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Abstract  
 
It is supposed that humans are genetically predisposed to be able to recognize sequences of 
context free grammars with center-embedded recursion while other primates are restricted to 
the recognition of finite state grammars with tail-recursion. Our aim was to construct a 
minimalist neural network that is able to parse artificial sentences of both grammars in an 
efficient way without using the biologically unrealistic backpropagation algorithm. The core 
of this network is a neural stack-like memory where the push and pop operations are regulated 
by synaptic gating on the connections between the layers of the stack. The network correctly 
categorizes novel sentences of both grammars after training. We suggest that the introduction 
of the neural stack memory will turn out to be substantial for any biological ‘hierarchical 
processor’ and the minimalist design of the model suggests a quest for similar, realistic neural 
architectures.  
 
Keywords:  
synaptic gating; neural stack; recursion; context-free grammar; finite state grammar 
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Introduction 

 

Natural language is a fascinating phenomenon, very much in the focus of various disciplines, 

from linguistics proper to evolutionary biology (Bickerton, 1990; Hauser et al., 2002; 

Hurford, 2007; Maynard Smith and Szathmáry, 1995; Pinker, 1994). Although there is no 

general agreement on how to best characterize language, let alone its biological foundations, 

we follow the view that it is based on the critical combination of symbolic reference with 

complex syntax (Szathmáry, 2007). A crucial element of syntax is recursion (Corballis, 

2007a; Hauser et al., 2002). Two main types of recursion occurring in natural language are 

tail- or end-recursion (including left and right-branching recursion) and centre-embedded 

recursion (CER). An example of left-branching tail-recursion is (after the popular British 

nursery rhyme The house that Jack built):  

(1) The rat squeaked. 

(2) The cat killed the rat that squeaked. 

(3) The dog worried the cat that killed the rat that squeaked. 

 

In these cases, sentences are characterized by the concatenation of coherent noun-verb pairs, 

and can be produced or parsed by simple iteration (Christiansen and Chater, 1999). Iteration is 

present in animal calls, like that of primates (e.g., (Robinson, 1984; Zuberbühler, 2002)) and 

songbirds (Eens, 1997). It was also proved that some animal species are able to infer the 

iterative rule from samples of artificial strings and generalize over novel strings (Robinson, 

1984). If we represented word-pairs only, where word-pairs consist of two words with 

dependency between them (e.g., in sentence 3, these are: dog-worried, cat-killed and rat-

squeaked), such sentences composed of three word-pairs can be described by the following 

rule: 

(4) A3 B3 A2 B2 A1 B1, 

where As represent nouns, Bs represent verbs, and words with the same index form word-

pairs. 

 

The above sentences (2 and 3) can be transformed to have centre-embedded structure: 

(5) The rat that the cat killed squeaked. 

(6) The rat that the cat that the dog worried killed squeaked. 

Here, the general rule for three word-pairs is: 

(7) A1 A2 A3 B3 B2 B1. 
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CER is claimed to be a general human capacity whereas it cannot be found in animal 

communication systems (Fitch and Hauser, 2004). It has not been proved either that any 

animal species is capable of learning CER in the laboratory. CER can be parsed by context-

free grammar (CFG), which has higher generative power than finite-state grammar (FSG) 

which basically concatenates items (applies tail-recursion, (Corballis, 2007a); for the 

comprehensive hierarchy of formal grammars, see (Chomsky, 1957)).  

 

In natural languages, every noun has several possible verb pairs, and vice versa, every verb 

has several possible noun pairs. In the above examples semantic relationship connects the 

words: usually only rats squeak, not dogs or cats. However, if the other two word-pairs are 

swapped, the sentence still makes sense: 

(8) The dog killed the cat that worried the rat that squeaked. 

In a slightly modified version of the sentence, it is not possible to swap the word-pairs, 

because singular and plural words must be matched: 

(9) Dogs worry the cat that kills rats that squeak. 

As a result of this grammatical constraint (together with the semantic constraint), even if the 

words were mixed without grammatical structure, it would be easy to see the coherent noun-

verb pairs. In artificial languages without semantics, if these dependencies between words are 

not established somehow, sentences could be represented by a simpler structure, AnBn, e.g. for 

n=3: 

(10) A A A B B B. 

This grammar is called counting recursion (Christiansen and Chater, 1999) because parsing of 

this kind of sentences is possible by counting As and Bs. If the number of As and Bs is equal 

and there is only one transition from As to Bs the sentence is correct (Corballis, 2007a; 

Corballis, 2007b).  

 

The structures that word-pairs imply are shown on Figure 1. In the case of tail-recursion, 

members of word-pairs are next to each other connected by local dependencies. Additionally, 

in sentences with CER there are word-pairs whose members are separated by other word-pairs 

thus they have long-distance (or long-range) dependencies. This implies a hierarchical 

structure compared to the linear structure of sentences with tail-recursion. The more levels 

this hierarchical structure has, the more words have to be remembered to be able to parse 

these sentences. In a six-word-long sentence with CER, the maximum number of words that 

has to be stored in memory is three and the first word has to be remembered until the 
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presentation of the last one. In sentences with tail-recursion, members of word-pairs are 

presented shortly after each other, hence there is only one word that has to be remembered at 

a time. In counting recursion no individual word has to be stored in memory for 

grammaticality judgement, just the category of words passed and their quantity has to be 

remembered until the end of the sentence. 

 

Some confusion resulted from using sentences of counting recursion in artificial language 

learning experiments and not differentiating them clearly from the more complex centre-

embedded sentences. Fitch and Hauser (Fitch and Hauser, 2004) claimed that their human 

subjects were able to learn both FSG and CFG in a small artificial language, whereas cotton-

top tamarins could learn only FSG. Since they did not establish dependencies between words 

their CFG sentences could be parsed by counting recursion. Likewise, Gentner, Fenn, 

Margoliash & Nusbaum (Gentner et al., 2006) claimed that their subjects (starlings) learnt 

CER using the same kind of structures as Fitch and Hauser (Fitch and Hauser, 2004). This in 

turn elicited some critique: Corballis (Corballis, 2007a; Corballis, 2007b) called attention to 

the fact that the sentences used could be parsed by simple counting, while others (De Vries et 

al., 2008; Perruchet and Rey, 2005) showed that in experimental situation similar to that of 

Fitch & Hauser (Fitch and Hauser, 2004) even human subjects used alternative strategies to 

solve the tasks.  

 

Despite the controversy in artificial language experiments, there is a general agreement that 

centre-embedded structures are present in natural human languages, but not in natural animal 

communication systems. The question is, why. A simple answer would be that animals do not 

have Universal Grammar, but this leaves completely in the dark what the relevant biological 

differences could be. In fact there are serious doubts on the idea that abstract rules of 

Universal Grammar could ever get assimilated in the genome (Deacon, 2003; Wiles et al., 

2005) but, in contrast, it cannot be doubted that some language-related genetic differences 

between humans and animals do exist. It is perhaps much more rewarding to enquire about 

the possible neuronal operations (procedures) that the brain could implement in order to 

handle language.  

 

Connectionist models have increasingly been used to model empirical data across many areas 

of language processing (Christiansen and Chater, 2001a). However, connectionist models 

aiming at parsing recursive structures are often restricted to counting recursion. Sun et al. 
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(Sun et al., 1998) implemented a hybrid system, in which a recurrent neural network was 

coupled to an external non-neural stack memory. After training with backpropagation, the 

system was able to infer a CFG from input. In another study, continuous-time recurrent 

networks without a stack can learn both context-free and context-sensitive languages in a 

prediction task, using backpropagation through time (Bodén and Wiles, 2000). Since there 

were no long-range dependencies connecting words within the sentences, performance of 

these systems boiled down to counting (Rodriguez et al., 1999). 

 

Other studies used input data conforming to real CER (as opposed to counting recursion) to 

train artificial neural networks. Elman (Elman, 1991) trained a simple recurrent network 

(SRN) on multiclausal sentences which contained multiply-embedded relative clauses. The 

network achieved a high level of performance in predicting the next word in the sentences. In 

a related model Christiansen and Chater (Christiansen and Chater, 1999) trained SRNs on 

recursive artificial languages. The behaviour of these networks was similar to human 

performance in that they reached higher performance in right-branching structures than in 

centre-embedded structures. In both studies backpropagation of error was used as a learning 

algorithm which is generally considered biologically implausible because it requires passage 

of information backward through synapses and along axons and because it uses error signals 

that must be precise and different for each neuron in the network (Mazzoni et al., 1991; 

O'Reilly, 1996). 

 

Handling of hierarchical structures occurs at high speed during language production and 

comprehension, and it seems reasonable to assume that it requires specialized neural networks 

to do so (Fedor et al., 2009). It is well known that parsing of CER can be solved very 

efficiently by a stack (push-down automaton), with the necessary pop and push operations 

(Hopcroft and Ullman, 1979). Thus it would be a step forward to present a neurally plausible 

simple stack architecture that could parse CER. Along this line, Chen and Honavar (Chen and 

Honavar, 1999) proposed an artificial neural network architecture for syntax analysis  

which is assembled from neural network components for lexical analysis, stack, parsing and 

parse tree construction. The stack in their model is a fairly complex system that is composed 

of five different modules that have specifically designed connections and the stack requires 

four sets of binary inputs. We aimed at constructing a more minimalist architecture for a 

neural stack that is more similar to a push-down automaton in its architecture. 
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In this paper we will present a neural network which can be trained to parse sentences with 

tail-recursion and CER. Three key features of the model are: a) absence of backpropagation, 

b) a crucial role for synaptic gating, c) and a neurally implemented stack. These components 

of our model are not new, but the combination of these features is unprecedented – this is 

what makes this model very effective and minimalistic.  

 

Methods 

 

Grammars 

 

We composed input sentences according to two types of recursion, namely tail-recursion and 

CER. Words were 0/1 binary strings, where there was only one 1 in each word (all the other 

digits are 0). Words were randomly divided into two groups, A and B. Each word from group 

A had exactly one (randomly chosen) pair from group B, and vice versa. Sentences (4) and (7) 

give examples for six-word-long sentences with tail-recursion and CER, respectively. Since 

no word occurs twice in a sentence, 8*7*6=336 sentences could be generated for each 

grammar. 

 

Additionally, random agrammatical sentences were also generated. These sentences were also 

composed of three A words and three B words and always started with an A, just as 

grammatical sentences, but did not conform to any of the above rules. 

 

Architecture and functioning of the network after successful training 

 

The neural network consists of the following main modules: input layer, stack, predictor, two 

push-pop neurons and a decision neuron (Fig. 2.). The input layer receives one word at a time 

from the sentence. In the case of a 16-word vocabulary, the input layer has 16 units (neurons), 

where each unit corresponds to a single word. Second, there is a clocked stack (for a clocking 

mechanism see (Hjelmfelt et al., 1991)) with three layers, where every layer of the stack 

consists of 16 neurons. Adjacent neurons within a column of the stack are connected 

bidirectionally to each other, with a weight of 1. The third component, called the predictor, 

tries to predict the next word in the sentence based on the word that is stored in the top layer 

of the stack. The push-pop neurons have input connections from the predictor and the input 

layer. They basically compare the two, and if they store the same words (which means that the 
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prediction was correct) signal +1, if they store different words (or if the predictor is empty) 

signal -1. The output connections of the push-pop neurons perform neural gating on the 

synapses of the stack: these connections modulate the synapses directly by enhancing or 

inhibiting them (i.e., the push-pop neurons are the so called ‘gatekeepers’). One of the push-

pop neurons is an excitatory neuron which is connected to each upward synapse in the stack 

with positive weights (i.e., gating acts in a permissive fashion (Katz, 2003)) and the other one 

is an inhibitory neuron, which is connected to each downward synapse in the stack with 

negative weights (absolute suppressive gating). The signal that arrives to a synapse from a 

gating neuron is the product of the activation of the gating neuron and weight on the synapse 

of the gating neuron, just like with any other neurons. The difference is that negative signal 

from a gating neuron blocks the synapse it is connected to, while positive signal from a gating 

neuron makes it possible for the synapse to work. As a result, if the prediction was correct and 

the push-pop neurons signal +1, downward connections will be inhibited and upward 

connections will be enhanced in the stack, hence upward connections will predominate, and 

each layer will take the value of the layer bellow it (a pop action). In this case, the bottom 

layer becomes empty. On the other hand, if the prediction was not correct and the push-pop 

neurons signal -1, upward connections will be inhibited and downward connections will be 

enhanced in the stack, such that the downward synapses will predominate and every layer will 

take the value of the layer above it (a push action). In this case, the top layer takes its value 

from the input. Lastly, there is a decision neuron, which is connected to the top layer of the 

stack and signals only if there is a word stored on the top layer of the stack. The signalling of 

this neuron can be considered as the decision of the network on the grammaticality of the 

sentence: signalling means that the sentence encountered so far was ungrammatical, while 0 

output means that the sentence is grammatical. 

 

Now, let us see how the whole network with a three-layer-deep stack is supposed to parse a 

six-word-long sentence after learning. First, the predictor tries to predict the first word from 

the top of the stack, but since the stack is empty at the beginning, the predictor will have no 

prediction. Next, the first word arrives to the input layer and then the push-pop neurons 

compare the input with the prediction. Since prediction is unsuccessful (there is no word on 

the predictor), the push-pop neurons perform a push action on the stack and the top layer of 

the stack becomes occupied by the first word. This triggers the decision neuron, which will 

signal that the string encountered so far is ungrammatical. In the case of a sentence with tail-

recursion, the next word depends on the previous one. At the beginning of the next cycle, the 
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predictor predicts the next word based on the previous word which is stored on the top of the 

stack. If the prediction is correct, the push-pop neurons will perform a pop action on the stack, 

which will become empty again. This will suppress the signalling of the decision neuron 

which means that the sentence encountered so far is grammatical. The same push-pop actions 

are repeated with the next two word-pairs until the end of the sentence. To measure the 

performance of the network we can detect its predictions for the following words or its 

decisions on the grammaticality of the sentence. During the processing of a sentence with tail-

recursion, the network is able to predict every second word (other words can not be predicted, 

hence maximum performance is 50%) and decides that the sentence is incorrect three times: 

after the first, third, and fifth word. Note, that independently of the length of the sentence, 

substrings of a grammatical sentence with even number of words are in fact grammatical in 

the case of tail-recursion. 

 

In the case of an agrammatical sentence, one or more words do not have a pair, which means 

that more than three words are unpredictable in the sentence. This results in more than three 

push actions, which means that the stack is not empty at the end of the sentence and the 

decision neuron will signal that the sentence was agrammatical. 

 

Parsing grammatical sentences with CER also involves equal number of push and pop actions; 

hence the stack is empty at the end of a grammatically correct sentence. The difference is that 

there are three push actions until the predictor can finally predict a word. Prediction is always 

based on the word that is stored on the top of the stack, and after three unsuccessful 

predictions on the first three words, these words are stored in the three layers of the stack, 

with the third word being on the top. The fourth word is predictable from the third word, 

which means that the push-pop neurons will perform a pop action on the stack, after which the 

second word will be on the top. The fifth word can be predicted from the second word, which 

means another pop action, and finally, the sixth word is predicted from the first one. As in the 

case of tail-recursion, the stack is empty after the presentation of a grammatically correct 

sentence.  

 

It can be seen that in the case of a sentence with tail-recursion, only the top layer of the stack 

is used, whereas for parsing a six-word-long sentence with CER, three layers are used. 

Generally, the number of stack layers required for parsing a centre-embedded structure is half 

of the number of words in the sentence. If there are fewer layers, the network will categorize 



 10

sentences with CER as agrammatical. Note that tail-recursion can be parsed without push-pop 

neurons and stack if you use simple copying from the input layer to a one-layer memory 

instead of a push action and deletion of the memory instead of a pop action. The difference 

between animals that cannot parse CER and humans can be that the former lack the stack and 

the gating mechanism, without which only local dependencies between words can be parsed. 

 

It can be argued that the stack architecture in this form cannot explain why deeper 

embeddings are harder to process for humans. With this solution two levels of embedding (6-

word-long sentences) are processed perfectly, whereas three or more levels are impossible. 

However, if we realize that every neural computation is prone to errors, we will see that the 

stack architecture with many layers also shows graceful degradation in performance as the 

level of embedding increases. If every push or pop operation in the stack has a small 

probability to result in imperfect transmission of information from one layer to another, then 

the more embedding the sentence have the more probable is its faulty parsing. 

 

Training 

 

While the architecture of the network described above is hand-crafted, its synaptic weights 

develop during training. For the training we randomly chose a subset (the learning set) from 

the grammatical sentences of either type of recursion. Training consisted of presenting the 

learning set several times and modifying the weights of the network. Testing was performed 

on the rest of the grammatical sentences that the network has not encountered before 

randomly mixed with agrammatical sentences. During testing no weight change occurred. The 

performance of the network was measured by its predictions for the following words in 

grammatical sentences during training and testing and its decisions on the grammaticality of 

the sentences at the end of the sentences. Note, that theoretically the maximum performance 

for prediction is 50% in grammatical sentences (obviously it was not measured for 

agrammatical sentences). Grammaticality judgement during testing measures if the network 

can differentiate grammatical from agrammatical sentences, while during training it is not 

very informative, since there were only grammatical sentences in that phase. 

 

Different learning rules were used to modify the weights of the network. For the weights 

between the top layer of the stack and the predictor layer, a simple Hebbian learning rule was 

used. After the predictor layer tried to predict the next word and the push-pop neurons 
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compared the prediction with the next word on the input, the input was copied to the 

predictor. Then learning occurred in this time step by increasing the synaptic weights between 

those neurons that were activated: 

if Nt=1 and Np=1 then Wtp=Wtp + r, 

where Nt is a neuron on the top of the stack, Np is a neuron on the predictor layer, Wtp is the 

synaptic weight between them and r is the learning rate (r was set to 0.01). 

 

For modifying the synaptic weights of the push-pop neurons coming from the predictor and 

the input layer and the synaptic weights of the decision neuron coming from the top of the 

stack, the perceptron learning rule was used with threshold transfer function (Dayan and 

Abbott, 2005). This learning rule modifies the weights and the threshold to reach an output 

that is closer to a precalculated desired output. For this only local information is used: the 

activation of the input and the output layer (e.g., in the case of the decision neuron the input is 

the top of the stack) and the synaptic weights: 

W =  W + h*(O – O’) * I  and  T = T – h*(O – O’),  

where W is the weight matrix between the input and the output layer, I is the input, O is the 

desired output, O’ is the actual output, T is the threshold for the transfer function and h is the 

learning rate (h was set to 0.1). The desired output for the push-pop neurons is 1 (pop) if the 

prediction was correct (i.e., if the input layer and the predictor layer has the same activation 

pattern) and -1 (push) if the prediction was incorrect. For the decision neuron, the desired 

output is 0 if the top of the stack is empty and 1 otherwise. (Note that starting with nonzero 

random weights, the decision neuron automatically works well without learning.) 

 

Weight modification occurred online, i.e. after the presentation of each word in the case of 

both learning rules. (We tried batch learning too, where weight modification occurs after the 

presentation of the whole training set. The network basically reached the same performance, 

however, we find it less realistic, and hence we used online learning for generating the figures 

in this paper.) 

 

Those weights that copy activation from one layer to another were not trained, but set to the 

desired values from the beginning: between the input and the predictor, between the input and 

the top of the stack, and the weights between the layers of the stack. It might seem to be quite 

artificial that the weights of the stack are not trained but are precalculated. However, since it 
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is a very simple structure it would be easy to train in an extended version of this model, just as 

the other copy weights. 

 

Results and conclusions 

 

Learning performance 

 

Figure 3 a) and b) show the performance of the model during several training sessions and a 

test session averaged over 10 runs in the case of tail-recursion and CER, respectively. 

Performance is measured by the correctness of grammaticality judgement at the end of 

sentences (Decision) and by the correctness of the prediction for words during sentences 

(Prediction). Black data points represent performance during training while the last white data 

points represent performance during testing. Training was performed on a randomly chosen 

subset of the 336 grammatical sentences, while testing was performed on the rest of the 

grammatical sentences mixed with agrammatical sentences. Note, that the theoretical 

maximum for prediction performance is 50% in the case of grammatical sentences for both 

grammars (it was not measured for agrammatical sentences). 

 

In the case of tail-recursion a training set composed of 10 grammatical sentences was usually 

enough for the network to generalize and reach perfect or almost perfect performance on 

novel sentences. For this about 5 training sessions were needed. In the case of CER, 30 

training sentences presented for 11-12 training sessions were needed to reach the same 

performance. For both grammars, perfect performance on novel sentences is possible 

provided that every word-pair is presented during the training sessions. There is no 

generalization on the level of word-pairs; it is simply not possible since words are paired 

randomly. However, the network successfully generalizes on the level of sentences as can be 

seen from its performance on novel test sentences. 

 

The network can also be trained with a mixed set of sentences conforming to tail-recursion 

and CER. With 30 sentences, only about 6-7 training sessions are needed to reach perfect 

performance which indicates faster learning than with CER sentences only. This is quite 

intuitive: tail-recursion seems easier to learn than CER since words forming a word-pair are 

presented immediately after each other. For the successful parsing of the grammars both 

memorizing the word-pairs and recognizing the particular structure is necessary. Since finding 
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the words that depend on each other seems to be easier in the case of tail-recursion, we predict 

that it would help humans to learn CER if sentences were mixed with tail-recursive sentences.  

 

Extensions 

 

Since the performance of the network is based on the successful learning of word-pairs 

coupled with the push-pop operations of the stack, it can learn any language that is based on 

the balanced pairing of words in sentences. One example is the Dyck language of balanced 

parenthesis, which can be thought of as a mix of tail-recursion and centre-embedded 

recursion. E.g.: strings like aaabbaabbabb can be parsed by the model after learning that a 

and b are pairs. Another example is the palindrome (mirror) language; sentences like abccba 

can also be parsed by the network. The difference with centre-embedded recursion is that in 

this case word-pairs consist of two identical words. 

 

The network cannot learn counting recursion in this form, since it has no module that would 

learn to categorize words to group A and group B. However, if we inserted a module that was 

able to categorize words on the predictor and on the input layer, it would make it possible to 

parse sentences with counting recursion too.  

 

Conclusions 

 

The main features of the neural network implemented here is the neurally implemented stack 

operated by gating neurons1. While it is well known that recursive sentences can be parsed by 

a symbolic stack, to our knowledge, there was no simple neural implementation of this 

structure until now. Symbolic models that could not be neurally implemented can be ruled out 

for being implausible (Christiansen and Chater, 2001b). What we show here is that the stack 

indeed can be neurally implemented, and it is quite simple provided that the push-pop 

operations are guided by gating connections. 

 

We believe that gating will be found crucial for hierarchical tasks, just as for complex 

cognition in general (Gisiger et al., 2005; O'Reilly, 2006). The fact that it has readily evolved 

in a reinforcement-learning task in a simulated honeybee neural network (Soltoggio et al., 

                                                 
1 The stack follows a design borrowed from the chemical literature (Hjelmfelt et al., 1992) that rests on gating. 
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2007) supports this idea. We suggest that the introduction of the neural stack memory (push-

down automaton) will also turn out to be substantial for any biological ‘hierarchical 

processor’. This is not to say that it is just a neural stack that is crucial for language, neither 

do we suggest that the stack architecture proposed here exists in a clean, isolated form in the 

brain, but it is likely that similar networks are embedded in the wider, language-related 

network context.  

 

The performance of our network naturally depends on the depth of the stack, and as such it 

can be replaced by a finite-state automaton (Hopcroft and Ullman, 1979). However, in this 

sense human parsing ability is also limited: no person can parse sentences with arbitrarily 

many levels of embeddings (Pinker, 1994). The likely hierarchical processor (maybe even 

supramodal) in humans with normal development is Broca’s area (Friederici, 2006; 

Tettamanti and Weniger, 2006). Sadly, we know next to nothing about the relevant ‘internal 

wiring’ of this area: we propose that it is likely to contain a neural stack, wherein gating will 

be found important. 

 

It would be premature to contemplate about the origin of stack-like neuronal systems in 

evolution and development. However, there seem to be two scenarios: either stacks are hard-

wired (genetically coded) in our brain or we are born without them and the plasticity of our 

brain (under genetic control) makes us ‘ready’ to organize stacks during development. We 

think that the second scenario is more plausible but future work is needed to resolve these 

issues.  
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Figure captions 

 

Fig. 1. Tail-recursion (a), counting recursion (b) and centre-embedded recursion (c). A and B 

represent word categories and As and Bs with the same index form word-pairs. Word-pairs 

imply only local dependencies in a) but also long-range dependencies in c). There are no 

word-pairs in b) (Corballis, 2007a; Corballis, 2007b). 

 

Fig. 2. Architecture of the proposed neural network model. The input layer receives words 

from sentences one-by-one. The stack is represented with three layers with bidirectional inter-

layer connections. The predictor layer tries to predict the next word based on the word that is 

stored at the top of the stack (stack layer 1). There are two push-pop neurons (P) that has 

gating connections (dashed lines) on the inter-layer connections of the stack. Inhibitory gating 

connections are marked by a circle at the end and excitatory gating connections are marked by 

a diamond at the end. The decision neuron (D) gives grammaticality judgement on the 

sentence. Copying connections that are not trained are indicated by empty arrows. Synapses 

between the top of the stack and the predictor are indicated by a thick arrow and trained by 

the Hebbian learning rule. All other synapses are trained by the perceptron learning rule. 

 

Fig. 3. Performance of the neural network model on a) tail-recursion and b) centre-embedded 

recursion averaged over 10 runs. Performance is measured by the correctness of 

grammaticality judgement at the end of sentences (Decision) and by the correctness of the 

prediction for words during sentences (Prediction). Black data points represent performance 

during training while the last white data points represent performance during testing. Training 

was performed on 10 and 30 randomly chosen grammatical sentences in the case of tail-

recursion and centre-embedded recursion, respectively. Testing was performed on the rest of 

the grammatical sentences mixed with agrammatical sentences.  
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Fig. 1a 

 
 

 

 

Fig. 1b 

 
 

Fig. 1c 
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Fig. 3  
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