 1}.

For all γ ∈]0, 1] and n ∈ N, n(γ − 1)− γn + 1 ≤ 0 and, therefore, Δ(γ) ≤ 0.

This leads to the conclusion of Property 1.

Proof of Property 2. Consider one particle whose location Xj1 is distributed

under the IDM1: Xj1 = Xj + Bj1(ν||Xj ||). The location Xj is distributed

under the IDM2. Assume without lost of generality that Xj is on the x-axis

and has a positive abscissa. Because the Brownian motion is isotropic, the

probability that Xj1 is in the half-plane at the right of y = X
(1)
j , where X

(1)
j ,
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is the first coordinate of Xj is 1/2. The probability that Xj1 is in the half-

plane at the left of y = X
(1)
j and in the disk with radius X

(1)
j is less than 1/2.

Consequently,

P (||Xj1|| ≥ ||Xj||) ≥ 1/2

and FRj1
(r) = P (||Xj1|| ≤ r) under the IDM1 is lower than FRj

(r) =

P (||Xj|| ≤ r) under the IDM2. Thus, Property 2 holds.
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