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What’s in a crowd?

Analysis of face-to-face behavioral networks
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Jean-François Pintonc, Wouter Van den Broecka

aComplex Networks and Systems Group, Institute for Scientific Interchange (ISI)
Foundation, Turin, Italy

bCentre de Physique Théorique, CNRS UMR 6207, Marseille, France
cLaboratoire de Physique de l’ENS Lyon, CNRS UMR 5672, Lyon, France

Abstract

The availability of new data sources on human mobility is opening new av-
enues for investigating the interplay of social networks, human mobility and
dynamical processes such as epidemic spreading. Here we analyze data on the
time-resolved face-to-face proximity of individuals in large-scale real-world
scenarios. We compare two settings with very different properties, a scien-
tific conference and a long-running museum exhibition. We track the behav-
ioral networks of face-to-face proximity, and characterize them from both a
static and a dynamic point of view, exposing differences and similarities. We
use our data to investigate the dynamics of a susceptible-infected model for
epidemic spreading that unfolds on the dynamical networks of human prox-
imity. The spreading patterns are markedly different for the conference and
the museum case, and they are strongly impacted by the causal structure of
the network data. A deeper study of the spreading paths shows that the mere
knowledge of static aggregated networks would lead to erroneous conclusions
about the transmission paths on the dynamical networks.

Keywords: dynamic networks, face-to-face interaction, information
spreading, behavioral social networks, complex networks

1. Introduction

Access to large data sets on human activities and interactions has long
been limited by the difficulty and cost of gathering such information. Re-
cently, the ever increasing availability of digital traces of human actions is
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widely enabling the representation and the analysis of massive amounts of
information on human behavior. The representation of this information in
terms of complex networks [1–8] has led to many research efforts because of
the naturally interlinked nature of these new data sources.

Tracing human behavior in a variety of contexts has become possible at
very different spatial and temporal scales: from mobility of individuals inside
a city [9] and between cities [10], to mobility and transportation in an entire
country [11], all the way to planetary-scale travel [12, 13]. Mobile devices
such as cell phones make it possible to investigate mobility patterns and their
predictability [14, 15]. On-line interactions occurring between individuals can
be monitored by logging instant messaging or email exchange [16–21]. Re-
cent technological advances further support mining real-world interactions
by means of mobile devices and wearable sensors, opening up new avenues
for gathering data on human and social interactions. Bluetooth and Wifi
technologies give access to proximity patterns [22–26], and even face-to-face
presence can be resolved with high spatial and temporal resolution [27–30].
The combination of these technological advances and of heterogeneous data
sources allow researchers to gather longitudinal data that have been tradi-
tionally scarce in social network analysis [31, 32]. A dynamical perspective on
interaction networks paves the way to investigating interesting problems such
as the interplay of the network dynamics with dynamical processes taking
place on these networks.

In this paper, we capitalize on recent efforts [27–30] that made possible to
mine behavioral networks of face-to-face interactions between individuals, in
a variety of real-world settings and in a time-resolved fashion. We present an
in-depth analysis of the data we collected at two widely different events. The
first event was the INFECTIOUS exhibition [33] held at the Science Gallery
in Dublin, Ireland, from April 17th to July 17th, 2009. The second event was
the ACM Hypertext 2009 conference [34] hosted by the Institute for Scientific
Interchange Foundation in Turin, Italy, from June 29th to July 1st, 2009. In
the following, we will refer to these events as SG and HT09, respectively. In-
tuitively, interactions among conference participants differ from interactions
among museum visitors, and the concerned individuals have very different
goals in both settings. The study of the corresponding networks of proximity
and interactions, both static and dynamic, reveals indeed strong differences
but also interesting similarities. We take advantage of the availability of
time-resolved data to show how dynamical processes that can unfold on the
close proximity network — such as the propagation of a piece of information
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or the spreading of an infectious agent — unfold in very different ways in
the investigated settings. In the epidemiological literature, traditionally, pro-
cesses of this kind have been studied using either aggregated data or under
assumptions of stationarity for the interaction networks: here we leverage the
time-resolved nature of our data to assess the role of network dynamics on
the outcome of spreading processes. At a more fundamental level, simulating
simple spreading processes over the recorded interaction networks allows us
to expose several properties of their dynamical structure as well as to probe
their causal structure.

The paper is organized as follows: first, we briefly describe the data
collection platform and our data sets in Section 2; in Section 3 we discuss the
salient features of the networks of interactions aggregated on time windows of
one day. These networks are static objects, carrying only information about
the cumulative time that – daily – each pair of individuals has spent in face-
to-face proximity. Section 4 analyzes the dynamical properties of face-to-face
interactions between conference participants and museum visitors. Section 5
further characterizes the aggregated network structures by investigating the
effect of incremental link removal. Finally, Section 6 investigates the role
played by causality in information spreading along the proximity network,
and Section 7 concludes the paper and defines a number of open questions.

2. Data

The data collection infrastructure uses active Radio-Frequency Identi-
fication Devices (RFID) embedded in conference badges to mine face-to-
face proximity relations of persons wearing the badges. RFID devices ex-
change ultra-low power radio packets in a peer-to-peer fashion, as described
in Refs. [27–30]. Exchange of radio packets between badges is only possible
when two persons are at close range (1 to 1.5m) and facing each other, as the
human body acts as a RF shield at the carrier frequency used for commu-
nication. The operating parameters of the devices are programmed so that
the face-to-face proximity of two individuals wearing the RFID tags can be
assessed with a probability in excess of 99% over an interval of 20 seconds,
which is a fine enough time scale to resolve human mobility and proximity
at social gatherings. False positives are exceedingly unlikely, as the ultra-
low power radio packets used for proximity sensing cannot propagate farther
than 1.5-2m, and a sustained excess of packets is needed in order to signal
a proximity event. When a relation of face-to-face proximity (or “contact”,
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as we will refer to it in the following) is detected, the RFID devices report
this information to receivers installed in the environment (RFID readers).
The readers are connected to a central computer system by means of a Local
Area Network. Once a contact has been established, it is considered ongo-
ing as long as the involved devices continue to exchange at least one radio
packet for every subsequent interval of 20 seconds. Conversely, a contact is
considered terminated if an interval of 20 seconds elapses with no packets
exchanged. For a detailed description of the sensing platform and some of
its deployments, see Refs.[27–30].

The deployments at the Science Gallery in Dublin [33] and at the HT09
conference in Turin [34] involved vastly different numbers of individuals and
stretched along different time scales. The former lasted for about three
months and recorded the interactions of more than 14, 000 visitors (more
than 230, 000 face-to-face contacts recorded), whereas the latter took place
over the course of three days and involved about 100 conference participants
(about 10, 000 contacts). Behaviors are also very different: in a museum,
visitors typically spend a limited amount of time on site, well below the
maximum duration permitted by the museum opening hours, they are not
likely to return, and they follow a rather pre-defined path, touching different
locations that host the exhibits. In a conference setting, on the other hand,
most attendees stay on-site for the entire duration of the conference (a few
days), and move at will between different areas such as conference room, ar-
eas for coffee breaks and so on. The coverage of the community was different
in both settings. At the Science Gallery, visitors were equipped with a RFID
tag upon entering the venue, as part of an interactive exhibit, and there-
fore almost the totality of them were tracked. On the other hand, at HT09,
about 75% of the participants volunteered to being tracked. This sampling
may introduce some biases in the results. Sampling issues are also commonly
encountered in the study of static complex networks [35–38]. Reference [28]
has shown that for a broad variety of real-world deployments of the RFID
proximity-sensing platform used in this study, the behavior of the statistical
distributions of quantities such as contact durations is not altered by un-
biased sampling of individuals. On the other hand, we cannot completely
rule out that a systematic bias is introduced by the selection of volunteers, if
volunteers and non-volunteers have different behavioral patterns. Accurately
checking this point would require monitoring an independent data source for
face-to-face contacts, and because of scalability issues this would be feasible
only for small control groups. Issues regarding the effect of missing data
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and incomplete sampling on the properties of dynamical processes unfold-
ing on the networks also deserve attention and will be the subject of future
investigations.

3. The static interaction network

We start by analyzing aggregated networks of interaction obtained by
aggregating the raw proximity data over one day. This aggregation yields a
social graph where nodes represent individuals, and an edge is drawn between
two nodes if at least one contact was detected between those nodes during the
interval of aggregation. Therefore, every edge is naturally weighted by the
total duration of the contact events that occurred between the tags involved,
i.e., by the total time during which the corresponding individuals have been
in face-to-face proximity.

The choice of daily time windows seems quite natural in our settings.
It would represent, for instance, a typical time scale for a description of
articulated social networks based on surveys, in which each participant would
(ideally) declare who s/he has encountered during the course of the day.
Such a choice for the duration of the time-window, albeit natural, is by no
means unique [26]. For instance, it is possible to aggregate the data over
longer periods of time (weeks or months) to investigate the stationarity of
the collected data [28]. Shorter aggregation times of the order of a few
minutes are also useful, for instance, to resolve circadian activity patterns at
the venue under investigation.

Figure 1 displays the aggregated contact networks for June 30th at the
HT09 conference (top left), and for three representative days for the SG mu-
seum deployment. Despite the large variation in the number of daily museum
visitors, ranging from about 60 to 400, the chosen days illustrate many fea-
tures of the SG aggregated networks, in particular the presence of either a
single or two large connected components (CC) in the network. Days with
smaller numbers of visitors can also give rise to aggregated networks made
of a larger number of small isolated clusters. As shown in Fig. 2, depending
on the number of visitors the number of CC can in fact vary substantially.
For a large number of visitors, typically only one CC is observed. For a low
number of visitors, on the other hand, many clusters are formed. Overall one
also notices that the network diameter (highlighted in all the plots of Fig. 1)
is considerably longer for SG than for HT09 aggregated networks, reflecting
the different behavioral patterns in these settings.
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The small-world nature — or lack thereof — of the aggregated networks
can be investigated statistically by introducing a proper null model. To this
end, we construct a randomized network using the rewiring procedure de-
scribed in Ref. [39]. The procedure consists in taking random pairs of links
(i, j) and (l,m) involving 4 distinct nodes, and rewiring them as (i,m) and
(j, l). This procedure preserves the degree of each node and the degree dis-
tribution P (k), while destroying the degree correlations between neighboring
nodes, as well as any other correlations linked to node properties. The pro-
cedure is carried out so that initially distinct CCs do not get merged. Since
the rewiring procedure cannot be implemented for the rare CCs with less
than four nodes, these small CCs are removed from the aggregated networks
before rewiring. Figure 3 displays a single realization of the null model for
the networks in the top row of Fig. 1. We notice that the rewired version of
the aggregated HT09 network is very similar to the original version, whereas
the null model for the aggregated network of the SG data on July 14th is
more “compact” than the original network and exhibits a much shorter di-
ameter. Similar considerations hold for the other aggregated networks of the
SG deployment.

More quantitatively, we measure the mean number of nodes one can reach
from a randomly chosen node by making l steps on the network, a quantity
hereafter called M(l). For a network consisting of a single connected com-
ponent, the definition of M(l) implies that

M(1) = 〈k〉+ 1 and M(∞) = N , (1)

where 〈k〉 is the average node degree, N is the total number of nodes in the
network andM(∞) the saturation value ofM on the network. The saturation
value M(∞) is reached when l is equal to the length of the network diameter,
and may vary for different realizations of the random networks. For a network
consisting of several CCs one has to take into account the probability Ni/N
that the chosen node belongs to a given CC, where Ni is the number of nodes
in the i-th CC. As a consequence, Eq. (1) generalizes to

M(1) =
1

N

∑
i

Ni (〈k〉i + 1) and M(∞) =
1

N

∑
i

N2
i , (2)

where 〈k〉i is the average node degree on the i-th CC. This ensures that the
quantity M(l)/M(∞), regardless on the number of CC, assumes the same
value when l = 1, and saturates to unity for both the aggregated and rewired
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network. Figure 4 displays M(l)/M(∞) for the aggregated networks on the
top row of Fig. 1, as well as its value averaged on 100 randomized networks
(the average value of M(l) converges rapidly already when calculated on a
few tens of randomized networks). We notice the striking similarity between
the results for the HT09 original and randomized networks, where about 90%
of the individuals lie, in both cases, within two degrees of separation. In the
SG case, conversely, the same 90% percentage is reached with six degrees of
separation for the original network, but with only three degrees of separation
on the corresponding randomized networks. The same calculation, performed
on other aggregated SG networks, yields qualitatively similar results, always
exposing a dramatic difference from the null model.

One of the standard observables used to characterize a network topology
is the degree distribution P (k), i.e., the probability that a randomly chosen
node has k neighbors. Figure 5 reports the degree distributions of the daily
aggregated networks, averaged over the whole duration of the HT09 deploy-
ment (left) and SG deployment (right). For the SG case, we left out the few
isolated nodes that contribute to the degree distribution for k = 0 only. The
P (k) distributions are short-tailed in all cases: P (k) decreases exponentially
in the SG case, and even faster for HT09. We notice that the HT09 degree
distribution exhibits a peak at k around 15− 20, pointing to a characteristic
number of contacts established during the conference. Moreover, the aver-
age degree in the HT09 case, 〈k〉, close to 20, is more than twice as high as
that for the SG networks, 〈k〉 which is close to 8. This represents another
clear indication of the behavioral difference of conference participants versus
museum visitors (the fact that the average degree is high for conference atten-
dees can be regarded as a goal of the conference itself). Finally, we observe
that a large fraction of the recorded contacts are sustained for a short time:
for instance, removing all the contacts with a cumulated duration below one
minute yields 〈k〉 about 7.5 for HT09 and 〈k〉 about 3.5 for SG.

4. Temporal features

The availability of time-resolved data allows one to gain much more in-
sight into the salient features of the social interactions taking place during
the deployments than what could be possible by the only knowledge of “who
has been in face-to-face proximity of whom”.
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We first investigated the presence duration distribution in both settings.
For the conference case, the distribution is rather trivial, as it essentially
counts the number of conference participants spending one, two or three
days at the conference. The visit duration distribution for the museum, in-
stead, can be fitted to a lognormal distribution (see Fig. 6), with geometric
mean around 35 minutes. This shows that, unlike the case of the confer-
ence, here one can meaningfully introduce the concept of a characteristic
visit duration that turns out to be well below the cutoff imposed by mu-
seum opening hours. The existence of a characteristic visit duration sheds
light on the elongated aspect of the aggregated networks of visitor interac-
tions (see Fig. 1). Indeed museum visitors are unlikely to interact directly
with other visitors entering the venue more than one hour after them, thus
preventing the aggregated network from exhibiting small-world properties.
Figure 7 reports the SG aggregated networks for two different days, where
the network diameter is highlighted and each node is colored according to
the arrival time of the corresponding visitor. One notices that, as expected
from the aforementioned properties of the visit duration distribution, there
is limited interaction among visitors entering the museum at different times.
Furthermore, the network diameter clearly defines a path connecting visitors
that enter the venue at subsequent times, mirroring the longitudinal dimen-
sion of the network. These findings show that aggregated network topology
and longitudinal/temporal properties are deeply interwoven.

Let us now focus on the temporal properties of social interactions. At the
most detailed level, each contact between two individuals is characterized by
its duration. The corresponding distributions are shown in Fig. 8. As noted
before, in both the HT09 and SG cases most of the recorded interactions
amount to shortly-sustained contacts lasting less than one minute. However,
both distributions show broad tails – they decay only slightly faster than a
power law. This behavior does not come as a surprise, as it has been ob-
served in social sciences in a variety of context ranging from human mobility
to email or mobile phone calls networks [16, 22, 28, 40]. More interestingly,
the distributions are very close (except in the noisy tail, due to the different
number of contributing events), showing that the statistics of contact dura-
tions are robust across two very different settings. This robustness has been
observed in Ref. [28] across different scientific conferences, but the museum
setting corresponds to a situation in which a flux of individuals follows a pre-
defined path, and this strong similarity between distributions was therefore
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not expected a priori. At a coarser level, aggregated networks are charac-
terized by weights on the links, that quantify for how long two individuals
have been in face-to-face proximity during the aggregation interval. Figure 9
displays the distributions of these weights w. These distributions are very
broad [28]: while most links correspond to very short contacts, some corre-
spond to very long cumulated durations, and all time scales are represented,
that is, no characteristic interaction timescale (except for obvious cutoffs)
can be determined. We note that at this coarser level of analysis the distri-
butions are again very similar.

For each individual, the cumulated time of interaction with other indi-
viduals is moreover given by the strength s of the corresponding node [12],
i.e., by the sum of the weights of all links inciding on it. The strength dis-
tributions P (s) are displayed in Fig. 10 for the aggregated networks of the
HT09 conference (left) and of the SG museum case (right). Unlike k, the
node strength s spans several orders of magnitude, ranging from a few tens
of seconds to well above one hour. The node strength s can be correlated
with the node degree k by computing the average strength 〈s(k)〉 of nodes
of degree k [12]. While a completely random assignment of weights yields a
linear dependency with 〈s(k)〉 proportional to 〈w〉k, where 〈w〉 is the average
link weight, super-linear or sub-linear behaviors have been observed in vari-
ous contexts [12, 28, 41]. A super-linear dependence such as the one observed
in some conference settings [28] hints at the presence of super-spreader nodes
that play a prominent role in processes such as information diffusion [42, 43].
On the other hand, the sub-linear dependence observed for large-scale phone
call networks [41] corresponds to the fact that more active individuals spend
on average less time in each call. Figure 11 displays the ratio 〈s(k)〉/(〈w〉k)
for the SG and HT09 daily aggregated networks. Two different trends appear
despite the large fluctuations: a slightly increasing trend in the conference
setting, and a clearly decreasing one in the museum setting. In particular,
the behavior of 〈s(k)〉/(〈w〉k) for the HT09 case (left plot in Figure 11) can
be fitted linearly yielding a linear coefficient Δ = 0.01 (p-value = 0.007). By
reshuffling 4000 times the weights of the network links and performing the
same linear fit for each reshuffling, we obtain a distribution of linear coeffi-
cients Δ. Such distribution, whose mean is zero, is shown in the inset of the
left plot in Figure 11 together with the value of Δ from the HT09 daily ag-
gregated networks (vertical line). The observed value of Δ at the HT09 is an
outlier of the distribution (96th percentile), thus showing that the observed
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behavior of 〈s(k)〉/(〈w〉k) can hardly arise by a random assignment of link
weights. On the other hand, the observed behavior of 〈s(k)〉/(〈w〉k) at the
SG can be fitted to a power law with a negative exponent i.e. it decreases
linearly on a double logarithmic scale such as the one shown in the inset of
the right plot in Figure 11. These results indicate that individuals who en-
countered the same number of distinct persons can have different spreading
potentials, depending on the setting. It also gives a warning about charac-
terizing spreading by only measuring the number of encounters, which can
yield a rather misleading view.

5. Percolation analysis

The issue of network vulnerability to successive node removal has at-
tracted a lot of interest in recent years starting from the pioneering works of
Refs. [44, 45], that have shown how complex networks typically retain their
integrity when nodes are removed randomly, while they are very fragile with
respect to targeted removal of the most connected nodes. While the con-
cepts of node failures and targeted attacks are pertinent for infrastructure
networks, successive removals of nodes or links is more generally a way to
study network structures [46–49]. For instance, detecting efficient strategies
for dismantling the network sheds light on the network community struc-
ture, as it amounts to finding the links that act as bridges between different
communities [47, 48]. Moreover, in the context of information or disease
spreading, the size of the largest connected component gives an upper bound
on the number of nodes affected by the spreading. Identifying ways to reduce
this size, by removing particular links, in order to break and disconnect the
network as much as possible, is analogous in terms of disease spreading to
finding efficient intervention and containment strategies.

In order to test different link removal strategies, we consider different
definitions of weight for a link connecting nodes i and j in the aggregated
contact network:
– The simplest definition of link weight is given by the cumulated contact
duration wij between i and j. In the following, we will refer to this weight
as “contact weight”.
– The topological overlap Oij, introduced in Ref. [50], is defined as

Oij =
nij

(ki − 1) + (kj − 1)− nij

∈ [0, 1] , (3)
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where ki(j) is the degree of node i(j) and nij measures the number of neighbors
shared by nodes i and j. This measure is reminiscent of the edge clustering
coefficient [48], and evaluates the ratio of the number of triangles leaning
upon the ij edge with the maximum possible number of such triangles given
that i and j have degrees ki and kj, respectively. Edges between different
communities are expected to have a low number of common neighbors, hence
a low value of Oij.
– Finally, the structural similarity of two nodes is defined as the cosine sim-
ilarity

simij =

∑
l∈V wilwjl√∑
l w

2
il

∑
l w

2
jl

∈ [0, 1] , (4)

where V is the set of neighbors shared by nodes i and j, and the sums at
the denominator are computed over all the neighbors of i and j. Cosine
similarity, which is one of the simplest similarity measures used in the field
of information retrieval [52–54], takes into account not only the number of
shared neighbors of i and j, but also the similarity of the corresponding edge
strengths, i.e. the similarity of individuals in terms of the time they spent
with their neighbors. Once again, edges connecting different communities
are expected to have a low value of simij.

Based on these three weight definitions, we consider four different strate-
gies for link removal, namely: removing the links in increasing/decreasing
order of contact weight, in increasing order of topological overlap, and in
increasing order of cosine similarity. The former two strategies are the sim-
plest one can devise, as they do not consider the neighborhoods’ topology.
The latter two strategies were implemented in an incremental fashion, by
recomputing the lists of links ranked in order of increasing overlap or co-
sine similarity whenever a link was removed, and then removing the links
in the updated list order1. An issue also arises from the fact that all the
generalized weights mentioned above produce a certain amount of link de-

1As shown in Ref. [46, 49] and verified numerically (not shown) for the present case,
a procedure that does not update the link ranking upon every link removal, based on
the quantities (3) and (4), leads to sub-optimal results. The deviation from the updating
strategy becomes apparent only when more than 20% of links have been removed since Oij

and simij deal with local quantities only. As a consequence, each link removal amounts to
a local perturbation of the network, contrary to what happens with non-local quantities
such as the betweenness centrality [46, 49].
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generacy (in particular when using the contact weight): for instance, many
links may have the same (small) value wij, or exactly 0 overlap or similar-
ity. Each link removal procedure carries therefore a certain ambiguity, and
the results may depend on which links, among those with the same contact
weight/overlap/similarity, are removed first.

The impact of link removal on network fragmentation can be measured
by monitoring the variations of the size of the largest CC, hereafter called
N1, as a function of link removal. If the network is initially divided into two
CCs, labeled C0

1 and C0
2 , of similar initial sizes N0

1 ≥ N0
2 , we call N1 the

size of the largest CC surviving in the network (which does not need to be
a subnetwork of C0

1). We used the apex “0” to denote quantities expressed
for the original network, before any link removal. In order to alleviate the
problems arising from link degeneracy, we averaged N1 on 100 different link
orderings (i.e. we reshuffled the list of links of equal generalized weight before
removing them).

An example of a single realization of the removal strategies for the SG
aggregated network of July 14th is shown in Fig. 12. We observe that a
removal of 60% of the network links has a far deeper impact on the network
when the removal is based on the topological overlap (the size of the largest
CC is N1 = 30) or cosine similarity (N1 = 155) rather than on decreasing
(increasing) contact weight (N1 = 204 (205)). More quantitatively, Fig. 13
shows that removing links according to their topological overlap is the most
efficient strategy. This is in agreement with previous results [46–50] that
have shown that topological criteria detect efficiently the links that act as
bridges between communities. Due to their high degeneracy, removing first
the links with small contact weights approximates a random removal strategy
that is far from optimal. Despite this limitation, removing the links with
small contact weights can outperform the removal of links with high contact
weight since the latter are usually found within dense communities, while
links between communities have typically small contact weights.

The strategy based on link topological overlap proves slightly more ef-
fective than the strategy based on link similarity: the information on the
link contact weights incorporated in the definition of simij (Eq. 4) does not
enhance the decrease of N1. This can be explained through the following
argument: topological overlap link ranking usually leads to a higher degen-
eracy with respect to similarity-based link ranking. As a consequence, for
a network with similar values of N0

1 and N0
2 , a strategy based on topolog-

ical overlap is more likely to dismantle in parallel both C0
1 and C0

2 than a
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similarity-based strategy, as it has no bias towards a specific component. The
opposite strategy of a complete dismantling of C0

1 that leaves C0
2 intact would

result in N1 = N0
2 even after the complete disintegration of C0

1 . This effect
is illustrated in Fig. 13 for the SG aggregated networks of May 19th − 20th,
which are indeed composed of two large CCs (see Fig. 1).

Interestingly, and as expected from the previous comparisons, rather dif-
ferent results are obtained for the HT09 and SG aggregated networks. The
conference network is more resilient to all strategies, and significant levels of
disaggregation are reached only by removing large fractions (≥ 40 − 60%)
of the links, sorted by their topological overlap. For the SG aggregated net-
works, on the other hand, targeting links with small topological overlap or
cosine similarity is a quite effective strategy, which can be intuitively related
to the modular structure visible in Fig. 1.

6. Dynamical spreading over the network

Aggregated networks often represent the most detailed information that is
available on social interactions. In the present case, they would correspond to
information obtained through ideal surveys in which respondents remember
every single person they encountered and the overall duration of the contacts
they had with that person. While such a static representation is already
informative, it lacks information about the time ordering of events, and it is
unable to encode causality. The data from our measurements do not suffer
from this limitation, as they comprise temporal information about every
single contact. Therefore, these data can be used to investigate the unfolding
of dynamical processes. They also allow to study the role of causality in
diffusion processes, such as the spreading of an infectious agent or of a piece of
information on the encounter networks of individuals. In the following we will
mainly use an epidemiological terminology, but we may equally imagine that
the RFID devices are able to exchange some information whenever a contact
is established. Individuals will be divided into two categories, susceptible
individuals (S) or infected ones (I): susceptible individuals have not caught
the “disease” (or have not received the information), while infected ones carry
the disease (or have received the information) and can propagate it to other
individuals.

In order to focus on the structure of the dynamical network itself, we
consider in the following a deterministic snowball SI model [43]: every contact
between a susceptible individual and an infected one, no matter how short,
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results in a transmission event in which the susceptible becomes infected,
according to S + I → 2I. In this model, individuals, once infected, do
not recover. Such a deterministic model allows to isolate the role played
in the spreading process by the structure of the dynamical network (e.g.
its causality). Its role would otherwise be entangled with the stochasticity
of the transmission process and the corresponding interplay of timescales.
Of course, any realistic epidemiological model should include a stochastic
description of the infection process, since the transmission from an infected
individual to a susceptible one is a random event that depends on their
cumulative interaction time. The resulting dynamics would depend on the
interplay between contact and propagation times. We leave the study of this
interesting type of interplay to future investigations.

In our numerical experiments, for each day we select a single “seed”, i.e.,
an individual who first introduces the infection into the network. All the
other individuals are susceptible and the infection spreads deterministically
as described above. By varying the choice of the seed over individuals, we
obtain the distribution of the number of infected individuals at the end of
each day. The transmission events can be used to define the network along
which the infection spreads (i.e., the network whose edges are given by S ↔ I
contacts), hereafter called the transmission network.

Due to causality, the infection can only reach individuals present at the
venue after the entry of the seed. As a consequence, in the following we will
use the term partially aggregated network to indicate the network aggregated
from the time the seed enters the museum/conference to the end of the day.
We note that the partially aggregated network defined in this way can be
radically different from (much smaller than) the network aggregated along
the whole day.

Figure 14 shows two partially aggregated networks for July 14th at the
SG museum, for two different choices of the seed (blue node), and the cor-
responding transmission networks. The transmission network is of course a
subnetwork of the partially aggregated network: not all individuals entering
the premises after the seed can be reached from the seed by a causal path,
and not all links are used for transmission events. In order to emphasize
the branching nature of infection spreading, we represent the transmission
network with successively infected nodes arranged from the bottom to the
top of the figure. We notice that the diameter of both the transmission and
the partially aggregated network may not include the seed and/or the last

14



infected individual.
The presence of a few triangles in the transmission network is due to the

finite time resolution of the measurements. Let us consider, for instance,
the case of an infected visitor A who infects B, followed by a simultaneous
contact of A and B with the susceptible C. In this case it is impossible to
attribute the infection of C to either A or B, and both the C ↔ A and
the C ↔ B links are highlighted in the transmission network as admissible
transmission events. As a consequence, we slightly overestimate the number
of links in the transmission network of Fig. 14. In the case of Fig. 14, the
number of links is between 1 and 8% larger than for a tree with the same
number of nodes. At finer time resolutions, some of the diffusion paths of
Fig. 14 would actually be forbidden by causality.

A general feature exemplified by Fig. 14 is that the diameter of the trans-
mission network (blue path) is longer than the diameter of the partially ag-
gregated network (orange path), a first signature of the fact that the fastest
paths between two individuals, which are the ones followed by the spreading
process, do not coincide with the shortest path over the partially aggregated
network [51].

The difference between the fastest and the shortest paths for a spreading
process can be quantitatively investigated. Figure 15 reports the distribution
of the network distances nd between the seed and every other infected indi-
vidual along both the transmission networks and the aggregated networks.
When calculated on the partially aggregated network, nd measures the length
of the shortest seed-to-infected-individual path, whereas it yields the length
of the fastest seed-to-infected-individual path when calculated on the trans-
mission network. We observe that the length distribution of fastest paths,
i.e., the P (nd) distribution for the transmission network, always turns out
to be broader and shifted toward higher values of nd than the corresponding
shortest path distribution, i.e., P (nd) for the partially aggregated network.
The difference is particularly noticeable in the case of May 20th and July
14th for the SG deployment, and June 30th for the HT09 conference, where
the longest paths on the transmission network are about twice as long as the
longest paths along the partially aggregated network.

These results clearly underline that in order to understand realistic dy-
namical processes on contact networks, information about the time ordering
of the contact events turns out to be essential: the information carried by
the aggregated network may lead to erroneous conclusions on the spreading
paths.
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It is also possible to study the length of the path connecting the first
(seed) to the last infected individual along the transmission network. We
measure the fastest seed-to-last-infected-individual path (a quantity here-
after called “transmission nd”) as a function of the duration of the spreading
process, defined as the time between the entry of the seed and the last trans-
mission event. As shown by Fig. 16, a clear correlation is observed between
the transmission nd and the duration of the spreading process for the SG case
(Pearson coefficients 0.76 for May 20th and May 19th, and 0.9 for July 14th).
No significant correlation is instead observed for the HT09 conference. This
highlights the importance of the longitudinal dimension in the SG data, and
gives a first indication of the strong differences in the spreading patterns,
that we further explore in the following.

Let us now consider some other quantitative properties of the spread-
ing process, in particular the number of individuals reached by the infec-
tion/information at the end of one day. In the SG case Fig. 17 shows the
distributions for each day, as boxplots, displaying the median together with
the 5th, 25th, 75th and 95th percentiles. Days are arranged horizontally from
left to right, in increasing number of visitors. A high degree of heterogeneity
is visible. The blue line corresponds to the number of daily visitors, that is
the maximum number of individuals who can potentially be infected. We
observe that the number of infected individuals is usually well below this
limit. The number of reached individuals also depends on the number of CC
in the aggregated network, as the spreading process cannot propagate from
one CC to another. In fact, the limit for which all visitors are infected can
be reached only if the aggregated network is globally connected, that occurs
only when the global number of visitors is large enough. These results hint at
the high intrinsic variability of the final outcome of an epidemic-like process
in a situation where individuals stream through a building. A totally differ-
ent picture emerges for the HT09 conference, where the infection is almost
always able to reach all the participants.

As mentioned previously, the spreading process cannot reach individuals
who have left the venue before the seed enters, or the individuals who belong
to a CC different from that of the seed. Therefore, we consider the ratio
of the final number of infected individuals, Ninf to the number Nsus of in-
dividuals who can be potentially reached through causal transmission paths
starting at the seed. The distributions of this ratio is reported in Fig. 18.
We observe that in the case of HT09 (left) almost all the potentially infected
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individuals will be infected by the end of the day, whereas the distribution of
Ninf/Nsus is broader in the SG case (right). We notice that a static network
description would inevitably lead to all individuals in the seed’s CC catching
the infection, a fact that can be a severe (and misleading) approximation of
reality.

For each day the chosen seed generates a deterministic spreading process
for which we can compute the cumulative number of infected individuals as
a function of time, a quantity hereafter referred to as an incidence curve.
Figure 19 shows the results for a selected day of the HT09 conference and
for three different days of the SG data.

In the case of the HT09 conference, the earliest possible seeds are the
conference organizers, but little happens until conference participants gather
for the coffee break and/or meet up at the end of the first talk, between
10:00 and 11:00. A strong increase in the number of infected individuals is
then observed, and a second strong increase occurs during the lunch break.
Due to the concentration in time of transmission events, spreading processes
reach very similar (and high) incidence levels after a few hours, regardless of
the initial seed or its arriving time. Even processes started after 15:00 can
reach about 80% of the conference participants. Thus, the crucial point for
the spreading process does not consist in knowing where and when the epi-
demic trajectory has started, but whether the seed or any other subsequently
infected individual attend the coffee break or not.

A different picture is obtained in the SG case: First, in order to reach
almost all participants the epidemics must spread on a globally connected
network and start early (black curves for July 14th data). Even in such a
favorable setting for spreading, the incidence curves do not present sharp
gradients, and later epidemics are unable to infect a large fraction of daily
visitors. The incidence curves for May 19th and 20th of Fig. 19 show that dif-
ferent scenarios can also occur: due to the fragmented nature of the network,
the final fraction of infected individuals can fluctuate greatly, and sharp in-
creases of the incidence can be observed when dense groups such as those
visible in Fig. 1 are reached.
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7. Conclusions

In this paper we have shown that the analysis of time-resolved network
data can unveil interesting properties of behavioral networks of face-to-face
interaction between individuals. We considered data collected in two very
different settings, representative of two types of social gatherings: the HT09
conference is a “closed” systems in which a group of individuals gathers
and interacts in a repeated fashion, while the SG museum deployment is
an “open” environment with a flux of individuals streaming through the
premises.

We took advantage of the accurate time-resolved nature of our data
sources to build dynamically evolving behavioral networks. We analyzed ag-
gregated networks, constructed by aggregating the face-to-face interactions
during time intervals of one day, and provided a comparison of their prop-
erties in both settings. We assessed the role of network dynamics on the
outcome of dynamical processes such as spreading processes of informations
or of an infectious agent.

Our analysis shows that the behavioral networks of individuals in con-
ferences and in a museum setting exhibit both similarities and important
differences. The topologies of the aggregated networks are widely different:
the conference networks are rather dense small-worlds, while the SG networks
have a larger diameter and are possibly made of several connected compo-
nents — they do not form small-worlds, and their “elongated” shape can be
put in relation with the fact that individuals enter the premises at different
times and remain there only for a limited amount of time. The networks’
differences are also unveiled by a percolation analysis, which reveals how the
SG aggregated networks can easily be dismantled by removing links that act
as “bridges” between groups of individuals; on the contrary, aggregated net-
works at a conference are more “robust”, even with respect to targeted link
removal.

Interestingly, some important similarities are also observed: the degree
distributions of aggregated networks, for example, are short-tailed in both
cases. Moreover, despite the higher social activity at a conference, both the
distribution of the contact event durations and the distribution of the total
time spent in face-to-face interactions by two individuals are very similar.

The study of simple spreading processes unfolding on the dynamical net-
works of interaction between individuals allowed us to delve deeper into the
time-resolved nature of our data. Comparison of the spreading dynamics on
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the time-dependent networks with the corresponding dynamics on the aggre-
gated networks shows that the latter easily yields erroneous conclusions. In
particular, our results highlight the strong impact of causality in the struc-
ture of transmission chains, that can differ significantly from those obtained
on a static network. The temporal properties of the contacts are crucial in
determining the spreading patterns and their properties. Studies about the
role of the initial seed and its properties on the spreading patterns, or the
determination of the most crucial nodes for propagation, can be misleading
if only the static aggregated network is considered. In more realistic dy-
namics, the fastest path is typically not the shortest path of the aggregated
network, and the role of causality is clearly visible in the analysis of the
seed-to-last-infected paths.

Spreading phenomena unfold in very different ways in the two settings
we investigated: at a conference, people interact repeatedly and with bursts
of activity, so that transmission events also occur in a bursty fashion, and
most individuals are reached at the end of the day; in a streaming situation,
instead, the fraction of reached individuals can be very small due to either the
lack of global connectivity or the late start of the spreading process. Detailed
information on the temporal ordering of contacts is therefore crucial. We
also note that in more realistic settings with non-deterministic spreading,
information about the duration of contacts, and not only their temporal
ordering, would also turn out to be very relevant and lead to an interesting
interplay between the contact timescale and the propagation timescale [55].
Future work will also address the issue of sampling effects: the fact that
not all the conference attendees participated to the data collection may lead
to an underestimation of spreading, since spreading paths between sampled
attendees involving unobserved persons may have existed, but are not taken
into account.

We close by stressing that as the data sources on person-to-person interac-
tions become richer and ever more pervasive, the task of analyzing networks
of interactions is unavoidably shifting away from statics towards dynamics,
and a pressing need is building up for theoretical frameworks that can appro-
priately deal with streamed graph data and large scales. At the same time,
we have shown that access to these data sources challenges a number of as-
sumptions and poses new questions on how well-known dynamical processes
unfold on dynamic graphs.
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[13] D. Balcan, V. Colizza, B. Gonçalves, H. Hu, J.J. Ramasco, A. Vespig-
nani, Multiscale mobility networks and the spatial spreading of infec-
tious diseases, Proc. Natl. Acad. Sci. USA 106 (2009) 21484-21489.
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Figure 1: Daily aggregated networks in the HT09 and SG deployments. Nodes represent
individuals and edges are drawn between nodes if at least one contact event was detected
during the aggregation interval. Clockwise from top: aggregated network for one day of
the HT09 conference, and for three representative days at the SG deployment. In each
case, the network diameter is highlighted. All the network visualizations in this study
were produced using the igraph library [56].
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Figure 2: Number of connected components (CCs) in the daily aggregated networks of the
SG deployment as a function of the number of visitors.
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Figure 3: Randomized versions of the daily aggregated networks in the top row of Fig. 1.
Left: HT09 deployment, June 30th. Right: SG deployment, July 14th. The network
diameters are highlighted as in Fig. 1. In the SG case, the randomized network is much
more “compact” than the original one, with a much shorter diameter.
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Figure 4: Average number of nodes reachable from a randomly chosen node by making l
steps on the network, M(l), divided by its saturation limit M(∞), for daily aggregated
networks (circles) and their randomized versions (triangles). For the randomized case,
data are averaged on 100 realizations. Left: network aggregated on June 30th for the
HT09 case. Right: SG deployment, July 14th. The solid lines are only guides for the eye.

HT09

k

P
(k
)

10-4

10-3

10-2

10-1

0 20 40 60 80

SG

k

P
(k
)

10-5

10-4

10-3

10-2

10-1

0 10 20 30 40 50 60 70

Figure 5: Degree distributions P (k) averaged over all daily aggregated networks, for the
HT09 (left) and the SG (right) cases.
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Figure 6: Visit duration distribution at the SG museum (histogram) and fit to a lognormal
distribution (red line).
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Figure 7: (Color online) Aggregated networks for two different days of the SG museum
deployment. Nodes are colored according to the corresponding visitor’s entry time slot.
The network diameter is highlighted in each case.
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Figure 8: Distributions of the contact durations for the HT09 (triangles) and SG (circles)
deployments, averaged over all days. Despite the differences in the measurement contexts,
the distributions are superimposed.
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Figure 9: Weight distributions for the daily aggregated networks of one HT09 conference
day (triangles) and for the SG aggregated networks (circles), averaged over all daily ag-
gregated networks. The weight of a link represents the total time spent in face-to-face
proximity by the two linked individuals during the aggregation interval (here one day).
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Figure 10: Strength distributions P (s) in the HT09 (left) and SG (right) aggregated
networks (data for all daily networks). The strength of a node quantifies the cumulated
time of interaction of the corresponding individual with other individuals.
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Figure 11: (Color online) Correlation between node’s strength and degree, as measured by
the average strength 〈s(k)〉 of nodes of degree k. The figures show 〈s(k)〉/(〈w〉k) (circles),
for the HT09 (left) and SG (right) deployments (the solid line is only a guide for the eye).
The dashed lines stand for a linear fit and a power law fit to the data for the HT09 and
SG deployments, respectively. Distinct increasing and decreasing trends are respectively
observed. The inset for the HT09 deployment shows a distribution of linear coefficients Δ
calculated for 4000 reshufflings of the network weights and the fitted value from the data
collected at HT09 (vertical line). The inset for the SG deployment shows 〈s(k)〉/(〈w〉k)
on a doubly logarithmic scale (circles) together with the power law fit to the data (dashed
line).
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Figure 12: Effect of four different ways of removing 60% of the links on the SG museum
daily aggregated network of July 14th. Clockwise from top: links removed in decreasing
contact weight order, increasing contact weight order, increasing topological overlap order
and increasing cosine similarity order. The largest CC is highlighted in each case.
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Figure 13: (Color online) Size N1 of the largest CC as a function of the fraction of removed
links, for several removal strategies, and for different daily aggregated networks in the
HT09 and SG deployments. For all networks, removing links in increasing topological
overlap order and increasing cosine similarity order have the most disruptive effects. The
HT09 aggregated network is in all cases more resilient than the SG aggregated networks.
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Figure 14: (Color online) Partially aggregated networks on July 14th at the SG museum,
for two different choices of the seed (blue node at the bottom). Transparent nodes and
light gray edges represent individuals not infected and contacts not spreading the infection,
respectively. Red nodes and dark gray links represent infected individuals and contacts
spreading the infection, respectively. The diameter of the transmission network and of
the partially aggregated networks are shown respectively with blue and orange links. The
black node represents the last infected individual.
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Figure 15: (Color online) Distribution of the path lengths nd from the seed to all the
infected individuals calculated over the transmission network (circles) and the partially
aggregated networks (triangles). The distributions are computed, for each day, by varying
the choice of the seed over all individuals.
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Figure 16: Scatterplot of the seed-to-last-infected-individual distance (transmission nd)
along the transmission network, versus the total duration of the epidemics (time interval
from the entry of the seed to the last infection event).
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Figure 17: (Color online) Results of spreading dynamics in the SG data: the figure shows
panel boxplots of the final number of infected individuals in one day, versus the number
of visitors in that day. The blue line represents the total number of daily visitors, giving
an upper bound for the number of infected. The bottom and top of the rectangular boxes
correspond to the 25th and 75th quantile of the distribution of infected individuals at the
end of each day, and the red lines correspond to the median (50th quantile). The 5th and
95th are also shown (black horizontal lines).

38



HT09

Ninf/Nsus

P
(N

in
f
/N

su
s
)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

SG

Ninf/Nsus

P
(N

in
f
/N

su
s
)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 18: Distribution of the ratio Ninf/Nsus for the HT09 (left) and the SG (right) data,
averaged over all potential seeds. Ninf is the final number of infected individuals at the end
of one day, while Nsus is the number of individuals that could potentially be reached by a
causal transmission path starting at the seed. Nsus is given by the number of individuals
visiting the premises in the same day, from the time the seed enters the premises, and
belonging to the same CC as the seed.
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Figure 19: (Color online) Incidence curves, giving the number of infected versus time for a
spreading phenomenon simulated in the HT09 and SG data. Clockwise from top: HT09,
June 30th (aggregated network consisting of a single CC with N1 = 102 individuals); SG
network for July 14th (one CC, N1 = 282 individuals), May 19th (two CCs, N1 = N2 = 49
individuals) and May 20th (two CCs, N1 = N2 = 89 individuals). Each curve corresponds
to a different seed, and is color-coded according to the starting time of the spreading.
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