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Stochastic modeling of gene activation and
applications to cell regulation

G. Malherbe David Holcman ∗

November 5, 2010

Abstract

Transcription factors (TFs) are key regulators of gene expression.
Based on the classical scenario in which the TF search process switches
between one-dimensional motion along the DNA molecule and free
Brownian motion in the nucleus, we study the arrival time of several
TFs to multiple binding sites. In the presence of a TF influx and com-
petitive binding ligands, we derive the probability that a fixed number
of target sites are simultaneously bound. We obtain analytic expres-
sions for this probability as a function of the mean number of TFs.
When there are multiple binding sites, because this probability is a
sigmoidal curve, our analysis shows that a bistable regime is possible,
which can be interpreted as a genetic switch, occurring without requir-
ing cooperative binding (change in the binding probability depending
on the previous bounds). Finally, we use our model to analyze fly
embryo patterning and show that bicoid can induce a sharp hunch-
back concentration, resulting in the formation of a sharp boundary
and stripes. To conclude, we have proposed here a general mechanism
that allows cells to read a morphogenetic gradient. Thus activating
the transcription of an auto-activated TF can lead to the conversation
of a broad gradient of morphogens into a sharp boundary.

Keywords: stochastic binding, diffusion of transcription factor, gene
activation, morphogenetic gradient, cell differentiation, genetic switch.
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1 Introduction

Transcription factors (TFs) are key regulators that can initiate or inhibit
gene activation by binding to specific DNA sites. TFs enter the cell nucleus
and search for their specific binding sites on the DNA molecule. In a context
of competition for activation and inhibition, the search for target sites should
not be too long otherwise, another gene might be activated. This is the case
for olfactory gene activation [1], where a single G-coupled receptor out of
hundreds is expressed in a single cell, while all other receptors are repressed.
Thus cells might use various mechanisms to control gene activation including
changing local properties of the DNA molecule (for example by methylation
or acetylation) or changing the properties of the TF interaction as what
happens when specific molecules bind to TFs and modify their affinity for
the DNA molecule.

The mean time to reach a target site is thus a fundamental parameter
of gene activation and several biophysical scenarios have been proposed to
estimate it. Berg and Von Hippel [2, 3, 4] realized that the search time
cannot be computed using a three dimensional random walk only, because the
observed search time is indeed shorter. Using the property that the TF scans
the DNA base pairs for potential binding sites, they proposed that the search
consists of consecutive cycles of three and one dimensional random motion
along the DNA molecule. DNA base pairs are not electrically charged and
so no long distance interactions are involved, thus, the TF should physically
come close to the DNA in order to generate a true interaction. During the
one dimensional search, the TF is confined to a neighborhood of the DNA
molecule and can detach due to thermal fluctuations and a new 1d-3d cycle
resumes until the target is eventually reached. This basic scenario has been
confirmed experimentally by single particle tracking experiments [21] and
investigated theoretically, by accounting for the local base pair interactions,
the mean number to scan the base pairs per cycle, the free diffusion time and
the time the TF is bound to the DNA molecule [5, 6, 7, 8, 10].

However, it is still unclear how to go from the TF search time to the
mechanism responsible for cell specialization. Cells in a living tissue are
imbedded in a matrix of positional information, generated by morphogenetic
gradients [11, 12, 13, 14, 15]. A first step consists of the ability of the cell to
”read out” the local characteristics of the morphogenetic gradient so that the
cell can be labeled and acquire its own identity. To address this question, we
investigate the dynamics of binding sites interacting with TFs, generated by
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an external steady state gradient. In particular, we are led to compute the
mean time for some TFs to bind to many target sites. The number of bound
sites can be seen as a digital-converter used by the cell to discriminate two
different morphogenetic gradient concentrations depending whether or not all
the binding sites are saturated. We further study the effect of competitive
ligands that can be generated by the cell to modulate the TF action leading
to gene repression.

First, we present our computations for the time for a single TF to bind
multiple binding sites and estimate the distribution of the time for the TF
to bind one of its binding sites. The mean arrival time is always a sum of
two exponentials but, for a large number of free diffusion and DNA binding
cycles, the arrival time is single exponentially distributed. We then expand
our analysis to multiple TFs with multiple targets. We apply our results
to estimate the number of active sites when the cell nucleus experiences a
steady state TF influx. Finally, we estimate the steady state probability that
a given number of binding sites are occupied. In our model, this probability
describes the proportion of time a gene is actively transcribed. We apply our
analysis to the initial patterning of the fly embryo by the bicoid (bcd) mor-
phogenetic gradient. The bcd gradient regulates a number of downstream
TFs involved in the gap gene network [16, 17], which determines the position
of body sections along the anterior-posterior (A-P) axis in the drosophila
embryo. Among these gap genes, hunchback (hb) is responsible for thoracic
development [16, 17]. Hb activation leads to the formation of a sharp bound-
ary and to the formation of stripes. We use our analysis of TF binding to
determine the hb density induced by bcd activation, and we show that this
hb-bcd interaction-modulation is sufficient to generate the transition from
a smooth bicoid gradient into a sharp hb boundary in the middle of the
drosophila embryo. Our approach provides a general scenario at a molecular
level of TF interactions that lead to cell specialization.

2 Distribution and mean of the search time

We first summarize the properties associated with the TF’s search process to
its binding site. The TF switches between a free diffusion and random walk
along the DNA molecule [2, 5, 9, 10] (Fig. 1):

1. Due to the interaction potential with the DNA backbone [18], the TF
can bind unspecifically to the DNA molecule. The strength of the
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interaction potential is around 16kT [19, 5], larger than the thermal
noise ∼ kT . In this deep well approximation, the random time τd a
TF stays bound is exponentially distributed [20]. Experimental and
theoretical estimates for the average time τ d are in the range of a few
milliseconds [21, 10].

2. A bound TF slides along the DNA molecule during a random time
τd scanning an average number n(τd) of base pairs (bp). The mean
number n = Eτd

(n(τd)) of base pairs scanned before detaching is on the
order of 100 [21, 10].

3. A TF can detach from the DNA due to thermal noise and diffuse freely
in the nucleus until it rebinds to the DNA. When the DNA molecule
occupies a small fraction of the nucleus and can be approximated as
long rods, the random time τf a TF spends diffusing in the nucleus
is exponentially distributed [10] with an average τ f , which is on the
order of a few milliseconds [21, 10]. However, for larger density and a
complex DNA organization, the distribution time in general is a sum
of exponentials and might even be more complicated.

We start with nf copies of a TF, alternating independently between pe-
riods of free diffusion and random walks along the DNA until one of the ns

binding sites is found. We further consider an excess competitive ligands that
can bind to the TF target sites, preventing the sites to be occupied by TFs.
The ligand L binds to the target site S according to a first order reaction:

S + L
ka�
kd

S.L, (1)

with an association and a dissociation rate ka and kd respectively. Although
the competitive ligands can be TFs themselves and can have 1D/3D switch
behavior, because such dynamics is of first order, we simply model them using
a kinetics reaction and at equilibrium, for a concentration C of ligands, the
probability that a binding site is not occupied is:

P =
1

1 + C ka

kd

. (2)
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2.1 Search time for a single TF

To compute the distribution of the time T (1, ns) a TF binds to to one of
ns possible binding sites, we use the scenario where the TF is initially freely
diffusing in the nucleus (Fig. 1). T (1, ns) is the sum of the time the TF
spends in one and three dimensions, and using the characteristic function of
T (1, ns), the probability density function (pdf) is

pT (t) =
d

dt
Pr{T (1, ns) < t} (3)

as follows (see appendix):

pT (t) =
r2

r2 − r1

e−r1t

r1

+
r1

r1 − r2

e−r2t

r2

, (4)

where r1 and r2 are the two positive roots of (1 − xτ d) (1 − xτ f )−1+p(ns) =
0 and p(ns) is the probability to find a target during a single one dimensional
walk along the DNA. The associated mean binding time is:

T (1, ns) =

∞∫
0

t pT (t)dt =
r2

r1(r2 − r1)
+

r1

r2(r1 − r2)
. (5)

In the limit p(ns) � 1, using the expression for the two roots and approx-
imating the pdf pT (eq. 4) by a single exponential for a time t such that(

1
τd

+ 1
τf

)
t � 1 (see appendix), we obtain that

pT (t) =
p(ns)

τ d + τ f

e
− p(ns)

τd+τf
t
. (6)

Since τ d and τ f are both on the order of a few ms [10, 21], the single expo-
nential limit is valid for t larger than a few ms. The mean time T (1, ns) then
reduces to

T (1, ns) ≈ τ d + τ f

p(ns)
. (7)

The mean number of free diffusions and DNA bindings before finding the
target site is equal to 1

p(ns)
. The limit p(ns) � 1 corresponds to TFs that

find their target sites after a large number of cycles.
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2.2 Search time for multiple TFs

When there are nf TFs that can potentially bind to ns identical binding
sites (a site can bind to a single TF), in the single exponential limit, the time
T (nf , ns) for the first TF to bind a site is the minimum of the nf exponential
laws of mean time T (1, ns). T (nf , ns) is then exponentially distributed with
mean:

T (nf , ns) =
T (1, ns)

nf

. (8)

We shall consider ns well separated sites (by at least a distance of n base
pairs). In this case, the probability to find each site during a DNA biding is

n
Nbp

where Nbp is the total number of base pairs in the genome. Furthermore,

in the presence of competitive ligands, there are Pns available binding sites.
Thus, the probability of binding to one of the ns sites is p(ns) = Pns

n
Nbp

and

the mean binding time for ns well separated sites with p(ns) � 1 is:

T (nf , ns) ≈ τ d + τ f

nfp(ns)
=

(τ d + τ f )Nbp

nfPnsn
(9)

=
T S

nfns

, (10)

where

T S =
(τ d + τ f )Nbp

Pn
(11)

is the search time for a single TF with a single target site.
Remark 1. Formula 10 describes the combined effect of multiple but well
separated binding sites. When the sites are clustered, the mean time to find
a target becomes a nonlinear function of the distribution [23, 24, 25, 26, 27]
and has been approximated by the Berg-Purcell approximation formula [28].
When there are ns binding sites of size a, located on an ensemble of DNA-
molecules on a sphere of radius R, the mean time τd in 3d to find a site
is:

τd ≈ |Ω|
DH

(
1

4πR
+

1

4nsa

)
. (12)

This formula can be improved [29, 30]. Here DH is an effective diffusion
constant that accounts for the switch between the 1D DNA motion and the
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3D diffusion. When the one 1D excursion length is small compared to the
3D diffusion length,

DH ≈ D

1 + τd

τf

. (13)

In the other cases, one has to deal with random jumps.
Remark 2. For P = 1 (no competitive ligand), n ≈ 100 [21, 5, 10] and for
a relatively small genome Nbp = 106, p(ns) is approximated by:

p(ns) ≈ ns10−4. (14)

Thus p(ns) � 1 is valid as long as the number of binding sites satisfies
ns � 104. We conclude that p(ns) � 1 is verified in most cases.

3 From a morphogenetic gradient to DNA

site activation

When a nucleus is experiencing a steady influx of TFs, we shall now apply
our previous results to estimate the number of occupied sites. This TFs
steady influx can either be located outside the cell or be steadily produced
in the cytoplasm of the cell. In the nucleus, these TFs can be degraded
by an enzymatic activity or reach their target sites (Fig. 2). Competitive
ligands can bind to the TF targets. Since the number of occupied binding
sites controls gene expression, for a given TF influx, we shall now estimate,
the mean proportion of time the binding sites are occupied.

Activation of a single binding site

We first compute the average occupation ratio P1 of a single binding site
before considering multiple sites in the following section. To compute P1, we
use Bayes’ law and sum over the number of TFs in the nucleus:

P1 =
+∞∑

nf=0

P(1|nf )P(nf ), (15)

where P(nf ) is the probability of having nf TFs in the nucleus and P(1|nf ) is
the conditional probability that a single binding site is occupied when there
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are nf TFs. To proceed with the computation of P1, we assume that TFs
arrive in the nucleus at a Poissonnian rate λ and are degraded (free or bound)
by enzymes at a rate K. Thus, the number of TFs in the nucleus follows a
birth and death process and is distributed according to a Poisson law with
mean α = λ

K
:

P(nf ) =
αnf

nf !
e−α (16)

We now compute P(1|nf ). When a TF has found the target, it stays attached
for a mean time T b. We consider that the rate of binding and unbinding to
the sites is faster than the rate of TF turn over in the nucleus and that the
steady state between binding and unbinding is reached, thus

P(1|nf ) =
T b

T b + T (nf , 1)
=

T b

T b + T S

nTF

=
nf

nf + β
, (17)

where β = T S

T b
. Using equations (15), (16) and (17), we get:

P1 = e−α

∞∑
nf=1

nf

nf + β

αnf

nf !
. (18)

Using α
nf

nf+β
= α−β

α∫
0

xβ+nf−1dx, we obtain:

P1 = e−αα−β

+∞∑
nf=1

α∫
0

xβ+nf−1

(nf − 1)!
dx

= e−αα−β

α∫
0

xβ

⎛
⎝ +∞∑

nf=1

xnf−1 1

(nf − 1)!

⎞
⎠ dx

= e−αα−β

α∫
0

xβexdx

= α

1∫
0

uβeα(u−1)du, (19)
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where x = αu. We plot in figure 4a the occupation ratio P1 as a function
of the average number α of TFs in the nucleus for different values of β.
When the competitor ligand concentration C varies, the occupation ratio is
modulated as described in figure 4b. Using Lac I data [21] and in the absence
of DNA binding competitor (P = 1), the total search time is T S = 6 min

[21, 10], while T b ≈ 70 min [32] and thus the ratio is β = T S

T b
≈ 1/11. We

conclude (red curve Fig. 4a) that for low β, the target site can be occupied
for a significant proportion of time. In particular, small fluxes of TFs can
induce significant modifications on gene expression in a target cell.

Activation with multiple binding sites

When there are ns binding sites, we shall now compute the proportion of
time Pk that k sites are occupied. Using Bayes’ law, we have:

Pk =
∞∑

nf=0

P(k|nf )P(nf ), (20)

where P(nf ) is the probability to have nf TFs given by expression (16). We
now compute P(k|nf ) by analyzing a Markov chain [33] which describes the
probability Pq(t) that q sites are occupied at time t.

When q sites are occupied, the total release rate is q

T b
while the arrival

rate to a site is given by T
−1

(nf −q, ns−q) =
(nf−q)(ns−q)

T S
with equation (11).

The forward and backward rate of the Markov chain are given by:

Fq =
(nf − q)(ns − q)

T S

(21)

Bq =
q

T b

, (22)

and the Markov chain is given by [33]:

d

dt
P(q, t|nf ) = −(Fq + Bq)P(q, t|nf ) + Fq−1P(q − 1, t|nf ) + Bq+1P(q + 1, t|nf ),(23)

with the boundary conditions:

d

dt
P(nf , t|nf ) = Fnf−1P(nf − 1, t|nf ) − Bnf

P(nf , t|nf ) (24)

d

dt
P(0, t|nf ) = −F0P(0, t|nf ) + B1P(1, t|nf ). (25)
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We consider that the rate of binding and unbinding to the sites is faster than
the rate of TF turn over in the nucleus and that the steady state is achieved
quickly, thus:

0 = −(Fq + Bq)P(q|nf ) + Fq−1P(q − 1|nf ) + Bq+1P(q + 1|nf ), (26)

where P(q|nf ) = P(q,∞|nf ). By induction [33], for k ≤ n′ = min(nf , ns) (the
maximal number of sites occupied by TFs), we get:

P(k|nf ) = P(0|nf )
1

βkk!

k−1∏
j=0

(nf − j)(ns − j), (27)

where:

β =
T̄S

T b

. (28)

For k > n′ = min(nf , ns), P(k|nf ) = 0 since there can be no more than n′

TFs bound. Using the normalization condition,

n′∑
k=0

P(k|nf ) = 1, (29)

we finally get for 1 ≤ k ≤ n′:

P(k|nf ) =

1
βkk!

k−1∏
j=0

(nf − j)(ns − j)

1 +
n′∑

l=1

1
βll!

l−1∏
j=0

(nf − j)(ns − j)

. (30)

and for k = 0:

P(0|nf ) =
1

1 +
n′∑

l=1

1
βll!

l−1∏
j=0

(nf − j)(ns − j)

. (31)

Using expressions (16), (20) and (27), we obtain for 1 ≤ k ≤ ns:

Pk =
∞∑

nf=k

αnf

nf !
e−α

1
βkk!

k−1∏
j=0

(nf − j)(ns − j)

1 +
min(nf ,ns)∑

l=1

1
βll!

l−1∏
j=0

(nf − j)(ns − j)

, (32)
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and for k = 0:

P0 = e−α +
∞∑

nf=1

αnf

nf !
e−α 1

1 +
min(nf ,ns)∑

l=1

1
βll!

l−1∏
j=0

(nf − j)(ns − j)

, (33)

and Pk = 0 for k > ns as there can not be more than ns TFs bound to
the target sites. We shall now derive asymptotic expressions for Pk when
α � 1 and β � 1, which correspond respectively to a small average number
of TFs in the nucleus and to TFs that stay bound to the targets a long time
compared to the search time.

Asymptotics for α small

With the expression of P(nf ) given in (16) and (20), only the terms nf = 0, 1
contribute to the first order asymptotic in α � 1. With (27), we obtain that

P(1|1) =
ns

β
P(0|n1) (34)

and with P(1|1) + P(0|1) ≈ 1,

P(1|1) =
ns

ns + β

P(0|1) = 1 − P(1|1).

With (20), for α � 1,

P1 ≈ αe−α ns

ns + β
≈ αns

ns + β
. (35)

We conclude that the probability that only one site is occupied is given by
the average number of TFs α multiplied by the probability ns

ns+β
to have one

site occupied when there is a single TF in the nucleus.

Asymptotic for β small

We now compute the asymptotic for β � 1.

1. When the number of TFs is larger than the number of available sites
(nf ≥ ns), using equation (30), for β � 1, to the first order in β �
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1, only the terms P(ns − 1|nf ) and P(ns|nf ) contribute. Using the
normalization relation (29),

P(ns − 1|nf ) + P(ns|nf ) ≈ 1.

Furthermore with (30),

P(ns − 1|nf ) =
βns

nf − ns + 1
P(ns|nf ),

we then obtain:

P(ns|nf ) ≈ 1 − βns

nf − ns + 1
(36)

P(ns − 1|nf ) ≈ βns

nf − ns + 1
. (37)

When nf ≥ ns and β � 1 almost all sites are occupied.

2. When there are less TFs than the number of available sites (0 < nf <
ns), then for β � 1 only P(k = nf − 1|nf ) and P(k = nf |nf ) have a
contribution in the leading order of equation (30). We obtain:

P(nf |nf ) = 1 − βnf

ns − nf + 1
(38)

P(nf − 1|nf ) =
βnf

ns − nf + 1
. (39)

We neglect all other probabilities in the first order for β � 1.

Combining equations (16), (20) and the first order approximations in β, the
probability Pns that all sites are simultaneously occupied is:

Pns = e−α

∞∑
nf=ns

(
1 − βns

nf − ns + 1

)
αnf

nf !
. (40)

Using the partial sum:

S(x) =
ns−1∑
k=0

xk

k!
, (41)
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and after some computations (see appendix) we can write:

Pns(α) = 1 − e−αS(α) − βnse
−α

1∫
0

eαu − S(αu)

uns
du. (42)

For β � 1, Pns is an increasing function of α and a decreasing function of
β (see appendix). Increasing the number of TFs α leads to an increase in
the probability that all sites are occupied while increasing β decreases the
probability that all sites are occupied.

Similarly using equations (93), (92) and (42) the asymptotic expression
of the occupation ratio Pk for β � 1 is given by (see appendix):

Pk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − e−αS(α) − βnse
−α

1∫
0

eαu − S(αu)

uns
du for k = ns

e−α αns−1

(ns − 1)!

(
1 − β

ns − 1

2

)
+ βnse

−α

1∫
0

eαu − S(αu)

uns
du for k = ns − 1

e−α αk

k!

(
1 + β

(
α

ns − k
− k

ns − k + 1

))
for k ≤ ns − 2.

(43)

We plot in figure 5 (resp. 6) Pk as a function of the steady state concentration
α of TF for ns = 2 (resp. ns = 4). For ns > 1 Pns(α) is a sigmoid function.
Indeed, at low concentration, the probability is locally convex starting like
αns , while it saturated at high concentration.

Consequence of the analysis for gene expression stability

We now use our results on the occupation ratios Pk to show that at least two
binding sites are required to produce a genetic switch. A genetic switch can
be produce by an autoregulated gene. Indeed after a threshold concentration
is reached, TFs regulate highly its own transcription but not before (Fig. 3).
A genetic switch is characterized by two stable values of the transcription
concentration [34]: an ”on” position where the gene is transcribed and an
”off” position where it is not. When the gene is ”on”, transcription is main-
tained at high levels through autoregulation. When it is ”off”, transcription
remains at low level and does not turn on without an external signal. Genetic

13



switches play a central role in cellular differentiation, memory and plasticity
[35, 36].

To show that a bistable genetic switch requires at least two binding sites,
we first determine the steady state concentration of the TF due the balance
of production and degradation. For a total number of Non occupied binding
sites, when the gene transcription occurs at a rate r, the TFs steady state
production λ is the balance between production and degradation

λ = rPNon = rf(α), (44)

where f(α) = PNon(α) is given by formula (43) and it depends on Non and
ns. The steady state value α = λ

K
satisfies the nonlinear equation:

Rf(α) = α, (45)

where R = r
K

. Bistability appears when equation (45) has two stable solu-
tions, thus equation (45) must have three roots (two stable and one unstable
in between). The number of solutions depends on the parameters Non and R:
For Non = 0, as plotted in figures 5 and 6, f(α) = α/R has only one solution.
For Non = 1, f(α) = α/R has one solution for R small and two solutions
for R large. For Non ≥ 2, using formula (43) and as plotted in figures 5 and
6, f is a sigmoid type function. For R sufficiently large, equation (45) has
three solutions (Fig. 5) and two of them are stable. A gene following such
activation properties is a bistable switch. Conversely, for R sufficiently small,
α ≈ 0 is the only stable solution. The critical value of R can be characterized
geometrically, as the point where α/R is tangent to f(α). For this critical
value there is a stable point at the origin and a saddle point at the tangent
point. To conclude, a bistable switch can be obtained from two binding sites,
regulating TF auto-expression when the parameter R is sufficiently large.

4 Formation of the Hunchback boundary by

the Bicoid gradient

We shall now apply our analysis to determine the formation of the Hunchback
TF (hb) boundary by the Bicoid (bcd) morphogen gradient in the drosophila
embryo. The bcd gradient regulates a number of downstream TFs involved in
the gap gene network [16, 17], which determine the position of body sections
along the anterior-posterior (A-P) axis in the drosophila embryo. Among
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these gap genes, hb is responsible for thoracic development [16, 17]. Given
a bcd gradient, we propose to determine the spatial distribution of hb. Our
analysis shows how a broad bcd gradient can trigger a sharp transition in
the hb density in the middle of the embryo. We reproduce the bcd and hb
density measured in vivo [16] in figure 9a. To distinguish the values of α
and β for the hb and bcd TFs required in our previous model, we shall use
subscript h for the hb TF and b for the bcd TF. We approximate bcd gradient
as exponential [16]:

αb(x) = Be−kx, (46)

where x ∈ [0, 1] is the normalized A-P position (x = X/L where L is the
length of the drosophila embryo). We use k = 5.5, corresponding to the best
fit for the in vivo data [16]. The constant B cannot be obtained directly from
in vivo data. However, since

αb = e−k(x− ln(B)
k ), (47)

changing the value of B is equivalent to an x-translation of the hb and bcd
densities. We choose B such as the hb boundary is in the middle of the
drosophila embryo (Fig. 7b).

hb transcription results from the binding of the hb TF and the bcd TFs
to a promoter with 6 bcd binding sites and 2 hb sites [37, 38, 39]. hb tran-
scription is activated by bcd and the its auto-activation (Fig. 3). hb is
transcribed at a rate r when there are two hb or at least one bcd bound to
the sites, described as:

∅ At least 1 bcd bound−−−−−−−−−−−−→
rate r

hb

∅ 2hb bound−−−−−−→
rate r

hb.

The hb density, triggered by a bcd concentration, is proportional to the
steady state production of hb given by λ = r(1 − P ), where

P = P0,b(1 − P2,h) (48)

is the probability that hb is not transcribed, P0,b is the probability that no
bcd are bound to the promoter and 1 − P2,h the probability that there are
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not two hb bound. At equilibrium, using αh = λ
K

, we obtain the steady state
equation

αh =
λ

K
= R(1 − P0,b(1 − P2,h)), (49)

where R = r
K

and K is the degradation constant for hb. Equation (49) is
implicit for the mean number αh of hb, that we shall now compute. We
will now evaluate separately expressions P0,b and P2,h. Along the A-P axis
parameterized by the position x, P0,b depends on the mean number αb(x) of

bcd TFs and on the ratio βb = T S

T b
of the search time of bcd over the binding

time. To evaluate βb, we use the binding reaction of a bcd to its target site
S:

S + bcd � S.bcd, (50)

where S.bcd is the bcd TF bound to its target site. The equilibrium con-
stant Kd = [S.bcd]

[S][bcd]
is the ratio of the forward to the backward rate of 50,

equivalently:

Kd =
T S

T bNaV
=

βb

NaV
. (51)

For Kd = 0.24nM [40], a nucleus of volume V ≈ 1μm3 and with Na the
Avogadro number we obtain βb = KdNaV. ≈ 0.14.

To compute P0,b, we use formula (43) with k = 0, ns = 6 and obtain:

P0,b = e−αb

(
1 +

βbαb

6

)
. (52)

We shall now evaluate the probability 1−P2,h. In the absence of any precise
data on the dissociation constant of hb from its binding site, we consider
that binding is fast enough so that βh ≈ 0. Using expression (43) for the
probability P2,h with k = ns = 2, we obtain

1 − P2,h = e−αh + αhe
−αh . (53)

Finally, at steady state, the equilibrium condition (49) reads:

R

(
1 − e−αb

(
1 +

βbαb

6

) (
e−αh + αhe

−αh
))

= αh. (54)
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We solve equation (54) numerically (with Maple) to express αh as a function
of αb. We plot in figure 7a-b several solutions associated with different values
of R and B. As pointed out in equation (46) and plotted in figure 7a, changing
the value of B is equivalent to a x-translation of the hb and bcd densities.
To further study the different types of solutions, we will vary the parameter
R. Following the discussion in section 3 on bistability, for Non = ns = 2 the
dynamics for hb can potentially be bistable. We show now that for ns = 2
and R < 3, hb is always monostable. To compute the critical value Rc after
which bistability occurs, we shall use the functions:

P (x) = 1 − P0,b (55)

f(αh) = P2,h, (56)

where P (x) depends on x through αb (46). The function f(αh) is the fraction
of time hb is autoactivated by the hb and P (x) is the fraction of time the
gene is activated by the bcd gradient. Equation (54) can then be rewritten
as:

R(1 − (1 − P (x))(1 − f(αh))) = αh. (57)

We determine in the appendix the critical value for bistability given by Rc =
3. For R < Rc the gene is always monostable, while for R > Rc the gene is
bistable for some values of P (x) and monostable for others:

• For R > 3, hb is monostable for x < xc and bistable for x > xc where
xc is a critical position. We represent the bifurcation diagram in figure
7d. Changing B is equivalent to an x-translation in the hb profile and
thus B can be adjusted such as the bifurcation point is xc = 0.5 for
example. If at time t = 0 there is no hb, the hb density converges to
the lower stable value, as represented in figure 7b. Nevertheless, for a
bistable hb dynamic, cells located in x > xc can switch from low to
high (stable value) in response to a sufficient signal. In the absence of
a repressor of hb on the posterior side of the embryo, the gene stays in
the high stable state.

• For R < 3, hb is always monostable. When R becomes close to 3, there
is already a boundary in the hb density (Fig. 7b). This boundary
can be characterized by the point where f(αh) changes concavity and
becomes tangent to a linear function (Fig. 8). At the point of concavity
change, a small variation in P (x) induces a large variation in αh which
produces a sharp transition in the hb density.
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We conclude that for an auto-regulated hb, when the bifurcation parameter
R is close but smaller than the critical value Rc, there is a sharp boundary
of hb in the embryo and this boundary does not require a repressor in the
posterior half of the embryo. As shown in figure 8, at the boundary hb
synthesis is essentially due to autoactivation of hb (the activation P (x) due
to bcd is ≈ 10% whereas the gene is autoactivated ≈ 40% of the time). To
obtain a numerical estimation of R, we use the synthesis rate r generated by
two hb bound to the target sites and the degradation rate K of hb. Using
the values from the supplementary material of [37], r ≈ 19 and K ≈ 7.08
and we obtain

R ≈ 2.7. (58)

For R = 2.7, we observe a steep transition of the hb density at the middle
of the embryo as in the in vivo data from [16] reproduced in figure 9a. The
main difference between the theoretical density (Fig. 7b) and the in vivo
data from [16] (Fig. 9a) is in the anterior edge where our model leads to an
increase of the hb density instead of a decay as observed in vivo. This decay
in the hb density at the anterior edge of the embryo is due to a repressive
effect induced by the huckebein TF (hkb) [17] which we did not model in
(54) and we shall examine now.

Refining the gradient using hkb repressor

We now account for the repression induced by hkb and consider that the
transcription of the hb gene is repressed when at least one hkb is bound to
the promoter site (Fig. 3). hkb promoter sites are different from the ones
of hb and bcd and thus hkb dynamics is independent of the two other TFs.
Similarly to the analysis that lead us to equation (49), we obtain:

αh = R P0,hkb(1 − P0,b(1 − P2,h)). (59)

where P0,hkb is the probability that no hkb are bound. We assume hkb binds
to its target fast enough and shall consider that βhkb = 0. Finally, P0,hkb is
then given by:

P0,hkb = e−αhkb . (60)

To evaluate the distribution αhkb we fit the measured hkb distribution [17]
with an exponential function:

αhkb = Cekhkbx, (61)
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where khkb = 11.3 (Fig. 9c). The value of C can not be obtained directly
from experimental measurements. Changing the value of C is equivalent to
an x-translation of the repression due to hkb. We calibrated C to have the
same value for the hb density as in the vivo data (Fig. 9a and d)). We solve
equation (59) numerically and obtain an hb density represented in figure
9b. This new theoretical density obtained is now close to the in vivo data
(Fig. 9a), in particular we recover the sharp boundary of hb. The main
differences between the theoretical and experimental densities are located
at the posterior side of the hb boundary where we obtain a higher density
compared to the vivo data and at the posterior edge where the density is
lower. The difference after the hb boundary might be due to repression of
hb by the knirps TF [17] which is not modelled here. As for the difference at
the posterior edge, this can be due to activation of hb by the Caudal TF [17].
Taking into account these two regulation pathways should lead to a refined
analysis of the hb density.

5 Conclusion

In this paper, we studied transcription activation by TFs starting from the
stochastic nature of the search process for a DNA promoter site. Later on,
we applied our computations to estimate the sharp boundary induced by a
smooth gradient of TFs. In the first part, we focus on the kinetics of the
binding of TFs to their target sites located on the DNA molecule: when
the average number of cycles of free diffusions and DNA bindings before
finding the target sites is large, the search time T (nf , ns) is exponentially
distributed and we estimate the mean (relation 10). Next, we considered the
case of a cell receiving a steady state TF concentration, and each TF can be
enzymatically degraded. We model the dynamics of the TFs’ binding and
unbinding their target sites and we estimated the fraction of time Pk that k
out of ns sites are occupied at steady state. For ns = 1 we obtain an explicit
expression in equation (19). For ns ≥ 1, the general expression of Pk is given
by an implicit equation (32) and an asymptotic development for β � 1 is
provided in (43). We presented the different occupation ratios in figure 5 and
6 for two and four sites respectively. We consider that the transcription rate
is proportional to the fraction of time a given number of sites is occupied.
For a defined TF concentration entering the nucleus, our model provides a
quantitative input-output relation in terms of the transcription rate.
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we considered here two types of transcriptional repressers: 1) Repression
by ligands that competitively bind to the TF binding sites (equation 1).
Ligands were modeled as molecules in excess compared to the TF and we
use an equilibrium approximation. 2) in section (4), we studied repression by
hkb, where hkb, hb and bcd binding sites were different and hence bindings
was independent. It would be interesting to expand our analysis to the case
where two Tfs competitively bind to the same target sites, this situation
remind us of the λ−Cro regulation [34].

When we apply our model to the regulation of hunchback by the bicoid
morphogenic gradient, we focus on the sharp boundary in the hb density at
the middle of the embryo. Several mechanisms accounting for the formation
of sharp boundaries have been proposed: Some mechanisms [40, 43, 44, 45]
result from cooperative binding while others include a bistable gene [37] or
the antagonistic action of a repressor and activator gradient [46, 47, 48, 49].
Here, we use neither the repression of hb in the posterior half nor the co-
operative binding of bcd, but we show that, in the absence of these two
mechanisms, a smooth morphogenetic gradient can trigger a sharp boundary
for an autoregulated gene. We also show that bistability of the autoregu-
lated gene is not a requirement and that sharp boundaries can be generated
by monostable autoregulated genes. We found the critical value for the tran-
scription rate at which a bifurcation occurs and gave an estimate in equation
(103). We further show that a bistable gene can produce a sharp boundary
from a smooth gradient. Nevertheless, for a bistable hb, cells located on the
posterior side of the embryo can switch from a low stable value to a high one
in response to a sufficiently large perturbation. A repressor on the right hand
side of the boundary would then be required to obtain a reliable boundary
position. Our results show that an autoregulated gene close to bistability is
sufficient to produce a sharp boundary.

Here, we focused on a minimal mechanism that allows a morphogenetic
gradient to trigger a sharp boundary in an autoregulated gene. In order to
focus on this minimal system that produces sharp boundaries, neither hb-
repression in the posterior half nor cooperative binding of bcd are modeled.
Both repression [46] and cooperative binding [43] are already known to play
a key role in the formation of the sharp boundary of hunchback and it would
thus be interesting to expand our model to take them into account. With
autoregulation, it would then be interesting to see how these three mecha-
nisms, which appear to be redundant, produce sharp and robust boundaries
in the embryo.
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6 Appendix

6.1 The pdf of T (1, ns)

We compute here the pdf PT (t) of the time T (1, ns) a single TF takes to bind
one of the ns DNA specific targets. Decomposing the pdf by the event that
the target is found after exactly k steps, we have:

PT (t) =
∞∑

k=0

Pr{T (1, ns) < t|k 1D walk}Pr{k 1D walk}. (62)

Using the probability p(ns) to bind to one of the ns sites during a one dimen-

sional motion along the DNA molecule, the probability P̃k = Pr{k 1D walk }
to find a site during the kth one dimensional DNA motion is given by:

P̃k = p(ns)(1 − p(ns))
k−1. (63)

A cycle is the concatenation of one and three dimensional motions. Both
periods are characterized by random exponential times. The conditional
search time for k cycles of DNA binding and free diffusion is then:

T (1, ns){ conditioned on k cycle} =
k∑

j=1

(τf (j) + τd(j)), (64)

where (τd(1), ..τd(k)) and (τf (1), .., τf (2), ...τf (k)) are respective the times
spent bound to the DNA and freely diffusing in the nucleus.

To compute PT (t), we will use the characteristic function F of T (1, ns),

F (x) = Et(e
itx) =

∞∫
−∞

eitxpT (t)dt (65)

=
∞∑

k=1

Gk(x)P̃k, (66)

where Gk is the characteristic function of:

T{(1, ns)|k 1D walk } =
k∑

j=1

(τf (j) + τd(j)), (67)
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which is given in equation (64) and P̃k = p(ns)(1−p(ns))
k−1 is the probability

to have k 1D walks given in equation (63). Since the random times τd(j)
and τf (j) are independent, the characteristic function of the sum (67) is the
product of the characteristic functions:

Gk(x) =
k∏

j=1

Fτf (j)(x)Fτd(j)(x), (68)

where Fτf (j)(x) and Fτd(j)(x) are respectively the characteristic functions of
the free diffusion time τf (j) and the time τd(j) bound to the DNA. Since
these times are exponentially distributed:

Fτf (j)(x) =
1

1 − ixτ f

(69)

Fτd(j)(x) =
1

1 − ixτ d

. (70)

Finally,

F (x) =
∞∑

k=1

p(ns) (1 − p(ns))
k−1 1

(1 − ixτ f )
k (1 − ixτ d)

k
(71)

=
p(ns)

(1 − ixτ d) (1 − ixτ f ) − 1 + p(ns)
. (72)

The poles are given by the two roots of (1 − yτ d) (1 − yτ f ) − 1 + p(ns) = 0
with y = ix:

r1 =
(τ d + τ f ) −

√
(τ d + τ f )2 − 4p(ns)τ fτ d

2τ fτ d

> 0 (73)

r2 =
(τ d + τ f ) +

√
(τ d + τ f )2 − 4p(ns)τ fτ d

2τ fτ d

> 0,

where, for p(ns) ∈ [0; 1], the two roots r1 and r2 are real positive. Decom-
posing the fraction (72) gives:

F (x) =
p(ns)

τ dτ f (r1 − r2)(ix − r1)
− p(ns)

τ dτ f (r1 − r2)(ix − r2)
(74)

=
r1r2

(r1 − r2)(ix − r1)
− r1r2

(r1 − r2)(ix − r2)
, (75)
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where p(ns)
τdτf

= r1r2 comes from the equation satisfied by r1 and r2. By

inverting the characteristic function pT (t) = 1
2π

Ex(e
−itx) =

∞∫
−∞

eitxF (x)dx

and since the inverse transform of − r1

ix−r1
is an exponential distribution of

mean 1
r1

, we obtain:

pT (t) =
r2

r2 − r1

e−tr1

r1

+
r1

r1 − r2

e−tr2

r2

. (76)

We conclude that the distribution pT is the sum of two decreasing exponen-
tials.

6.2 Asymptotic pdf of T (1, ns) for p(ns) � 1

We shall now study the approximation p(ns) � 1, for which:

r1 ≈ p(ns)

τ d + τ f

(77)

r2 ≈ 1

τ d

+
1

τ f

, (78)

and

pT (t) ≈ (1 − ε)
p(ns)

τ d + τ f

e
−t

p(ns)
τd+τf + ε

(
1

τ d

+
1

τ f

)
e
−t

(
1

τd
+ 1

τf

)
, (79)

with ε = p(ns)
1

(τd+τf )

(
1

τd
+ 1

τf

) ≤ p(ns)
4

. Since p(ns) � 1 the second exponen-

tial converges faster to 0 than the first and is further multiplied by a small
coefficient ε.

For a time
(

1
τd

+ 1
τf

)
t � 1, we approximate the pdf pT given in equation

(76) by a single exponential:

pT (t) =
p(ns)

τ d + τ f

e
− p(ns)

τd+τf
t
. (80)

Since τ d and τ f are both on the order of a few ms [10, 21], the single expo-
nential limit is valid for t larger than a few ms. The mean time T (1, ns) then
reduces to:

T (1, ns) ≈ τ d + τ f

p(ns)
. (81)
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6.3 Computation of Pk for β � 1

Combining equations (16), (20) and the first order approximations in β, the
probability Pns that all sites are simultaneously occupied is:

Pns = e−α

∞∑
nf=ns

(
1 − βns

nf − ns + 1

)
αnf

nf !
. (82)

Using the partial sum:

S(x) =
ns−1∑
k=0

xk

k!
, (83)

and the relations:

∞∑
nf=ns

αnf

nf !
= eα − S(α) (84)

∞∑
nf=ns

αnf

(nf − ns + 1)nf !
= αns−1

α∫
0

ex − S(x)

xns
dx, (85)

we obtain:

Pns = 1 − e−αS(α) − βnse
−ααns−1

α∫
0

ex − S(x)

xns
dx. (86)

Using the change of variable x = αu, we can write:

Pns(α) = 1 − e−αS(α) − βnse
−α

1∫
0

eαu − S(αu)

uns
du. (87)

We shall now examine some properties of Pns . For αu ≥ 0, eαu −S(αu) ≥ 0,
thus Pns is a decreasing function of β. Indeed the partial derivative of Pns

in β is negative. Moreover, Pns is an increasing function of α for β � 1:
starting from expressions 82 (which is equal to 87) and differentiating with
respect to α:

∂Pns

∂α
= e−α

∞∑
nf=ns

(
1 − βns

nf − ns + 1

)(
αnf−1

(nf − 1)!
− αnf

nf !

)
. (88)
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Using nf ≥ ns and ε sufficiently small, then for β < 1
ns

(1−ε),
(
1 − βns

nf−ns+1

)
>

ε and we obtain:

∂Pns

∂α
> εe−α αns−1

(ns − 1)!
> 0. (89)

and ∂Pns is an increasing function of α.
We now proceed with estimating Pns−1. Using equations (16), (20), we

obtain:

Pns−1 = e−α

∞∑
nf=ns−1

P(k = ns − 1|nf )
αnf

nf !
. (90)

For β � 1, using approximation (39) for the term in ns − 1 and (37) for the
other terms:

Pns−1 = e−α αns−1

(ns − 1)!

(
1 − β

ns − 1

2

)
+ e−α

∞∑
nf=ns

βns

nf − ns + 1

αnf

nf !
.(91)

Using relation (87), for β � 1, we obtain:

Pns−1 = e−α αns−1

(ns − 1)!

(
1 − β

ns − 1

2

)
+ βnse

−α

1∫
0

eαu − S(αu)

uns
du. (92)

Finally, when k ≤ ns − 2 sites are occupied,using the first order approx-
imations for P(k|nf ) in formula (39), we shall only retain the probabilities
associated with k or k + 1 TFs in the nucleus,

Pk ≈ P(k|k)P(k) + P(k|k + 1)P(k + 1)

=

(
1 − kβ

(ns − k + 1)

)
e−α αk

k!
+

(k + 1)β

(ns − k)
e−α αk+1

(k + 1)!

= e−α αk

k!

(
1 + β

(
α

ns − k
− k

ns − k + 1

))
. (93)

6.4 Critical value for bistability

To compute the critical value Rc for which the profile αh(x) can be bistable,
we use equation:

αh = R(1 − (1 − P (x))(1 − f(αh))). (94)
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For the critical value Rc, the function:

α → Rc(1 − (1 − P (x))(1 − f(α))), (95)

is tangent to α → α in αc for some value of P (x), where αc is the point where
f changes concavity (Fig. 8). For k = ns > 1 and β = 0,

f(α) = Pns = 1 − e−αS(α). (96)

f ′′(αc) = 0 is equivalent to S(αc) − 2S ′(αc) + S ′′(αc) = 0, where:

S(α) =
ns−1∑
k=0

αk

k!
. (97)

After some computations, we find that:

αc = ns − 1. (98)

Now at the critical value Rc, the function (95) is tangent to α in αc (Fig. 8)
and we obtain the conditions:

Rc(1 − (1 − P (x))(1 − f(αc))) = αc (99)

Rc

(
1 − (1 − P (x))

(
1 − ∂f

∂α
(αc)

))
= 1. (100)

After simplification,

1 − 1 − f(αc)

Rc
∂f
∂α

(αc)
= αc/Rc. (101)

We then obtain for Rc:

Rc = αc +
1 − f(αc)

∂f
∂α

(αc)
= αc +

S(αc)

S(αc) − S ′(αc)
. (102)

Finally, using (98) we obtain:

Rc = ns − 1 + (ns − 1)!
S(ns − 1)

(ns − 1)ns−1
. (103)

and for ns = 2, Rc = 3.
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7 Figures

Target 3

Bound to the
target sites

Free diffusion

Bound to 
the DNA

Target 2

Target 1

Bind
rate �f

-1
Unbind
rate �d

-1

Probability p(n ) 
to find a target

s

Figure 1: Scheme of Transcription Factor binding. TFs alternate be-
tween free diffusion in the nucleus and sliding along the DNA until one of the
targets is eventually reached during a sliding period. TFs bind and detach
to the DNA at a rate τ−1

f and τ−1
d respectively. During each sliding period,

there are ns target sites and the binding probability is p(ns).
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Figure 2: Schematic representation for the target activation. TFs
enter the nucleus at a rate λ and are degraded at a rate K (free or bound).
The binding rate to the target sites is given by equation (10) and depends
on the number of unoccupied sites and on the number of unbound TFs. TFs
unbind from the target sites at a rate T−1
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(a) Gene circuit for sec-
tion 3
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Figure 3: Gene circuits used in this paper. (a) Gene circuit for a genetic
switch (section 3). (b) Regulation of hunchback (hb) transcription through
auto-activation and activation by bicoid (bcd) (section 4). (c) Regulation of
hb transcription through auto-activation and activation by bcd and repres-
sion by huckebein (hkb) (section 4).
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Figure 4: (a) P1 as a function of α for various values of β. From left to right,
β increases 1/10 (red),1/3 (green),1 (yellow),3 (blue). The upper curves
correspond to fast search times and/or long binding times to the target site
and no competitors. (b) P1 as a function of the competitor concentration C
in μMol. The upper curve is obtained for α = 5, the lower one is for α = 2,

where β = β0

(
1 + C ka

kd

)
with β0 = 1

10
for C = 0 and ka

kd
= 20μMol−1 [31].
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Figure 5: Pk for ns = 2.(a) Pk as a function of α for β = 1
10

. Pk is computed
from 43. For a TF activating its own transcription when both sites are
simultaneously occupied, the two stable values for α (high and low values for
α) and the unstable value (in the middle) are represented along the dotted
line. (b) Effect of changing β. Red and green curves are given for β = 1/10,
the blue curve for β = 1, ka

kd
= 20 μMol−1 [31] and β = 1

10
. C = 0 corresponds

to a ligand concentration of 0 μMol (red and green) and 0.5 μMol (in blue).
The red curve si computed from 43. Blue and green curve are computed by
approximating equation 32 with 200 terms.
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Figure 6: Pk for ns = 4 as a function of α for (a) β = 1/10 and (b) β = 1. Pk

is computed through finite sums of 32 (200 first terms). With β = 1
10

when
C = 0 and ka

kd
= 20 μMol−1 [31], this corresponds to a ligand concentration

of 0 μMol (left) and 0.5 μMol (right).
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Figure 7: (a) Hb concentration αh(x) for different values of B: B = 2.35/2
(blue), B = 2.35 (green) and B = 2.35 ∗ 2 (red). Here, we use R = 2.7.
All curves for αh where scaled by a factor 25 to obtain the same numerical
values as the the concentration in arbitrary units for in vivo data reproduced
in figure 9a. (b) αh(x) for different values of R: R = 2.5 (monostable),
R = 2.7 (monostable, value from [37]), R = 3 (critical value for bistability)
and R = 3.5 (bistable). For R = 3.5, there are two stable points: the
high (dotted lines) and the low (continue line) stable value. B in (46) was
adjusted for each of the curves to cut 25 in x = 0.5: B = 3.3 for R = 2.5,
B = 2.35 for R = 2.7, B = 1.58 for R = 3 and B = 0.95 for R = 3.5.
(c) R(1 − P0,b(αb(x))(1 − P2,h(αh))) − αh as a function of αh for R = 3.5.
The curves are for x = 0.4, 0.5 and 0.6. We use B = 0.95 as in figure 7b.
(d) Bifurcation diagram of αh(x). This bifurcation diagram is given by the
solutions of R(1−P0,b(αb(x))(1−P2,h(αh)))−αh = 0 as a function of x. We
use B = 0.95 and R = 3.5 as in figure 7c.
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Figure 8: Boundary in the density of the autoregulated TF. Are
representd αh/R (blue) and the proportion of time 1−P0,b(1−P2,h(αh)) the
hb gene is active for P (x) = 1−P0,b = 0 (blue), 0.1 (red) and 0.2 (yellow). The
curves are all for the critical value R = 3 to amplify the boundary in hb. We
use B = 1.58 as in figure 7b. The boundary comes from 1−P0,b(1−P2,h(αh))
which is tangent to αh/R at the point where P2,h(αh) changes concavity. A
small variation in P (x) then induces a large variation in αh.
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Figure 9: (a) In vivo concentration of bcd and hb TFs as a function
of x. Figure reproduced from [16]. (b) Theoretical and experimental hb
concentration as a function of x. Here to compute αh(x) we take into account
bcd activation, hb autoregulation and hkb repression. The parameters B =
1.4 and C = 1.1 are used to fit the in vivo data which is reproduced from [16].
(c) In vivo hkb density as a function of x and exponential fit used in equation
(61). The in vivo data is from the Flex database [17, 41, 42]. (Since the bcd
and hb densities from [16] reproduced in figure (9)a are for the beginning
of the 14 A cycle of the development of Drosophilia [16], we use the in vivo
hkb densities for the first half of the 14 A cycle (T1 to T4) from the Flex
database to fit in equation 61.) (d) Hb density αh(x) for different values of
C: for C=0.6 (red), 1.2 (green), 2.4 (blue). The value of C is adjusted to
have the same value for the hb density at x = 0 as for the in vivo data.
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