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Abstract: Despite temporally-forced transmission driving many infectious diseases, analytical 

insight into its role when combined with stochastic disease processes and non-linear 

transmission has received little attention. During disease outbreaks, however, the absence of 

saturation effects early on in well-mixed populations mean that epidemic models may be 

linearised and we can calculate outbreak properties, including the effects of temporal forcing 

on fade-out, disease emergence and system dynamics, via analysis of the associated master 

equations. The approach is illustrated for the unforced and forced SIR and SEIR epidemic 

models. We demonstrate that in unforced models, initial conditions (and any uncertainty 

therein) play a stronger role in driving outbreak properties than the basic reproduction number 

, while the same properties are highly sensitive to small amplitude temporal forcing, 

particularly when  is small. Although illustrated for the SIR and SEIR models, the master 

equation framework may be applied to more realistic models, although analytical intractability 

scales rapidly with increasing system dimensionality. One application of these methods is 

obtaining a better understanding of the rate at which vector-borne and waterborne infectious 

diseases invade new regions given variability in environmental drivers, a particularly important 

question when addressing potential shifts in the global distribution and intensity of infectious 

diseases under climate change. 
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1. Introduction 

 

Many infectious and non-infectious diseases demonstrate strong seasonal patterns in 

prevalence, with transmission of climatically-dependent infectious diseases, such as malaria, 

only possible during limited periods of the year in many locations (typically influenced by 

temperature or rainfall characteristics (Craig et al., 1999)). Childhood diseases such as measles 

have also been recognised as forced by the nature of the school year, with the significantly 

higher contact rates during term times, when combined with other drivers of measles, shown 

to lead to the recurrent cyclical nature of incidence data (Keeling & Grenfell, 2002; Conlan & 

Grenfell, 2007). More generally, four key mechanisms have been identified as potential causes 

of seasonality in infectious disease systems in reviews elsewhere (Altizer et al,. 2006; Grassly & 

Fraser, 2006), which in the context of climate-driven vector-borne diseases may be summarised 

as (a) changing contact patterns or behaviours (e.g. biting rates, human migration/movement 

patterns, vector dispersal), (b) changing environmental conditions (e.g. affecting biting rates, 

vector survival and the duration of parasite lifecycles), (c) fluctuations in demographic rates and 

intermediate host population dynamics (e.g. mosquitoes, snails, ticks) and (d) changes in 

underlying host immunity continuing to replenish the pool of susceptibles. It is also clear that 

such mechanisms may drive system dynamics on a range of timescales from hourly to long-

term inter-annual variability and influences from mechanisms such as El Niño-Southern 

Oscillation (ENSO). 

The inclusion of such mechanisms in infectious disease models also affects our 

interpretation of fundamental epidemiological concepts such as the basic reproduction number 

, which needs to account for when infection is introduced, as this may strongly influence 

outbreak properties such as the likelihood of invasion, real-time growth rate and fade-out. Such 

considerations are closely linked with decisions regarding the timing and choice of suitable 

intervention strategies given local biological and environmental conditions (Grassly & Fraser, 

2006), which clearly will also be important for guiding the design of adaptation strategies 

against vector-borne microparasitic infections, such as malaria, as a result of climate change 

(Ruiz et al., 2008).  



Realistic mathematical models of infectious disease transmission, in general, reside on 

the edge of analytical tractability due to non-linearity in the transmission process, with even 

the simplest deterministic transmission model, namely the SIR model developed by Kermack & 

McKendrick (1927), only approximately solvable. Thus, it is clear that the additional inclusion of 

temporal forcing in transmission models only serves to further complicate our understanding 

and despite approximate results on the behaviour of such models (Dietz, 1976), generic and 

rigorous analytical methods are currently lacking (Keeling & Rohani, 2007), although some 

theoretical research has recently emerged on the derivation of the basic reproduction number 

and epidemic growth rate in seasonally-forced systems (Bacaer, 2007; Bacaer & Ouifki, 2007). 

Furthermore, the analysis of temporally-forced non-linear epidemic models within 

stochastic frameworks has received little attention to date due to the complexity of the 

problem, despite representing the most realistic framework for capturing the behaviour of 

many intrinsically or extrinsically forced infectious diseases. However, for infections in the early 

stages of emergence in homogeneous populations, the lack of population immunity or the small 

fraction of infected individuals means that the non-linear effect of saturation can be neglected 

and the problem reduces to a temporally-forced linear stochastic system. Thus, we make the 

implicit general assumption here that temporal forcing in transmission takes place on shorter 

timescales than disease outbreak dynamics, which allows us to illustrate more transparently the 

theoretical framework incorporating the effects of stochasticity and seasonality, as well as 

highlighting key analytical insights. We note, however, that this assumption is likely to be most 

relevant to understanding the dynamics of seasonal infectious diseases with either small basic 

reproduction numbers, long generation times or both, as well as infections (particularly vector-

borne diseases) strongly driven by changes in environmental or climatic variables, though it is 

worth noting that the linearising assumption is, in general, unlikely to hold over the entire 

duration of temporal changes in transmission.  

Here, we begin analysis of this problem by developing and using the framework of 

master equations to better understand the dynamics of infectious disease outbreaks in this 

regime, an issue often of paramount public-health importance in assessing the speed, timing 

and intensity at which intervention measures should be introduced to control spread. The use 



of master equations, whereby the probability of occurrence of each possible disease state is 

simultaneously considered, to understand the behaviour of stochastic infectious disease 

models has been described elsewhere (Keeling & Ross, 2008), along with applications to 

epidemic processes in homogeneous models (Chen & Bokka 2005) and structured/hierarchical 

models (Grabowski & Kosinski 2004; Rozhnova and Nunes 2009), yet by comparison to their 

deterministic counterparts, relatively little infection modelling work has adopted such methods. 

The approach has, however, been used to address specific questions such as the prospects for 

control and elimination of onchocerciasis in Africa (Duerr & Eichner 2010), coevolution in 

ecological communities (Dieckmann & Law 1996), the dynamics of systems with competing 

strains of varying pathogenicity (Stollenwerk & Jansen 2003), stochastic metapopulation 

dynamics (Alonso & McKane 2002), the role of immunity in small livestock populations on 

transmission dynamics (Viet & Medley 2006) and the effect of density-dependence and time-

varying susceptibility on plant disease dynamics (Stollenwerk & Briggs 2000).  A key outcome of 

the method is that irrespective of the complexities and non-linearities involved in the 

transmission dynamics, this approach is linear and thus allows ready analytical insights into the 

behaviour and process dynamics of stochastic systems.  

Given that SIR and SEIR compartmental approaches continue to form the basis of many 

infectious disease models of microparasites, we analyse the effect of variability in transmission 

on the outbreak properties of both, but emphasise that the approach may be equivalently 

applied to higher dimensional systems typical of more complex or realistic models. In particular, 

we suggest that such modelling frameworks will represent an important advance for facilitating 

a more realistic understanding of how predicted climate change may govern the invasion 

properties of vector-borne microparasitic diseases into newly at-risk populations. 

 

2. The unforced SIR model 

2.1.  Deterministic analysis 

 

Consider first the dynamics of the SIR epidemic model, representing the simplest 

compartmental approach to modelling infectious disease transmission of microparasites 



(Anderson & May, 1992), where ,  and  represent the number of susceptible, 

infectious and recovered individuals at time . If  represents the pathogen transmission rate 

and  the recovery rate (such that  is the average duration of infectiousness), the model 

dynamics in a closed population (of size ) in the absence of demography are 

captured by the simple ODEs  

  

  (1) 

and subject to the initial conditions ,  and . However, during the 

early stages of an outbreak when the number of infectious individuals is small,  and 

the number of infected individuals is given by  

  (2) 

which is readily solved as . We can equivalently rewrite this solution in terms of 

the basic reproduction number , representing the average number of secondary individuals 

infected per primary case in an entirely susceptible population, and average generation time 

, representing the average time from an individual becoming infected to themselves passing 

on infection to a secondary case, when transmission is independent of time as  

  (3) 

 where  and , from which it is clear that the deterministic epidemic grows 

exponentially whenever . The doubling time of the outbreak , the duration of time for 

the initial number of cases to double, can be immediately derived as . 

 

2.2.  Stochastic analysis 

 

The linearisation of (1) in the absence of saturation effects early on means that the 

number of infectious individuals in the SIR model corresponds to a simple birth-death process 

in a stochastic framework during the invasion stage, with per capita birth and death rates  and 

 respectively. If we define  as the probability that we have  infectious individuals at time 

, the relevant master equation is  



  (4) 

Defining the probability generating function  transforms (4) to the first-

order PDE  

  (5) 

which may be solved using Lagrange's method of characteristics. Upon solution, the original 

probabilities may be obtained as  where  refers to the th derivative 

of  with respect to . We consider two possible initial conditions.  

 

Case I: Known initial conditions For the case where  and hence  

(where  is the Kronecker delta), we solve (5) subject to , leading to the solution  

  (6) 

 The probability of extinction as the outbreak unfolds under Case I is given by substituting  

into (6) (Fig. 1(a)), giving  as the asymptotic probability of extinction. It is clear, 

however, that this result overestimates the true likelihood of fade-out during the early stages 

of an outbreak, since the birth-death model only works as an approximation when the number 

of infectious individuals is a small fraction of the total population. A more reasonable estimate 

of the extinction probability may be obtained by evaluating (6) at a more appropriate outbreak 

time, namely the doubling time , so that substituting  and  

into (6) gives the fade-out probability at this point as . This is a factor of 

 less than the asymptotic result, e.g. for an outbreak with  seeded by one 

individual, , while  (Fig. 1(b)). It is clear from Fig. 1(b) that, in this case, the 

likelihood of fade-out is considerably more sensitive to the number of individuals seeding the 

outbreak than the basic reproduction number, highlighting the importance of contact tracing 

and local surveillance to rapidly identify potentially infected individuals, the role of 

asymptomatic infectious individuals in determining the effectiveness of early disease control 

(Fraser et al. 2004) and the difficulty in containing outbreaks with multiple infection foci, even 

for pathogens with a low reproduction number.  



   

Case II: Uncertain initial conditions For the case of uncertain initial conditions where the 

initial number of infectious individuals is Poisson distributed with mean I0 and hence 

, we solve (5) subject to , leading to the solution  

  (7) 

 It is readily shown by substituting  that the asymptotic probability of fade-out under Case 

II is , while estimation at the outbreak doubling time gives the extinction 

probability . For an  outbreak seeded by drawing a random 

number of infectious individuals from a Poisson distribution with unit mean, 

 and , demonstrating the higher probability of fade-

out in outbreaks with uncertainty in the initial conditions for a given  (Fig. 2), and the 

difference becomes increasingly evident as  increases. For outbreaks seeded with a mean of 

only one or two individuals, there is a significantly greater probability of fade-out in Case II 

compared to Case I and this does not become vanishingly small at large  due to the non-zero 

proportion of outbreaks that do not take-off due to initial seeding with zero infectious 

individuals. It is also clear that independent of any uncertainty in the initial conditions, outbreak 

dynamics are more sensitive to the initial number of cases than the reproduction number of the 

pathogen, a result that has important implications for mitigation and control policies.  

    

We can calculate the mean and variance of the number of infectious individuals from 

 and  respectively. For both Case 

I and Case II, we obtain , which, as expected, agrees with the deterministic 

solution, while the variance is given by  

  (8) 

 in Case I and  

  (9) 



in Case II. Evaluating (8) and (9) at the doubling time  to illustrate the variability in these 

scenarios early on gives  and 

 for Cases I and II respectively, with variability in early 

case numbers directly proportional to the number of seeding individuals in both scenarios. 

Thus, there is considerably more variability in the case of uncertainty in the initial conditions by 

a factor of , tending to a factor of three as  increases. This greater 

variability for a given  (Fig. 2(c)) is consistent with the higher extinction probability under 

these conditions; for a given average number of cases, we must also have large outbreaks to 

compensate for those outbreaks that fade-out and thus the variance in the initial number of 

cases increases (see also Miller et al., 2010). It should be noted that this difference in variability 

is independent of  and depends only on the reproduction number. 

 

3. The forced SIR model 

 

We now consider how the previous analysis and insights are modified for the SIR model 

in the presence of temporally-forced transmission. Models which additionally have  

will not be explicitly considered, since the linearity of the problem results in the analysis being 

readily extendable to this case. It should be noted, however, that such systems arise in 

climatically-driven vector-borne disease models where vector survival is dependent on 

temperature and rainfall (Martens, 1998). 

The functional form of the forcing term used to drive infectious disease models has 

been shown to profoundly affect the resultant disease dynamics (Keeling & Rohani, 2007). 

Here, we consider two functional forms, namely a simple sinusoid of the form  

  (10) 

 and the two-state forcing term  

  (11) 

where the plus and minus sign respectively correspond to high and low transmission seasons. In 

many applications, (11) is modified for systems that spend unequal durations of time with high 

and low transmission, with the most common example that of fewer days of low transmission 



between school children due to the structure of the school year in the case of measles, but the 

generalisation of the subsequent analysis to this case is straightforward and we only consider 

(11) to reduce the number of parameters and complexity of the analysis. 

In both cases,  represents the average transmission rate over one period and  the 

maximum amplitude of the variation in transmission about the mean, so that  

corresponds to a transmission rate 10% greater than the mean. While we consider only 

deterministically forced transmission models, it should be noted that the temporal forcing 

mechanisms of many systems are often subject to variability themselves. Thus, such systems 

are, in general, doubly-stochastic with the form of the forcing function taking the form of (10) 

or (11) plus a noise term, but we do not pursue this here. 

 

3.1.  Deterministic analysis 

 

For time-dependent disease transmission, integrating the equivalent form of (1) with 

, subject to  initially infectious individuals, gives  

  (12) 

whereupon  

  (13) 

for forcing function (10). The underbrace denotes the modification factor to the constant 

transmission case due to temporal forcing and where the basic reproduction number continues 

to be given by . With sinusoidal forcing, the impact of periodicity in  is 

determined by , since for periodic changes in transmission that occur on short timescales 

compared to outbreak dynamics (characterised by the generation time ), the baseline 

outbreak behaviour is strongly modulated by the shape of the sinusoidal forcing. However, for 

annual forcing (where  is relatively small), the impact of oscillatory behaviour on outbreak 

timescales is likely to be minimal.  

             For the forcing function (11), if the timescale of seasonal changes in transmission is long 

compared to the timescale of the outbreak dynamics, the resultant difference in prevalence 



 between the higher and lower transmission regimes is given by 

  , (14) 

where the underbrace again denotes the effect on the invasion dynamics of differences in 

transmission from the baseline case of constant transmission In this case, only if 

the durations of the high and low transmission regimes are equal in length. In addition, if we 

have rapid initial growth of the epidemic and the timescale of changes in transmission is short 

compared to the timescale of the outbreak dynamics, it is worth noting that the assumption of 

linearity in the transmission model may break down before the transition from high to low 

transmission in (11) can occur. Either way, it is clear from (13) and (14) that small changes in 

transmission have a strong effect on increasing prevalence compared to the case of constant 

transmission and this increases exponentially with the amplitude of forcing , e.g. a 49% and 

82% increase in prevalence at  and  respectively for a 10% increase in 

transmission (Fig. 3). This exponential effect becomes stronger still with increasing , while 

the initial conditions have only a linear effect on prevalence.  

 

3.2. Stochastic analysis 

 

The equivalent stochastic system for the forced SIR model is the non-homogeneous 

birth-death process, with the relevant PDE for  given by substituting  into (5). If 

we define  

  (15) 

solution via the method of characteristics gives  

  (16) 

for Case I and  

  (17) 

for Case II. In both cases, the mean is given by  



  (18) 

which agrees with the deterministic solution. The extinction probability and variance in each 

case is shown in Table 1. It is clear, however, that the analytical tractability of the forced SIR 

model is strongly dependent on the functional form of the transmission function. Indeed, 

computation of  for (10) and most realistic functions with an explicit time-dependence is 

not possible and although integral approximations may be developed, we solely consider (11) 

as our function. It is also worth noting that , and hence , may be analytically calculated 

only in the case of constant transmission or where  depends linearly on time; any non-

linear transmission function, periodic or otherwise, prevents exact calculation (although may, of 

course, be calculated numerically). However, it is readily seen, given the form of the integrand 

in (15), that the extinction probability depends considerably more strongly on early 

transmission rates than those later on, with this dependence decaying approximately 

exponentially with time. We note also that further theoretical and numerical analysis 

contrasting the effects of the functional form of  (and doubly-stochastic functions) on 

outbreak dynamics is postponed to future work.  

    

Seasonal increases in transmission lead to smaller likelihoods of extinction following an 

outbreak (Fig. 4a), with the probability increasing with additional uncertainty in initial 

conditions, partially due to the fact that  for Case I, while  for Case II. 

The linear nature of the system and form of the forcing function means that linear changes in 

 lead to approximately linear changes in . As in the unforced system, the biggest 

contribution to early fade-out is from the initial conditions (and any uncertainty therein), with 

the role of  and seasonality (for most realistic values of ) assuming a far less important 

role, although it should be noted that this may vary with other functional forms with larger 

amplitude changes in  over short timescales. As  increases,  reduces and tends to 

its equilibrium value more rapidly and increasing seasonality has less effect on fade-out as  

increases. At low , small perturbations in transmission can take the system below , 

while considerably larger perturbations are required to have a comparable effect at larger  

(Fig. 4b). 



Increasing  also increases the variance in the number of cases for a given , 

particularly at lower . By comparing to the  case, we can better understand the 

contrasting roles of stochasticity and seasonality. At small , the linearity of the system means 

that stochasticity in the underlying disease processes plays a more significant role when  is 

large, while at small , the majority of the variance may be attributed to seasonal changes in 

transmission (e.g. a 10% increase in transmission in Case I accounts for 72% of the variance 

when , but only 17% of the variability when ). However, the role of seasonality 

clearly increases with  and only moderate levels of seasonality are required to dominate the 

variability arising from disease processes, even at large . Finally, note that the role of 

seasonality versus stochasticity is relatively independent of any uncertainty in the initial 

conditions when  is small, with the role in Case I and Case II very similar despite the 

additional source of variability from the initial conditions in the latter, while there is 

considerably greater sensitivity to  in the full non-linear system. 

 

4. The unforced SEIR model 

4.1. Deterministic analysis 

 

We now consider the SEIR epidemic model, where the additional compartment tracks 

the number of individuals who are infected, but not yet infectious, with the pathogen at time  

and we denote this by . If  represents the rate at which individuals become infectious (so 

that  represents the average duration of latency), the model dynamics in a closed 

population (of size ) in the absence of demography are given by  

  

  

  (19) 

with the additional initial condition . Under the invasion approximation , the 

system reduces to 

,  (20) 



whereupon calculating the eigenvalues  of the matrix  requires solution of the 

characteristic equation 

,  (21) 

so that since , we obtain 

  (22) 

from which it is again clear that the epidemic requires  to take-off. Denoting the two 

solutions as  and  for the positive and negative roots respectively, we obtain  

  (23) 

whereupon imposing the initial conditions  and  gives 

 and . When ,  

and  always and the first term in (23) dominates, with the ratio  tending 

towards the equilibrium distribution  found by calculating the eigenvector 

corresponding to the eigenvalue  Note that if the system does not initially possess the 

equilibrium distribution, the difference between the system with  and  and 

 in the direction of the (smaller) eigenvector of  (corresponding to ) decays over time at 

rate . 

Thus, while we cannot uniquely define the real-time growth rate in this model, it is clear 

that as the outbreak progresses (but before the depletion of susceptibles takes effect), the first 

term on the RHS of (23) increasingly dominates such that the doubling time  is approximately 

given by . The average generation time in this model is , but unlike the 

SIR model, we are unable to reparameterise the growth rate only in terms of  and . 

 

4.2. Stochastic analysis 

 

In the stochastic representation of the SEIR model, exposed individuals give rise to 

infectious individuals when they die at per capita rate , while infectious individuals give birth 

to exposed individuals at per capita rate  and die at rate . If we let  represent the 

probability that we have  exposed and  infectious individuals at time , the master equation 



becomes  

 

 (24) 

By extension to the method of solution in Section 2.2, we define the joint probability generating 

function , multiply (24) by  and sum each term over  and  

to obtain  

  

  (25) 

Solution of (25) via Lagrange's method, however, can only be written in terms of a 

characteristic ODE that, to the best of our knowledge, cannot be solved exactly. Although this 

means that an exact expression for the fade-out probability of the SEIR model cannot be 

derived, we can calculate moments of the underlying probability distribution. 

Let us first define the joint moment generating function 

, so that comparing to the definition of  and 

making the substitutions  and  for  maps (25) onto a PDE in 

, which, upon expansion, allows calculation of the marginal and joint moments 

about zero. Since we are particularly interested in the variance early on, we switch to 

cumulants, rather than moments. Defining the cumulant generating function 

 (where  are the joint cumulants) and making the substitutions 

 and  gives  

  

  (26) 

Substituting the definition of  into (26), expanding the exponentials as a power 

series and equating coefficients of  and  gives the first cumulant equations  

  

  (27) 

 while expanding for the covariances by equating coefficients of ,  and  gives  



  

  

  (28) 

 We consider again two initial conditions.  

 

Case I: Known initial conditions For the case where ,  and hence 

, we have ,  and thus 

. This immediately implies that ,  and 

 for all other  combinations.  

 

Case II: Uncertain initial conditions For the case of uncertain initial conditions where 

,  and hence , we have 

,  and thus 

. Expanding the RHS in terms of 

cumulants and evaluating at  implies that  for all ,  for all  and 

 for all other  combinations.  

 

It is readily shown, through similar analysis to Section 4.1, that  

  (29) 

with solution  

  (30) 

where , ,  and  are identical to the definitions in Section 4.1, while  

  (31) 

where  and . Both results 

agree, as expected, with the deterministic solution. Similar manipulation of the second-order 

cumulant equations leads to non-homogeneous equations with constant coefficients of the 

form  

  (32) 



where  (for ) are constants dependent on ,  and  and  arises from the 

dependence of the covariances on the means  and . While exactly solvable, (32) 

gives solutions for Cases I and II that are too unwieldy to reproduce or provide significant 

insight and we thus proceed numerically. Note that both  and  follow identical equations 

structurally to (32), but with different definitions of . 

As with the stochastic SIR model, we consider the variability in prevalence as a function 

of  at the doubling time , calculated as the solution of  

  (33) 

from which it is clear that, unlike the SIR model, a closed form expression for  in terms of  

and  is not possible. However, numerical solution of (33) is straight forward and Fig. 5 

contrasts the variability of the SIR and SEIR models for Case I and Case II initial conditions. As 

expected, there is greater variability in prevalence under Case II compared to Case I and this 

difference increases with . For a given set of initial conditions and , the variability in 

prevalence is always greater in the SEIR model, particularly when  is small, due to the 

additional process of latency. As  increases, however, the two models converge in variability 

and this holds independent of whether we impose Case I or Case II conditions. It is also worth 

noting that when , inclusion of the latency process may generate greater variability in 

prevalence than the equivalent SIR model with uncertain initial conditions when  is small (Fig. 

5). 

 

5. The forced SEIR model 

5.1. Deterministic analysis 

 

As with the forced SIR model, the analytical tractability of the system reduces 

considerably in the presence of explicit temporally-forced transmission, but progress can be 

made in the deterministic case. For the general case , the number of infectious 

individuals is given by the solution to  

  (34) 

and the nature of the solution is strongly dependent on the form of . For the simple two-



state forcing function (11), substituting  gives  

  (35) 

so that  

  (36) 

where  and  are the positive and negative roots of (35) respectively and  and  are 

identical to the definitions in Section 4.1. For the sinusoidal forcing function (10), substituting 

into (34) gives the solution  

  (37) 

where  and  are the even and odd Mathieu functions respectively with 

characteristic value  and parameter . 

Substituting the initial conditions and using the fact that  and 

 gives  and . 

Unlike the SIR model, the prevalence cannot be written as a product of a constant 

transmission term and modulation factor arising from seasonal forcing, so we resort to 

numerical analysis of (36) (Fig. 6(a)). As with the forced SIR model, small changes in  can have 

strong non-linear influences on increasing prevalence compared to the case of constant 

transmission, e.g. a 31% and 51% increase in prevalence at  and  respectively 

for a 10% increase in transmission (cf. Section 3.1), particularly true with increasing , 

although small changes in transmission take longer to propagate through the system and affect 

prevalence due to the delay of latency. The addition of latency into the model slows the rate at 

which prevalence increases, so that at any given time and , the mean prevalence will be 

lower in the SEIR model than the SIR model. Thus, the effect of temporal forcing is reduced 

since there is more underlying stochasticity in the system and this dominates the dynamics 

when  is relatively small. Although intractable to demonstrate analytically for the SEIR model, 

the effect of increasing  on prevalence is also exponential, while the initial conditions 

additionally play a stronger role. 

 

5.2. Stochastic analysis 



 

As with the equivalent model incorporating temporally-forced transmission in the 

stochastic SIR framework, analytical progress with an explicit time-dependence in  is 

limited to reduction of the problem to a characteristic ODE that cannot be solved exactly. 

However, as with the SIR model, progress can be made for the 2-state forcing function. 

Substituting (11) into (27) and (28) gives solutions for the means that agree with the 

deterministic analysis, while solving for the second-order cumulants gives equations of the form  

  (38) 

for the variance of both s and s (where  for  are defined as per (32)). Once 

again, although (38) may, in principle, be solved exactly, the solution is too complex to 

reproduce, so we instead equivalently substitute (11) into (28) and solve numerically to 

contrast the effect of temporal forcing in a stochastic setting with the case of constant 

transmission. 

As in the SIR model, we find increasing variability in prevalence at the doubling time for 

fixed  as the amplitude of short-term seasonality increases. There exists greater variability in 

the SEIR model (compared to the SIR model) due to the additional stochastic process of latency, 

although the two models converge as  increases since transmission increasingly dominates 

this delay. Contrasting the roles of stochasticity and seasonality, we find that seasonality 

predominantly dominates when  is small (and close to unity), e.g. a 10% increase in 

transmission in Case II accounts for 88% of the variance when , but only 17% of the 

variability when , while stochasticity dominates as  increases. The threshold value of 

 where seasonality and stochasticity equally contribute to the variance is approximately 1.2 

for the SIR model and 1.4 for the SEIR model for the parameters in Fig. 6 when , so that 

for infectious diseases with a delay between infection and infectiousness and , this 

highlights the importance of stochasticity in driving outbreak dynamics when the seasonal 

component is not too large. 

Fig. 6 illustrates the strong non-linear dependence of the variability on  and this holds 

for the SIR and SEIR models, although larger amplitude changes on outbreak timescales will 

affect this. The functional form of , plus any additional temporal variability in other disease 



processes, may also play a key role. Finally, we find that these results hold almost entirely 

independently of any additional uncertainty in the initial conditions when  is small and this 

appears to be a standard result independent of the dimensionality of the system, although 

further analysis is required to verify this. 

 

6. Conclusions 

 

Although the power of master equations for simulating and deriving analytical insight 

into the behaviour of stochastic epidemic models has been recognised previously (Chen & 

Bokka, 2005; Grabowski & Kosinski 2004; Keeling and Ross, 2008; Rozhnova & Nunes, 2009), we 

illustrate here how insight into the effects of temporal variability in transmission on stochastic 

infectious disease dynamics may also be incorporated within this framework. This is a key 

advance in the study of infectious disease dynamics, as much of the insight to date on the 

effects of seasonality on disease dynamics has resulted largely from analytical or numerical 

analysis of deterministic epidemic (or endemic) models (Bailey, 1975; Bolker and Grenfell, 1993; 

Dietz, 1976; Moneim, 2007; Stone et al., 2007). While the approach is applied to linearised 

epidemic models, we demonstrate here that this approach remains robust (and indeed linear in 

terms of probabilities) even for full non-linear disease systems, particularly when the aim is to 

gain a better understanding of the invasion dynamics of epidemic infections into vulnerable 

populations. 

The first important outcome highlighted in this work is that while exact results regarding 

the role of stochasticity and seasonality early on in the presence of a temporally-explicit forcing 

function are possible only for the SI epidemic model, the consideration of a 2-state forcing 

function (11) can lead to useful insights into more realistic disease models. In particular, we 

demonstrate in this regard that the master equation approach will allow useful insights into key 

epidemiological properties such as fade-out, emergence and initial spread rate, and variability 

in these variables, that would otherwise be less transparent, accessible and quantifiable simply 

through direct numerical simulation. 

The application of this general framework to unforced SIR and SEIR models has 



illustrated the greater sensitivity of the early dynamics of these systems to the initial conditions 

rather than the basic reproduction number, particularly if there is additional uncertainty in the 

initial conditions. In particular, we show how stochasticity during the early stages of an 

outbreak when  is close to unity will have a major effect on the probabilities of fade-out and 

establishment, as well as variability in prevalence in these systems, with the variability in 

prevalence greater for SIR models. By contrast, in forced models, the results show that while 

outbreak dynamics (fade outs, energence and spread) are extremely sensitive to the amplitude 

of temporal forcing when  is close to unity, stochastic effects quickly play a far stronger role 

than temporal variability as  increases (almost independent of any additional uncertainty in 

the initial conditions). Small changes in transmission may, however, have exponential effects on 

prevalence early on, although the precise sensitivity is correlated with the dimensionality of the 

system and hence the amount of stochasticity arising from underlying disease processes. A key 

finding is that, in general, the effect of temporal forcing will be lower in the SEIR than the 

corresponding SIR model due to the additional process of latency. 

These findings regarding the epidemiological properties of SIR and SEIR models during 

the invasion stage has thus not only produced new insights regarding forces that may govern 

the invasion probability of microparasitic diseases, but they also raise interesting theoretical 

and applied questions that may be considered in future research. These include considering 

when non-linear effects become important, since our analysis only considers the case where 

the depletion of susceptibles is not significant and we expect small amplitude changes in 

transmission to be amplified further by the non-linearities of full infectious disease models. As 

well as obtaining a better understanding of the effect of different forcing functions on outbreak 

dynamics, we also need to better understand the effects of forcing functions which themselves 

change over time, resulting in doubly-stochastic models. Temporal variability in multiple 

disease processes also represent important challenges. The generic techniques and insights 

gained here may also be applied to many problems, and one example is improving our 

understanding of how changes in environmental conditions will affect the emergence of 

climatically-driven infectious diseases, particularly vector-borne diseases, in geographic regions 

currently disease-free. 



Overall, we have thus produced a valuable modelling framework for better 

understanding stochastic disease transmission under fluctuating, variable or uncertain drivers, 

which arguably represents the most realistic and general framework for assessing the impact of 

environmental changes on infectious disease transmission. We believe that such an approach 

may in particular represent the most realistic mechanistic modelling framework for 

investigating the potential and probable invasion of vector-borne microparasitic diseases, such 

as malaria and dengue, into susceptible populations as the future climate becomes favourable 

for the transmission of these diseases in new areas (Parham & Michael, 2010). Present climate-

driven transmission models for these diseases do not explicitly take account of the impact of 

the factors investigated here. Our results indicate that improving understanding of the impact 

of climate change on disease invasion dynamics will require a more realistic analysis of these 

factors, especially as increasing variability in climatic components has been linked to changes in 

malaria infection dynamics (McKenzie et al., 2001; Zhou et al., 2004). 
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Figure captions 

 

Figure 1: For the unforced SIR model, (a)  for Case I with  and  days for 

different . (b) The instantaneous fade-out probability  for Case I at the doubling time  as 

a function of  and  

 

Figure 2: For the unforced SIR model, (a)  for Case II with  and  days for 

different , (b) the instantaneous fade-out probability  for Case II at the doubling time  as 

a function of  and  and (c)  as a function of  for Case I and II initial conditions 

(illustrated for ) 

 

Figure 3:  for the SIR model with constant transmission ( ) and the forcing function 

(11) with 10% ( ) and 20% ( ) changes in transmission (where  days, 

 and ) 

 

Figure 4:  at different  for (a) Case I with  and (b) Case II with . (c) 

 as a function of  for different values of  for Case II (where  is the doubling 

time of the associated unforced system). In all cases,  days and  

 

Figure 5:  as a function of  for Case I and Case II initial conditions for 

the unforced SEIR model (where ,  and the average latent and infectious periods 

are 2 days and 3 days respectively) 

 

Figure 6: (a)  for the SEIR model with constant transmission and the forcing 

function (11) with 10% and 20% changes in transmission (where , ,  and we 



assume latent and infectious periods of 2 days and 3 days respectively). (b) 

 as a function of  for different values of  for Case II initial 

conditions for the forced SEIR model with forcing function (11) (where ,  and we 

assume latent infectious periods of 2 days and 3 days respectively) 
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  Case I   Case II 

   

       

Table 1: Extinction probability and variance of the forced SIR model under Case I and Case II initial conditions 

(where )

 




