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The interactive mechanisms between internal blast loading and dynamic elastic response of spherical containment vessels are studied in this paper. The blast loading history in containment vessels can be divided into three periods, i.e. the primary-shock period, the shock-reflection period and the pressure-oscillation period. It is shown that the initial response of the containment vessel depends on both the impulse and the shape of the primary-shock depending on the ratio of the loading period to the breathing mode period. However, during the shock-reflection period, the response of the containment vessel can be coupled with the reflected shock waves in the vessel, especially when the dominant frequency of reflected shock waves is close to the breathing mode frequency of the vessel. During the pressure-oscillation period, the dynamic loading is mainly the oscillation of the internal pressure due to the oscillatory volume change of the vessel, which couples dissipatedly with the vibration of the vessel leading to reduced vibration amplitudes. The effects of the influential non-dimensional parameters on the resonant interaction in shock-reflection period are discussed, based on which guidelines are recommended for avoiding the strain growth in the shock-reflection period in the design of spherical containment vessels.

Introduction

Containment vessels have been widely used to contain the blast effects in both civil and military applications. As the vessel offers a containment boundary to the internal blast of high explosives (HE), the actual blast loading applied on the inner surface of the vessel may be influenced by the elastic response of the multiple-use containment vessels. In order to predict the dynamic behaviour of a containment vessel, it is necessary to understand the interactive mechanisms between the internal blast loading and the elastic response of the containment vessel.

It has been widely accepted that the blast loading in a containment vessel consists of two distinct phases, i.e. a transient impulsive pressure loading phase and a long-term quasi-static pressure loading phase, as shown in Fig. 1 [START_REF] Duffey | Detonation-induced dynamic pressure loading in containment vessels[END_REF]. After the detonation of high explosives, a shock wave propagates outward from high explosives and strikes the vessel wall, imparting a transient impulsive pressure loading. The first shock wave is followed by a long-term multiple reflections of the shock wave between the centre and the wall of the vessel to build-up a uniformly-distributed pressure (Fig. 1).

As the first shock wave carries most impulse of the blast loading, it has been considered as the primary shock loading in the design of containment vessels [START_REF] Duffey | Detonation-induced dynamic pressure loading in containment vessels[END_REF].

It has been shown that the response of the vessel has negligible effect on the primary shock (e.g. its impulse and peak overpressure) [START_REF] Adishchev | Calculation of the shells of explosion chambers[END_REF]. Therefore, the vessel is normally regarded as a rigid body for the determination of the primary shock, in which the coupling between the blast shock wave and the response of the vessel is neglected [START_REF] Adishchev | Calculation of the shells of explosion chambers[END_REF]. In the analysis and design of containment vessels, blast loading is normally expressed by a simplified pulse form (e.g. an exponential or a triangular pressure pulse), which has the same impulse and peak overpressure of the primary shock (e.g. [START_REF] Baker | The elastic-plastic response of thin spherical shells to internal blast loading[END_REF]). These simplified blast loading characterizations completely neglect the effect of the reflected shock waves on the vibration of the vessel, which may become important under certain circumstances (Zhdan 1981).

For a containment vessel subjected to a blast loading from internal detonation, shock wave reflections had not been considered seriously until the strain growth phenomenon was observed in 1976 [START_REF] Buzukov | Characteristics of the behavior of the walls of explosion chambers under the action of pulsed loading[END_REF]). Strain growth is a phenomenon that happens when the local response (e.g. displacement or strain) of a containment vessel in a later stage become larger than its response in earlier stage. The possible resonance between the reflected shock waves and the vibration of the vessel was proposed as one of the explanations for the cause of strain growth by some researchers (e.g. [START_REF] Buzukov | Forces produced by an explosion in an air-filled explosion chamber[END_REF]). Other possible causes of strain growth in a spherical shell have been discussed in Duffey and Romero(2003) and [START_REF] Dong | Further study on strain growth in spherical containment vessels subjected to internal blast loading[END_REF]. Numerical analyses also showed that the impulse of the reflected shock waves may reach 50% of the primary impulse (Zhdan 1981), which could enhance
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3 the vessel response in later stage. Strain growth was also attributed to the beating between the breathing mode of the vessel and a lower frequency mode excited by the reflected shock waves, as the frequency of the lower frequency mode observed in the response of the vessel was found to be similar to the frequency of the reflected shock waves [START_REF] Duffey | Containment of explosions in spherical shells, Piping Supports and Structural Dynamics[END_REF].

In this study, the dynamic elastic response of spherical containment vessels subjected to internal blast loading is investigated using finite element (FE) simulations, based on which, the coupling mechanisms between the response of a spherical shell and the reflected shock waves are demonstrated.

Research methodology is introduced in Section 2 based on an explosive-air-shell FE model to study the interactions between the internal blast loading and the dynamic elastic response of a spherical shell.

Based on extensive numerical simulations, three blast loading periods, i.e. the primary-shock period, the shock-reflection period and the pressure-oscillation period, are described in Section 3. The effects of the influential parameters on the interaction between the internal blast loading and the shell vibration in the shock-reflection period are further discussed in Section 4, which is followed by conclusions in Section 5.

Methodology

In this study, the dynamic elastic responses of the spherical containment vessels subjected to internal blast loading of a central detonation of HE are performed numerically using LS-DYNA (Livermore Software Technology Corporation 1998;2003).

A three-dimensional explosive-air-shell FE model is constructed in LS-DYNA, which consists of a spherical shell, a centrally-positioned sphere of explosive and the air. The explosive, air and spherical shell are modelled with 8-noded hexahedrons. The Arbitrary Lagrangian-Eulerian (ALE) scheme is applied to the explosive and the air, and the shell is modelled by Lagrangian meshing, in which the fluid-structure coupling can be achieved in LS-DYNA. The detonation of HE material is modelled through *MAT_HIGH_EXPLOSIVE_BURN and the pressure of detonation products is described by the J-W-L equation of state (EoS) in LS-DYNA. When the explosive is detonated, the solid explosive is converted into gaseous detonation products at Chapman-Jouguet (C-J) pressure with the same volume and density, and then EoS and computational fluid dynamics (CFD) based on conservation laws are used to simulate the propagation of detonation shock waves. Duffey and Romero(2003) have shown that a spherical containment vessel can be treated as a perturbed ideal spherical shell. Therefore, in order to understand the fundamental features of the interactions, an ideal spherical shell is used in the FE model in this study (i.e. the structural perturbation is ignored). The internal blast loading, which is assumed to be originated from an ideal, spherically-
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symmetric detonation, is applied uniformly to the inner surface of the spherical shell [START_REF] Baker | The elastic-plastic response of thin spherical shells to internal blast loading[END_REF].

Furthermore, the composite vibration modes, which may be excited by the dynamic unstable vibration [START_REF] Dong | Further study on strain growth in spherical containment vessels subjected to internal blast loading[END_REF], are not considered in the present study, and thus, the dynamic response of the spherical shell is a pure breathing mode vibration. To simplify the analysis, viscous damping is not considered in the model. However, it should be realised that the response of the shell will be attenuated more quickly when damping is included.

Material and geometric parameters of spherical shells and HE (TNT) spheres used in numerical simulations are given in Tables 1 and2, respectively.

It has been shown that the mesh density in LS-DYNA has effects on the simulation results of blast shock waves. Convergence tests have shown that the mesh size for air should be less than 10 mm in an explosive-air model in order to obtain reasonable results (Gong et al. 2006). When the mesh size of the air in the radial direction is 1 mm, [START_REF] Deng | Numerical simulation of blast loadings on a thick-walled cylindrical vessel[END_REF] showed that simulation results agree well with experimental results in containment vessels. In the present model, the air model is meshed into 40 parts in the radial direction and 192 parts along the circumferential and longitudinal directions (i.e. mesh size is less than 1 mm). For all the FE models, the spherical shell model is meshed into 12 parts in the radial direction and 192 parts along the circumferential and longitudinal directions of the whole shell.

Additionally, in all the FE models, the time step is 1 μs, which is small enough to capture the peak values.

A typical numerical pressure-time history on the inner wall of Shell 1 subjected to internal blast from HE 1 is presented in Fig. 2, which contains basic features of an experimentally-measured blast pressure-time history reported in the open literature (Duffey et al.2002).

The main objective of this research is to find out how the internal blast interacts with shell response. This problem is simplified into an ideal spherical shell subjected to an internal blast loading from the detonation of a centrally-placed spherical explosive. Without losing generality, we used TNT in all numerical simulations to demonstrate our findings. If a different HE is involved, it can be either modelled directly or converted into its equivalent TNT. Therefore, the influential quantities that need to be considered include (i) radius of the HE (a HE ), (ii) mean radius and thickness of the spherical shell (a and h), and (iii) Young's modulus, Poisson's ratio and density of the shell material (E, ν, ρ). It will be shown later that the frequency of the breathing mode vibration of a spherical shell depends on E, ν, ρ and a, while the breathing mode amplitude is a function of breathing mode frequency, density and thickness of the shell and blast loading. Therefore, in this study, we will fixed Young's modulus and Poisson's ratio, but change other parameters to cover a wide range of non-dimensional numbers that
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really contribute to the interactions between the internal blast and the shell response. These nondimensional numbers will be further discussed in Section 4. Since non-dimensional numbers, rather than the actual values of involved quantities, determine the fundamental features of the studied interaction problem, it allows us to use small dimensions in all numerical simulations in order to reduce the simulation time and increase the simulation accuracy. It should be realised that the use of some unrealistically high densities in numerical simulations in Table 1 is purely for the purpose of introducing different breathing mode frequencies when other parameters are fixed.

Extensive preliminary numerical simulations were performed as case studies to find out the features of the interactions between the internal blast and the shell response. These results indicate that the blast loading history in a spherical containment vessel subjected to an internal detonation blast can be divided into three distinct periods, i.e. the primary-shock period, the shock-reflection period and the pressure-oscillation period, based on which the interactive mechanisms between the detonation blast and the dynamic elastic response of spherical containment vessels can be realised. The numerical examples summarised in Tables 1 and2 are simply used to demonstrate our discoveries in next section.

Internal Blast Loading Periods

The primary-shock period

When a vessel is subjected to an internal blast, the initial response of a containment vessel is determined by the primary shock (i.e. the first pressure pulse of the blast loading). In this section, the interactions between the primary shock of a blast loading and the dynamic elastic response of containment vessels will be investigated.

Transient triangular pressure pulse has been widely accepted in the structural analysis against blast loading [START_REF] Baker | The elastic-plastic response of thin spherical shells to internal blast loading[END_REF]), which will be adopted to study the effect of the primary shock on the dynamic elastic response of containment vessels. The transient triangular pressure pulse ) (t p is described by

) / 1 ( ) ( T t P t p - = , T t ≤ < 0 (1a) 0 ) ( = t p , T t > ( 1b 
)
where P is the peak overpressure, t is the time and T is the duration of the transient pressure.

For a spherical shell subjected to a uniformly-distributed internal pressure pulse, its early elastic response is dominated by breathing mode (fundamental membrane mode) and thus, it can be simplified into a single degree of freedom (SDoF) model where the radial displacement, which is independent of coordinates, is the only degree of freedom. For a thin spherical shell ( 1 / << a h

) subjected to an internal pressure pulse ) (t p , the governing equation of the SDoF model of the spherical shell is [START_REF] Baker | The elastic-plastic response of thin spherical shells to internal blast loading[END_REF])
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where w is the radial displacement. The circular frequency of the breathing mode β is given by [START_REF] Baker | The elastic-plastic response of thin spherical shells to internal blast loading[END_REF] 2 2

(1 )

E a β ρ ν = - . (3) 
Therefore, the frequency of the breathing mode is

0 1 2 2 ( 1 ) E f a π ρ ν = - (4) 
and the period of the breathing mode is

0 2 2 / (1 ) a T E π ρ ν = - . (5) 
The solution of Eq.( 2) for a triangular pressure pulse given in Eq.( 1) is

) sin cos 1 ( 2 T t t T t h P w β β β ρ β + - - = , T t ≤ < 0 (6) ] ) ( sin sin cos [( 2 T T t t t h P w β β β β ρ β - - + - = , T t > . (7) 
The maximum radial displacement of the shell is given by (Zhao 1989)

(a) If 8 / 3 0 T T >
, the maximum displacement occurs at 8 / 3 0 T when the pressure pulse is still

acting, i.e. ) arctan 1 1 ( 2 2 max T T h P w β β ρ β - = ; (8) (b) If 8 / 3 0 T T ≤
, the maximum displacement occurs after the disappearance of the pressure pulse, i.e.

2 4 2 2 max ) 1 sin ( ) 2 ( sin ) 2 ( - + = - T T T T h P w β β β β ρ β . ( 9 
)
It has been shown that the response of a spherical shell subjected to an internal blast pulse depends mainly on its impulse, rather than the pulse shape, if the pulse duration is relatively small (Martineau 1999, [START_REF] Duffey | Detonation-induced dynamic pressure loading in containment vessels[END_REF]. In order to study the effect of the duration of the primary shock, the responses of Shell 1 subjected to five different pressure pulses are calculated using LS-DYNA, in which the parameters of Shell 1 are given in Table 1.
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Figure 3 describes the five triangular pressure pulses with the same impulse but different shapes (i.e.

different peak overpressures and loading durations). The displacement-time histories for Pulses 1-3 are similar, which, however, are larger than those for Pulses 4 and 5 (Fig. 4). According to Eq.( 5), the calculated period of the breathing mode of Shell 1 is 29.4 μs. Thus, the durations of Pulses 1-3 are , and such influence is enhanced when the pulse duration is greater than 0 3 /8 T .

If the transient pressure pulse is simplified into an impulsive loading, the solution for the displacement response of the shell becomes

t h I w β β ρ sin = ( 10 
)
where I is the impulse per unit area. The maximum displacement is

β ρh I w = max . ( 11 
)
It has been suggested in Zhao(1989) that when a transient triangular pressure pulse with 4 / 0 T T ≤ is simplified into an impulsive loading, the maximum difference among their maximum displacements does not exceed 7%, which is supported by the simulation results in Fig. 4. It can be shown that the maximum displacement solution in Eq.( 11) is the greatest one among all the maximum displacements calculated by Eq.( 9) when their impulses are identical. Therefore, for a vessel subjected to a transient pressure pulse, it is reasonable to make a conservative assumption that the dynamic response of vessel depends mainly on the impulse when 4 / 0 T T ≤ , and depends on both the impulse and the pulse shape

when 4 / 0 T T > (such dependence is enhanced when 8 / 3 0 T T >
). In practical use, if the buffering material is laid on the inner surface of the containment vessel, the reduction of the peak overpressure and the increase of the duration on the pressure pulse may reduce the response amplitude of the vessel.

The coupling effect between the blast loading and the vibration of the vessel was proposed to be very small by some researchers, based on the experimental measurements of the primary-shock parameters, i.e. peak overpressure and the impulse (e.g. [START_REF] Adishchev | Calculation of the shells of explosion chambers[END_REF], which implies that the effect of vessel vibration on the primary shock could be ignored. Therefore, the blast loading on the vessel is usually computed when the vessel is assumed to be a rigid shell in numerical model.
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Five shells (i.e. Shells 1-5), whose material properties and dimensions are listed in Table 1, are also used in the explosive-air-shell FE model to study the effect of the shell vibration on the primary shock.

As shown in Table 3, the differences of the peak overpressure between elastic shells and their corresponding rigid shells are small (i.e. no more than 3%) for Shells 1-4, but increase slightly to 3.6%

for Shell 5 as the easiest deflectable shell with the smallest density. It shows that the vessel vibration may slightly influence the blast loading during the primary-shock period, especially when the vessel is easier to be deflected. However, such influence is generally negligible for practical containment vessels, which supports previous finding that the vessel could be regarded as a rigid body for the determination of the internal blast loading.

The shock-reflection period

When the blast loading is acting on the inner surface of the vessel, the primary shock is reflected and propagates inward to implode at the centre leading to further reflection. This will repeat many times, which forms the shock-reflection period. The reflected shock will become smaller and smaller with the increase of travelling distance leading to a more uniform pressure field in the vessel. In this section, interactions between the reflected shock waves of the blast loading and dynamic elastic response of containment vessels will be studied.

It was proposed by some researchers that the effect of shock reflections on the dynamic response of the vessel is not important because the impulses of the reflected shock waves are small compared to that of the primary shock. The displacement-time history for the response of Shell 1 subjected to blast loading from HE 1 is presented in Fig. 5, which implies that the reflected shock waves only have minor effect on the response of the shell in this example. Further examination reveals that, for the response of Shell 1 subjected to blast loading from HE 1, the frequencies of the shock reflection and displacementtime histories are about 11.2 kHz and 34.0 kHz, respectively, according to their respective frequency spectrums. In this case, the shock reflection frequency is quite different from breathing mode response frequency and the reflected shock waves seem having little influence on the amplitudes of the shell response.

However, significant coupling effects between the shock reflections and the vibrations of the shell are observed from the pressure-time and displacement-time histories for the response of Shell 2 subjected to blast loading from HE 2, as shown in Figs. 6 and7, respectively. In this case, the frequency of the reflected shock waves is about 16.6 kHz, which is close to the breathing mode frequency of Shell 2 (17.0 kHz). Therefore, the observed coupling phenomenon in Shell 2 is a kind of resonant coupling between the reflected shock waves and the breathing mode vibration of the shell when their frequencies subjected to blast loading from HE 2 in Fig. 8.

When Shell 1 is subjected to blast loading from HE 1, in which the frequency of the reflected shock waves is about one third of the breathing frequency of Shell 1, no consistent changes of the vibration amplitude can be found in Fig. 5. If we define the strain growth factor as the ratio of the maximum strain to the first peak strain, which can be calculated as the ratio of the maximum radial displacement to the first peak radial displacement, the strain growth factor is only 1.042 in Fig. 5. However, when Shell 2 is subjected to blast loading from HE 2, in which the frequency of the reflected shock waves is close to the breathing mode frequency of Shell 2, the oscillation amplitudes are amplified through many vibration cycles, as shown in Fig. 7. The peak displacements in the early cycles in Fig. 7 are gradually amplified to the maximum displacement and then are gradually reduced to a low value, after which the increased or decreased trends are observed again. In this case, the strain growth factor in Fig. 7 is as high as 2.283, which shows that the reflected shock waves can cause strain growth in containment vessels.

Figure 9 shows the detailed analyses for the pressure-time history and corresponding displacementtime history for the response of Shell 2 subjected to blast loading from HE 2. Line AB in the pressuretime history represents the long term static pressure, which can be achieved after many reflections. The radial displacement indicated by line CD is the permanent displacement corresponding to this longterm static pressure. It can be observed that when the shell vibrates outward at Stage-a in Fig. 9(a), most of the reflected impulse applied on the shell is positive leading to an amplification of the vibration amplitude. On the other hand, when the shell vibrates inward at Stage-b in Fig. 9(a), most of the reflected impulse applied to the shell is negative, which also amplifies the vibration amplitude. As there are slight differences between the frequencies and phases of the reflected shock waves and the vibration of the shell, the above enhancement mechanism will be replaced by an attenuation mechanism after certain time, as shown by Stages c and d in Fig. 9(b), which leads to a reduced vibration. Therefore, in the shock-reflection period, the response of a containment vessel may be amplified or reduced, depending on the relationships of the frequency and phase between the reflected shock waves and the vessel vibration. It is evident that the vibration is enhanced by the reflected shock waves when their phases are the same, and the vibration is attenuated by the reflected shock waves when they have opposite phases.

On the other hand, when a strong interaction between the shock reflections and the shell vibration happens, the vibration of the shell also influences the reflected shock waves, as shown by the pressure-
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10 time history curve in Fig. 6 when elastic Shell 2 is subjected to blast loading from HE 2. When such interaction is ignored, the pressure-time history curve of the rigid Shell 2 subjected to the same blast loading in Fig. 8 shows consistently decreased shock reflections throughout the whole process.

Comparing Fig. 6 and Fig. 8, it can be observed that the reflected shock waves are gradually amplified when the amplitude of the shell vibration is decreased, and the reflected shock waves are gradually decreased when the amplitude of the shell vibration is amplified. However, when the interaction between the shock reflections and the shell vibration is insignificant (e.g. in the case of Shell 1 subjected to blast loading from HE 1), the pressure-time history for elastic Shell 1 in Fig. 2 is almost the same as that for a rigid Shell 1. Figures 2 and 8 have same features.

The pressure-oscillation period

The reflected shock waves, which are caused by shock propagation in the air, will normally be attenuated during the multi-reflection process and finally become uniform. In the pressure-oscillation period, the pressure in the vessel has become quite uniform, but the vibration of the vessel has not stopped, which leads to the pressure oscillation due to the volume change during the vibration of the vessel. When the gas in the vessel is treated as ideal gas in this period, the product of the pressure and the volume of the gas in the vessel can be regarded as a constant. When the vessel vibrates outward, the volume of the vessel will increase and thus the pressure will decrease. When the vessel vibrates inward, the volume of the vessel will decrease and thus the pressure will increase. Such coupling between the oscillation of the pressure and the vibration of the vessel is dissipative leading to a reduced vibration of the vessel. The vessel will finally rest under a static pressure when the vibration damps out. In the present study, the above stage is defined as the pressure-oscillation period, which will be confirmed by the numerical simulation results in this section.

When Shell 1 is subjected to blast loading from HE 1, a long-term pressure-time history is presented in Fig. 10, approaching to a quasi-static pressure. However, the detailed analysis shows that the blast loading after the shock-reflection period still vibrates with steadily and slowly decreased oscillations, which are small compared to the value of the static pressure. It is proposed that the pressure oscillation observed in numerical simulations can be determined by the maximum pressure oscillation P Δ caused by the volume change due to the shell vibration, i.e.

1 1
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where V Δ is the volume change of the shell, 1 P is the final static pressure in the shell and 1 V is the volume of the shell subjected to the static pressure 1 P .

The frequency spectrums for the pressure-time history in Fig. 10 at four different stages are presented in Fig. 11, in which f r is the frequency of the reflected shock waves and f 0 is the breathing mode frequency of the shell. According to Eq.( 12), the pressure oscillation is attributed to the volume change of the shell vibration, which is the breathing mode vibration. Therefore, the starting time when A steadily reduced vibration can be observed from the long-term displacement-time history in Fig. 12 when Shell 1 is subjected to blast loading from HE 1. The frequency spectrum in Fig. 13 shows that during the whole process, the shell vibrates mainly in the breathing mode. As damping is not considered in this study, the reduced vibration in pressure-oscillation period is explained by the dissipative coupling between the pressure and the vibration (i.e. they always have similar frequencies but different phases). Actually, this process is controlled by ( )

3 2 1 1 2 3 Pr d w dt h w a ρ = +
, which can be derived from Eqs.( 2) and ( 12) when damping is neglected, where 1 r is the final radius of the spherical shell under the final pressure 1 P . It can also be observed that the long-term static pressure ( 1 P ) shifts up the equilibrium displacement ( 1 1 w r a = -), as shown by the line AB in Fig. 12. If damping effect is considered, a fast attenuation of the vibration amplitude should be observed.

Recommended methods for the control of resonant interactions in containment vessels

The ratio of the breathing frequency ( 0 f ) to the frequency of reflected shock waves ( r f ) is defined as

r f f f K / 0 = . ( 13 
)
To examine the effect of K f on the interaction in the shock-reflection period, the dynamic responses of Shells 1 and 5 subjected to blast loading from HE 2 are also calculated using LS-DYNA. These together with a previous example of Shell 1 subjected to blast loading from HE 1 are presented in Table 4. It shows that the stain growth factor is 1.443 when Shell 1 is subjected to blast loading from HE 2

where K f =2. However, no strain growth phenomenon happens when Shell 5 is subjected to blast
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12 loading from HE 2 where K f =4. Therefore, we may generally consider parameter K f as an important factor influencing the degree of the interaction between the blast loading and vessel vibration in the shock-reflection period. When the high explosive and the vessel material are given, the value of f K is determined by the radii of the high explosive and the shell and the thickness of the shell in a nondimensional form, i.e.

1 ( / , / )

f H E K F a a h a = . ( 14 
)
The effects of a a HE / and h/a on the interaction between the blast loading and vessel vibration are illustrated using strain growth factor based on Shell 1 as an example.

To demonstrate the effect of a a HE / on the interaction between the blast loading and vessel vibration, the radii of the high explosive are varied from 2 mm to 10 mm. Responses of Shell 1 subjected to these blast loads are presented in Table 5. The variation of strain growth factor with a a HE / is shown in Fig. 14. The simulation results show that the strain growth factor is peaked when the radius of the HE is 6 mm, i.e. a a HE / =0.15, which is quickly dropped to below 1.1 when / HE a a is outside the region of 0.15 0.02 ± . Therefore, HE radius around HE a =6 mm needs to pay particularly concerns on the interaction between the blast loading and vessel vibration for this particular example.

The effect of h/a on the resonant interaction is examined by varying thicknesses while keeping the same radius (a=41 mm) of spherical shells subjected to blast loading from HE 2. The material properties of the shells are the same as those of Shell 1 and the thicknesses of the shells range from 2 mm to 4 mm, as shown in Table 6. Responses of these spherical shells are also presented in Table 6 and the variation of strain growth factor with h/a is shown in Fig. 15. The maximum relative variation of the strain growth factor is less than 12% in the examined values of h/a, less significant when compared with the influence of a a HE / . Therefore, it may be concluded that the effect of a a HE / plays a dominant role in influencing the interaction in shock-reflection period.

The present study shows that the resonant interactions between the internal blast loading and the breathing vibration of the vessel may cause strain growth in containment vessels. Since strain growth may cause increased structural deformation, and consequently plastic deformation and/or accelerated fatigue failure, it is important to control strain growth for the design of multiple-use containment vessels.

Relationship given in Fig. 14 may be extended to other spherical containment vessels with different dimensions because this relationship is expressed in a non-dimensional form. We may generally propose that the strain at the time t depends on the dimensions of the high explosives and the vessel i.e. . Equation ( 15) shows that when the dimensions of the vessel and the high explosives are increased proportionally, the strain of the vessel will be the same at the same non-dimensional time 0 / T t .

Two numerical simulations, i.e. Shell 1 with HE 2 and Shell 6 with HE 3, are prepared to support the above relationship. Their respective parameters are given in Tables 1 and2. The radius and thickness of Shell 6 are four times of those of Shell 1 while the radius of HE 3 is four times of that of HE 2. Responses of Shell 1 with HE 2 and Shell 6 with HE 3 are compared in Table 7, in which the first peak and the strain growth factor are very close. Figure 16 shows that strain-time histories of Shell 1 with HE 2 and Shell 6 with HE 3 are nearly the same, in which the non-dimensional time 0 /T t is used. Figure 16 supports the relationship in Eq.( 15) based on dimensional analysis.

The above observations show that the scaling law is applicable to the explosive-air-shell model. Therefore, for the purpose of engineering design, the relationship between strain growth factor and a a HE / in Fig. 14 may be applicable to other spherical shells and high explosives whose material properties are similar to those in the present study. The analytical method in this section can also be employed to guide the design of spherical containment vessels made of other materials.

Conclusions

1. According to the different interactive mechanisms between the internal blast loading and the dynamic response of containment vessels, the internal blast loading history can be divided into three periods, i.e. the primary-shock period, the shock-reflection period and the pressureoscillation period.

2. In the primary-shock period, the dynamic response of vessel depends mainly on the impulse 3. The resonant interaction between the shock reflections and the shell vibration may happen when the frequency of the reflected shock waves is compatible with the breathing mode frequency of the vessel, which may cause significant strain growth during the shock-reflection period. Based on numerical simulations with the consideration of dimensional analysis, a relationship between the strain growth factor and a non-dimensional radius ratio between explosive and shell is recommended, which may be used to guide the design of containment vessels to avoid the occurrence of strain growth caused by resonant interaction in shock-reflection period.

4. The coupling between the oscillations of the internal pressure and the vibration of the vessel in the pressure-oscillation period leads to a reduced vibration of the vessel. (1) Pulse 1: p(t)=320 
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 11 Fig.11. Frequency spectrums for the pressure-time history in Fig.10 at four stages, (a) Stage 1: 0.1-5ms (b) Stage 2: 5-10 ms (c) Stage 3: 10-15 ms (d) Stage 4: 15-20 ms Fig.12. Long-term displacement-time history for Shell 1 subjected to blast loading of HE 1.Fig.13. Frequency spectrum for the displacement-time history in Fig.12.Fig.14. Relationship between strain growth factor and a HE /a for Shell 1 with HEs.

Fig. 15 .

 15 Fig.15. Relationship between strain growth factor and h/a for shells with HE 2. Fig.16. Strain-time histories of Shell 1 with HE 2 and Shell 6 with HE 3.
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Table list Table 1

 list1 Material parameters and dimensions of spherical shells Table 2 Material parameters and dimensions of high explosive (HE) spheresTable3Values of peak overpressure and specific impulse for elastic and rigid shells with different

	densities subjected to blast loading from HE 1
	Table 4 Responses of Shells 1, 2 and 5 subjected to blast loadings from HE 2 and Shell 1 subjected to
	blast loading from HE 1
	Table 5 Responses of Shell 1 subjected to blast loading from high explosives with different radii
	Table 6 Responses of spherical shells with different thicknesses and the same inner radius (a=41 mm)
	subjected to blast loading from HE 2
	Table 7 Responses of Shell 1 with HE 2 and Shell 6 with HE 3

Table 1

 1 

	Shell No.	Young's modulus E	Poisson's ratio ν	Density ρ	Radius of centre line a	Thickness h	Breathing frequency
	Shell 1		210 GPa	0.3		7830 kg/m 3	41 mm	2 mm	34.0 kHz
	Shell 2		210 GPa	0.3		31320 kg/m 3	41 mm	2 mm	17.0 kHz
	Shell 3		210 GPa	0.3		15660 kg/m 3	41 mm	2 mm	24.0 kHz
	Shell 4		210 GPa	0.3		3915 kg/m 3	41 mm	2 mm	48.1 kHz
	Shell 5		210 GPa	0.3		1958 kg/m 3	41 mm	2 mm	68.0 kHz
	Shell 6		210 GPa	0.3		7830 kg/m 3	164 mm	8 mm	8.50 kHz
	TnQTable1						
	Table 2							
	HE No.		Mass density	Detonation velocity	Chapman-Jouget pressure	Radius a HE
	HE 1		1640 kg/ m 3		6.93 mm/μs	27 GPa	4 mm
	HE 2			kg/ m 3		6.93 mm/μs	27 GPa	6 mm
	HE 3		1640 kg/ m 3		6.93 mm/μs	27 GPa	24 mm
	TnQTable2						
	Table 3							
					Peak overpressure		Specific impulse
	Shell No.	Density					
					Elastic	Rigid		difference	Elastic	Rigid	difference
	Shell 2	31320 kg/m 3		44.5 MPa	44.6 MPa	-0.22 %	389 Pa⋅s	390 Pa⋅s	-0.26 %
	Shell 3	15660 kg/m 3		44.2 MPa	44.6 MPa	-0.90 %	388 Pa⋅s	390 Pa⋅s	-0.51 %
	Shell 1	7830 kg/m 3		44.0 MPa	44.6 MPa	-1.35 %	387 Pa⋅s	390 Pa⋅s	-0.77 %
	Shell 4	3915 kg/m 3		43.6 MPa	44.6 MPa	-2.24 %	384 Pa⋅s	390 Pa⋅s	-1.54 %
	Shell 5	1958 kg/m 3		43.0 MPa	44.6 MPa	-3.59 %	382 Pa⋅s	390 Pa⋅s	-2.05 %
	TnQTable3						
	Table 4							
	Shell No.	HE No.	K f	First peak radial displacement	First peak strain	Maximum radial displacement	Maximum Strain	Strain growth Factor
	Shell 2 HE 2	1	0.03924 mm	0.000957	0.08958 mm	0.002185	2.283
	Shell 1 HE 2	2	0.06004 mm	0.001464	0.08666 mm	0.002114	1.443
	Shell 5 HE 2	4	0.09031 mm	0.002202	0.09031 mm	0.002202	1.000
	Shell 1 HE 1 3.04	0.02077 mm	0.000507	0.02165 mm	0.000528	1.042
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