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Displacement correction for punching at a dynamically loaded bar end
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The object of this work is to provide a 3-D displacement correction for local punching due to axial load at the end of a bar. For this purpose, an analytical calculation of the indentation at the end of an elastic isotropic bar subjected to a dynamic loading is carried out. It provides a first-order correction of the displacement obtained through the 1-D wave analysis commonly used in SHPB processing. This correction improves the results obtained for the dynamic behavior of the specimen, in particular at early instants of loading where its response is often purely elastic. Tabulated values are provided for easy use in SHPB testing.

Introduction

We are interested in the evaluation of the local displacement induced at the end of a bar by a central axial load, a phenomenon referred to as punching. The elementary 1-D theory of wave propagation in bars, and also some more advanced theories that consider wave dispersion due to lateral inertia effects [START_REF] Skalak | Longitudinal impact of a semi-infinite circular elastic bar[END_REF][START_REF] Folk | Elastic strain produced by sudden application of pressure to one end of a cylindrical bar. I. Theory[END_REF][START_REF] Jones | Axially symmetric cross-sectional strain and stress distributions in suddenly loaded cylindrical elastic bars[END_REF], do not tackle this problem. Rather they investigate wave propagation at large distances from the bar end [START_REF] Kennedy | Longitudinal wave propagation in a circular bar loaded suddenly by a radially distributed end stress[END_REF]. The determination of the local displacement at a bar end is of practical importance for the use of the SHPB device, as suggested by some authors [START_REF] Gama | Hopkinson bar experimental technique: A critical review[END_REF].

The SHPB device, also called Kolsky apparatus, is widely used to measure the stress-strain behavior of materials at high rates of loading. This behavior is derived from the forces and velocities at the specimen faces. These quantities are obtained from the axial strains recorded by use of strain gauges glued to the sides of the input and output bars. The 1-D force deduced from this measured strain is assumed to be equal to the resulting applied force at the end of the bar, as validated in [START_REF] Flynn | On Saint Venant's Principle under dynamic conditions[END_REF][START_REF] Field | Review of experimental techniques for high rate deformation and shock studies[END_REF].

These forces and speeds allow for the use of inverse methods to investigate the specimen behavior [START_REF] Rota | Application de méthodes inverses au dépouillement de l'essai aux barres de Hopkinson[END_REF]. A particular use of such methods is to compute the initially elastic response of the specimen as it was proposed in [START_REF] Zhao | On the use of SHPB technique to determine the dynamic behavior of the materials in the range of small strains[END_REF] for an optimized determination of the relative position of the origin of the three waves involved. This technique has been intensively used in our laboratory [START_REF] Gary | David, instruction manual[END_REF], where we have observed that the calculated value of the Young's modulus of the specimen is always smaller, in particular with small-diameter specimens, than the expected or known value. We have suspected that this systematic error was due to an imperfect measurement of the average strain of the specimen. The bar face in contact with the specimen does not remain plane as it is non-uniformly loaded, i.e.

subjected to a local elastic punching. The corresponding displacement field is restricted to the impact zone and is not recorded by the strain gauges located far from the bar end. This is in agreement with a recommendation for SHPB found in the book of Buchar, Bilek and Dusek [START_REF] Buchar | Mechanical Behavior of Metals at Extremely High Strain Rates[END_REF], that the specimen diameter must be large enough compared with that of the bars (less than 10% difference).

We propose to determine more accurately the displacement of the bar face by use of a local 3-D approach divided into two parts. The first part is based on transient wave analysis, valid at the early instants of loading. Oliver [START_REF] Oliver | Elastic wave dispersion in a cylindrical rod by a wide-band short-duration pulse technique[END_REF], followed by Safford [START_REF] Safford | Materials testing up to 10 5 s -1 using a miniaturised Hopkinson bar with dispersion corrections[END_REF], addressing the force measurement at these early instants, mentioned some limitations of the Pochhamer and Chree model to describe a punctual loading. Field et al. [START_REF] Field | Mechanical properties of PBXs and their behaviour during drop-weight impact[END_REF] mentioned the local displacement due to the indentation of a half space. In the second part of the solution of our problem that applies at later times, a quasi-static analysis is used. This problem has been studied by Knowles and Horgan [START_REF] Knowles | On the exponential decay of stresses in circular elastic cylinders subject to axisymmetric self-equilibrated end loads[END_REF] who only addressed the force measurement. The quasi-static solution that we obtain is the same as the dynamic, except for highest Numerical and experimental studies were also carried out. They provide estimations of the consequence of the proposed displacement correction to the dynamic response of a specimen. A closed-form expression for this correction is provided that has practical advantages for implementation. The correction is especially significant at the beginning of the loading where it permits estimation of the elastic modulus of the tested material. Tabulated values are provided for easy use in SHPB testing.

Statement of the problem

A typical SHPB device for compression testing is shown in The determination of the elastic punching makes it possible to correct the SHPB measured 1-D displacement and to obtain the displacement at the specimen-bar interface as .

We make the following assumptions which are usually accepted in SHPB practice:

• The friction between the sample and the bar faces is negligible.

• The uniaxial stresses within the specimen are uniformly distributed through the cross section.

Based on these two assumptions, the problem becomes that of a semi-infinite elastic bar with traction-free lateral faces, axisymmetrically loaded at its end by a uniform distribution of • The first loading case is obtained by applying a uniform stress to the whole section of the bar such that the resulting force equals . This case can be approximated as a 1-D dynamical loading case, provided that the highest frequencies in the spectrum of the force are negligible compared with R c 2 / 0 [START_REF] Kolsky | An investigation of mechanical properties of materials at very high rates of loading[END_REF]. The displacement derived from this 1-D case is that of the classical SHPB processing. • The second loading case is obtained by the application of a quasi-static self-equilibrated load as shown in Fig. 3. This configuration leads to vanishing displacements far from the loading zone and produces a local displacement , thus providing a quasi-static approximation of the dynamic punching. At some time after impact, the waves propagating radially at the bar end tend to a quasi-static state. This approximation is valid if the load duration is large enough compared with the time needed by the surface waves to make several transits along the radius of the bar.

The quasi-static nature of this solution in the framework of small displacements means that it can be expressed in terms of a linear relation

) ( ) ( t F K t p p =
between the total force ) (t F and the average punching ) (t p linked by a constant p K that depends on the specimen and bar diameters and the elastic constants of the bar.

At the very early instants of the loading, when the reflected waves at the lateral sides of the cylinder hove not yet superimposed, the above analysis (referred to as problem B in the following) is not valid. The problem is therefore that of a half space suddenly loaded by a time-varying force. This will be referred to as problem A in the following.

Mathematical formulation

Cylindrical coordinates are used. In the axisymmetric case considered, the non-zero components of displacement are r u and z u and those of stress are The boundary conditions are, for ,

) (t z σ σ = , a r < ≤ 0 (1) 0 = z σ , R r a ≤ < (2) 0 = rz σ , R r ≤ ≤ 0 ( 3 
)
and for r = R;

0 = = rz r σ σ , z ≤ 0 ( 4 
)
The initial conditions are , ( 5)

. ( 6 
)
The equations of motion are ( 7)

, ( 8 
)
where are Lamé's parameters for the bar material. In terms of these parameters, the dilatational and shear waves velocities are and , respectively. In the quasi-static case, the acceleration terms vanish.

As mentioned before, the problem is divided in two parts. At early instants, (Problem A), the waves produced by the loading are the same as they would be in a semi-infinite solid. This state lasts as long as the reflected waves at the free cylindrical surface of the bar are not superimposed. The solution of Problem A is therefore valid for a very short time t 1 (if compared with the SHPB test duration). After a time much larger than t 1 , the waves propagating radially at the bar end tend to a quasi-static state while the axial waves produced early on in the loading are now far from the end of the bar (Problem B). It will be shown that the solution of this problem provides a sufficient correction for punching in SHPB applications. 
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Solution of Problem A.

This first part of the solution concerns the determination of the displacement during the first stage of the loading. We assume that, at this stage, the loading is approximated by stresses varying linearly with time (Fig. 4). In terms of the Heaviside step function, the boundary condition at the end of the bar can be written

. ( 9 
)
The procedure used here is to apply the Laplace and Hankel transforms to the equations of motion.

To ensure the validity of the solution, we have to assume that the waves reflected at the sides of the cylinder have no influence on the displacement that we are looking for, as would be the case for a half-space. This assumption is true until a time (to be determined later). The method that follows is similar to the one used in [START_REF] Mitra | Disturbance produced in an elastic half-space by impulsive normal pressure[END_REF][START_REF] Eason | The displacements produced in an elastic half-space by a suddenly applied surface force[END_REF] for a half-space medium suddenly loaded.

The Laplace transform of a function is defined as . By applying the Laplace transform to equations ( 7), ( 8) we obtain:

(10) . ( 11 
)
The Hankel transform of a function is defined by , where are

Bessel functions of the first kind. By multiplying ( 10) and ( 11) by , respectively, and integrating with respect to from 0 to , we obtain [START_REF] Oliver | Elastic wave dispersion in a cylindrical rod by a wide-band short-duration pulse technique[END_REF] . ( 13)

These equations have the general solution ( 14)

, ( 15 
)
where ;

. Putting Eqs. ( 14) and ( 15) into Eqs. ( 12) and ( 13 

for .

The conditions leading to Eq. ( 18) or to Eq. ( 19) define a time We recognize the first term of Eq. ( 18) as the quasi-static displacement of a half-space subjected to a disk r < a of uniform pressure [19 (chapter 13 §124)]. The second term of Eq.( 18) which is a function of time for t < r t reduces to a constant for r t t ≥ . Then, Eq. [START_REF] Timoshenko | Theory of elasticity[END_REF] shows that the displacement at any point of the loaded area is a linear function of time for 

c a/ < t < R c a R / ) 2 ( -
. The linear parts of the solutions, given by Eq. ( 19), are plotted for each case of loading. We notice that as a becomes closer to R, this linear solution lasts a shorter and shorter time till it vanishes at R a= . The values of R c a /

give the time where starts the linear time-displacement relation (Eq. ( 19)), while those of R c a R / ) 2 (correspond to its upper limit after which the half-space solution is no longer applicable.

The intensity of the force being unchanged, the corresponding domain is limited by a horizontal line (t varying with R c a / ) and a hyperbola (t varying with

R c a R / ) 2 ( -
). This domain (hatched in Fig. 5)

represents the interval of time corresponding to each loaded diameter where the displacement at the point 0 = r is obtained by Eq. ( 19).

The average axial displacement under the sample at a given time t can be obtained by integrating [START_REF] Timoshenko | Theory of elasticity[END_REF] along . It gives , [START_REF] Lurie | Theory of elasticity[END_REF] where ; .

This integration is valid provided that Eq.( 19) applies for any value of r such as a r ≤ < 0 .

Consequently it applies for

R c a/ 2 <t< 1 t . 1 t = R c a R / ) ( 2 -
is the time needed by Rayleigh waves to travel forth and back between the edge of the specimen and that of the bar.

We now have to calculate the displacement at the bar end for .

Solution of Problem B.

As Later, Little and Childs [START_REF] Little | Elastostatic boundary region problem in solid cylinders[END_REF] developed a set of orthogonal vectors that allow the determination of the participation factors in a direct way but only for the case of mixed boundary conditions (traction and displacement prescribed at the plane face). When only tractions are prescribed, the participation factors need to be obtained by truncation of an infinite set of equations. Horvay and Mirabal [START_REF] Horvay | The end problem of cylinders[END_REF] have proposed another approach for the problem based on the use of a variational approximate solution that did not present practical advantages and was lacking completeness [START_REF] Roark | A note on the end effect in isotropic cylinders[END_REF]. These methods have been used to solve particular end-loading problems, mainly the thermal one. The prescribed tractions on the end face when using the methods mentioned are continuous and slowly varying from the center of the cylinder to its boundary. In the case of discontinuous and irregular loading functions, as in our case, the convenient way to approach the cylinder problem is to expand the tractions on the end face in Fourier-Bessel series. Benthem and Minderhood [START_REF] Benthem | The problem of the solid cylinder compressed between rough rigid stamps[END_REF] solved the problem of a cylinder compressed between two rough rigid stamps by using the orthognonal functions of Little and Childs [START_REF] Little | Elastostatic boundary region problem in solid cylinders[END_REF] and by developing the stresses at the boundary in Fourier-Bessel series. Recently, Wei et al. [START_REF] Wei | Analytic solution for axial point loads strength test on solid circular cylinders[END_REF] developed a displacement potential for solving the axisymmetric problem of a finite cylinder subjected to rigid axisymmetric indenters. Even though this solution applies for finite cylinders, the exponential stress decay near the boundary leads to the same field of stresses as the one in semiinfinite cylinders subjected to the same tractions [20, (section 5.7.9)]. This happens, in particular, when the end face of the cylinder is subjected to self-equilibrated stresses, and when the length-todiameter ratio is large.

We consider a cylinder of diameter R 2 and height H H ( 2 > ) 2R subjected on its plane surfaces to self-equilibrated stresses, each corresponding to a total normal force F, considered at any time . The origin of the cylindrical coordinates is at the center of the cylinder (Fig. 6).

The axial component of the displacement (denoted here as ) is expressed in terms of the displacement potential as [START_REF] Love | A treatise on the mathematical theory of elasticity[END_REF]:

. ( 21 
)
The expressions for the normal and shear stresses in terms of the potential are [START_REF] Love | A treatise on the mathematical theory of elasticity[END_REF] ( 

where is the Laplace operator. The expression for the potential is [START_REF] Wei | Analytic solution for axial point loads strength test on solid circular cylinders[END_REF]:

, ( 25 
)
where , , , is the th root of , , , and are the unknown coefficients to be determined by use of the boundary conditions. Substituting Eq. ( 25) into Eqs. ( 23) and ( 24), and applying the boundary conditions at lead to the relations [START_REF] Wei | Analytic solution for axial point loads strength test on solid circular cylinders[END_REF]:

(26) (27) 
between the unknown coefficients, where ; .

The coefficients and are related to the original unknowns by the relations:

(28) . ( 29 
)
To apply the boundary conditions on the flat surfaces of the cylinder , the tractions need to be expanded into Fourier-Bessel series. The boundary conditions at are Equations ( 26), ( 27), ( 32) and (33) constitute a set of simultaneous equations from which coefficients 0 A , 0 C , and can be obtained by taking enough terms of the series in the calculation. and are equal to zero as implied by equations ( 26) and ( 32) and represent a homogeneous state of stress.

With the aid of these coefficients and equation ( 21), the displacements inside the cylinder can be calculated.

In order to obtain the displacements at the flat end of the cylinder, we substitute Eq. ( 25) into

Eq. ( 21) and set , which gives .

(35)

A closed-form approximate expression for punching.

Although Eq. ( 35) provides an analytical solution for the problem, some numerical calculations are needed to obtain a quantitative result. Moreover, it does not help for an estimation of the influence of the mechanical parameters of the problem. Therefore, we shall now search for an approximate closed-form expression for the average displacement under the specimen that will be more convenient for SHPB practice.

The displacement (35) depends on the material properties , , and the normalized variables , and . The height of the cylinder is sufficient to ensure that at (in the middle) the stresses and displacements tend to zero. This is verified for . When the boundary conditions have no influence on the stress and displacement fields at the center of the cylinder, it can be considered as "long" compared to the "short" cylinder in which the mechanical fields are nowhere homogenous.

The correction of the 1-D SHPB displacement is especially significant when the radius of the specimen is small. Moreover, it is expected from the above theoretical results, that the correction becomes very small when the specimen diameter is large. Consequently, the subsequent analysis is
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13 carried out for . We are looking for the displacement under the specimen for:

. The Poisson's ratio of the bar can take any value in the interval .

The Poisson's ratio occurs in Eq. ( 35) and inside the expression for (34). We can evaluate its contribution in (34) by writing (35) in the form:

, where the factor is calculated for different values of . We find that is almost independent of ν (less than 2% variation). Therefore To identify the behavior of the series in (36) we consider the function which we have plotted versus for several values of (Fig. 7).

Figure 7 shows that and have characteristic forms and appear to be almost linear functions of , i.e., ( 37)

, ( 38 
)
where is the slope of , undetermined yet.

Substituting Eq. (37) into Eq. ( 36), we obtain the displacement at for any value of

. ( 39 
)
In order to obtain the displacement at any point under the specimen, we adopt the following procedure that starts by identifying . For this, we plot in Fig. 8 Figure 8 shows that can be approximated by with an error less than 1%, where is the complete elliptic integral of the second kind with argument . The choice of the elliptic integral is also justified since constitutes the second term of (37). Now we suppose that can be written as

, ( 40 
)
where is a function for which two particular values are known: and as deduced from equations ( 37) and (38).

In the same manner as for , we determine by plotting the function

. We find that it can be accurately represented by . In order to validate these approximations, we display in Fig. 9 both and for all values of and in the intervals and , respectively.

Finally, the expression for the elastic punching (35) for reduces to

. ( 41 
)
The average displacement under the specimen of radius is obtained by integrating Eq. (41) over the specimen area: . This gives: ,

where

. ( 43 
)
Here is the complete elliptic integral of the second kind : , and is the complete elliptic integral of the first kind .

An analysis of the behavior of the short and long term displacement solutions in the vicinity of is given in Appendix 2. Based on Eq. (42):
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) ( ) ( t F K t p p =
, the displacement obtained by the SHPB standard processing at each face of the sample can be corrected as follows, for :

. (44)

A dynamic numerical simulation is performed with Abaqus explicit code, in order to illustrate this result, for a cylinder of diameter 50 mm subjected to uniform distributions of pressure of diameters 15 and 25 mm, of the same force magnitude (see Appendix 3 for details). Fig. 10 shows the average displacement as calculated with formula (44); for the solutions given by Eq. ( 18), [START_REF] Lurie | Theory of elasticity[END_REF] are used. The 1-D displacement at large distance from the impact zone as it is given by the SHPB processing, is also shown.

This simulation confirms that the closed-form solution is almost equal to the one given by the numerical simulation (which is supposed to accurately describe the real solution). The test lasts 85 and simulates the behavior of a brittle material. We purposely chose a short loading duration to conveniently visualize the solutions obtained. In the present case, it appears that the amplitude of the correction is of the order of magnitude of the displacement itself up to a force of about 40 kN (250 or 90 MPa for specimens of 15 mm or 25 mm respectively). In the case of a 25 mm diameter specimen loaded by the same total force, the correction for punching becomes rather small. This result also confirms that there was no need to develop a closed-form formula for ratios a/R greater than 0.5. An accurate correction in the interval 0.5<a/R<1 can be obtained through linear interpolation between the correction for a/R=0.5 and the value zero for a/R=1. The distance between the corrected displacement and the 1-D displacement given by the SHPB, constitutes the elastic punching that vanishes when a=R.

Practical implementation of the displacement correction

Now that the elastic punching is obtained, it has to be incorporated to the end displacement of the bar. In the case of SHPB, both displacements at input and output faces of the specimen are concerned.

An example of the strain recorded at a long distance from the bar end (5 diameters) is given in In other words, this result expresses the fact that there is a delay between the beginning of the loading and the one expected from the 1-D analysis, since the wave-guide solution effectively begins after a time of the order of . This is in agreement with some other results or remarks found in the literature [START_REF] Skalak | Longitudinal impact of a semi-infinite circular elastic bar[END_REF][START_REF] Bancroft | The velocity of longitudinal waves in cylindrical bars[END_REF].

When the force is known, the calculated elastic punching (the sum of the elastic punching calculated for each bar) can be used for the determination of the strain of the specimen, all along the test duration. Note that if the bars have different diameters, the punching will not be the same for both bars.

In Fig. 12 
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Note that in these expressions, Fi and Fo are positive in tension. Vi ando V are the velocities of the input face of the specimen and of the output face of the specimen, respectively, both positive in the direction from the input bar towards the output bar. The nominal strain rate is then ( )

s i o l V V / - .

Experimental illustration and applications

In the SHPB processing procedure used in our laboratory, the waves are first transported to bar ends, taking account of dispersion. For an improved shifting of the waves, this procedure involves a transient calculation called "elastic simulation" [START_REF] Zhao | On the use of SHPB technique to determine the dynamic behavior of the materials in the range of small strains[END_REF]. The incident wave at the input face of the specimen is used in a 1-D transient simulation assuming an elastic behavior of the specimen. This calculation provides reflected and transmitted waves as they would be obtained with an elastic specimen of known Young's modulus.

In the example presented in Appendix 4, the recorded waves of a test on a steel specimen

) 25 . 0 / ( = R a
are shown (Fig. 13).

The results of the elastic simulation are presented (with a Young's modulus of 200 GPa, as expected for a steel specimen) in Fig. 14 : "incident", "reflected" and "transmitted" show real waves."tr-sim1" and "ref-sim1" show simulated transmitted and reflected waves taking account of punching. "tr-sim2" and "ref-sim2" show simulated transmitted and reflected waves without punching. It is observed that considering punching provides waves in good agreement with the real ones, at the early instants of the test.

In Fig. 15, it is shown that the punching correction is significant, as it was expected with a specimen diameter smaller than that of the bars. When a test is processed with a specimen that has the same diameter than the bar, there is no punching effect, and one recovers directly the expected modulus.

The main results, for a possible easier implementation in SHPB processing, are summarized in The problem of the local punching of a bar axially loaded at one end has been investigated. When a known axial stress is dynamically applied on a circular central part of a bar end, it induces an axial displacement which varies with the radius of the loaded area. The effect of punching is the same as that of a hidden spring inside the bar end. A closed-form approximate expression for the displacement due to punching, depending on the mechanical parameters of the bar and of the parameters of the loading is given. It can be easily applied to SHPB testing. It allows for the punching correction and, consequently, for a direct measurement of material properties at low strains, in particular the Young's modulus.
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• g i -the distance between specimen faces and the strain gages 

List of captions

  List of nomenclature. a : Radius of the specimen R : Radius of the SHPB input or output bar r : Radial cylindrical coordinate ρ : Ratio of the radial coordinate of a point to that of the input or output bar R r / = ρ a ρ : Ratio of the specimen radius to that of the input or output bar Lame's parameters for the constitutive material of the input or output bar ν : Poisson ratio 0 c : Longitudinal waves velocity in a thin rod M A N U S C R I P T A C C E P T E D force applied on the specimen measured by the SHPB device ) (t σ : Axial stress in the specimen, corresponding to ) (t F α : Rate of the axial stress in the specimen at the beginning of the loading, assumed as constant local axial displacement under the specimen (called punching displacement in the paper) ) (t u : Axial displacement at the specimen-bar interface obtained by classical SHPB processing ) (t d : Total average displacement under the specimen ) correction coefficient.

  complete elliptic integrals of the first and second kind ) (x J n : Bessel function of the first kind .

  radial oscillations of the section of the bar. The temporal juxtaposition of both solutions gives an estimation of the punching displacement.

Fig. 1 .

 1 Three waves are involved in the experiment: an incident compressive wave generated by the impact of the striker, a reflected tensile wave due to the lower impedance of the specimen, and a transmitted compressive wave. The incident and reflected waves and are recorded at gauge A of the input bar and the transmitted wave at gauge B of the output bar. By use of wave theory, usually taking account of dispersion, the strains measured at A and B are obtained at the bar-specimen interfaces. Forces, velocities and displacements at each bar face are obtained subsequently. In Fig. 2, the sample is shown together with the output bar, with a deformed configuration of the bar end under a uniformly distributed force . The SHPB displacement is . The additional displacement resulting from the local elastic 3-D axisymmetric deformation of the bar is referred to as elastic punching. It appears when the diameter of the specimen is smaller than that of the bar.

  normal stress. The resulting force and the corresponding uniform axial stress in the specimen are assumed to be known. The 3-D dynamic problem can be solved to a good approximation through superposition of the 1-D dynamic and a 3-D quasi-static loading solutions, as shown in Fig. 3.

,

  where a is the radius of the specimen. Fig.4shows the M A N U S C R I P T A C C E P T E D ARTICLE IN PRESS 6 typical evolution of the axial stress ) (t σ in the specimen (in the present example: brass specimen Ø5-H5 mm; SHPB diameters 20 mm; average strain rate 80 s -1 ).

7

 7 

  parameters A and B are obtained from the boundary conditions for and at . Their derivation and subsequent results are given in Appendix 1 and summarized here. When and are obtained, applying the inverse Laplace transform leads to a complex integral. Its solution relies on the use on Cauchy's residue theorem. Applying the inverse Hankel transform to this solution, one finally obtains the axial surface displacement under a specimen of radius a at radius a r≤ and time t (71),(72). It becomes (18) for , and

  Rayleighwaves propagating from every part of the loaded area have reached the point at radius r, as (a+r) is the distance of the most distant point.

  r t t ≥ . The greatest possible value of r t is obtained when a r= . Consequently, the solution for Problem A shows the existence, for t> increases linearly with time in every part 0<r<a of the loaded area. In order to illustrate the above result and to obtain the time after which this solution diverges from that for a cylinder, the displacement at the origin is compared in Fig. 5 with that obtained from numerical simulations (see Appendix 3) for a cylinder of radius R subjected to the same force uniformly distributed over disks of different radii 0<a<R. In this particular case ( 0 = r ) the response is linear with time for t > R c a / . It is expected that this holds true until the first return of Rayleigh M A N U S C R I P T A C C E P T E D ARTICLE IN PRESS 9 waves from the lateral surface of the cylinder, that is, for

R

  

  explained in the Statement of the Problem, to determine the correction at large times we consider the quasi-static self-equilibrated end-loading problem of a semi-infinite cylinder. The solution of this problem will provide the correction to be added to the measured displacement at any time . In this section the force can be of any form. The problem of self-equilibrated axisymmetric loadings acting on the ends of a cylinder with stress-free lateral sides has received wide attention in the frame of the theory of elasticity. The solutions hold true for any value of the load. A solution in the form of eigenfunction expansions has been proposed by Lurie [20 (section 5.7.9)]. The method consists in finding a set of tractions (of the M A N U S C R I P T A C C E P T E D ARTICLE IN PRESS 10 desired form) at the end surface that approximates the exact boundary conditions (the least squares method of error control is used). The unknown quantities that multiply the eigenvalues in the eigenfunction expansions are called participation factors, and cannot be directly obtained because these expansions are not orthogonal.

  Eq. (25) into Eq. (22) and identifying with (31) at , we obtain the relations (32)

  the term sufficiently takes into account the material properties of the bar as far as z p is concerned. Equation (33) shows that the variables and are proportional to since this factor multiplies the second member of the simultaneous set of equations. As the displacement (35) is generated by a linear summation of , it can be factorized by . By setting we can write (35) as . (36)

15 7 .

 7 Application to SHPB.

Fig. 11 .

 11 Fig.11. We observe that it shows a "foot", at the beginning of the curve. It corresponds to the time (same order of magnitude as ) needed to reach a homogeneous state of stress along the radius of the

  , the shape of one bar face is shown. If we consider the case of two identical bars and we denote by the initial length of the specimen, its current length becomes where and are the displacements of the input and output bars faces, respectively, derived from the standard SHPB analysis. The value therefore under-estimates the length of the specimen. Consequently the real strain in the specimen is less than that given by the classical SHPB analysis, as expected if the bar ends indent. Recall that , where p K defined in (43) is a function of the specimen and bar diameters and of the elastic properties of the bar. Clearly, given bars and specimen, the punching effect is equivalent to that of a spring of stiffness acting between each bar and the specimen. It explains why SHPB processing without punching corrections leads to underestimated Young's modulus for the specimen. Indeed, for input and output bars with the same impedance, the real modulus, that deduced from standard SHPB processing. Taking account of punching, classical formulas used to derive forces and velocities at bar ends from measured strains become

Fig. 16 M

 16 Fig. 16

Fig. 1 .Fig. 2 . 27 Fig. 3 .

 12273 Fig. 1. Split Hopkinson pressure bar (SHPB) set-up

Fig. 4 .σFig. 5 .

 45 Fig. 4. Experimental axial stress curve ) (t σ

Fig. 6 .

 6 Fig.6. Long cylinder subjected to self-equilibrated tractions with resultant F.

Fig. 7 .Fig. 9 .

 79 Fig.7. Values of for

Fig 11 .Fig. 12 .
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Table 1 -

 1 "Steel_08"

	Element	Length (m)	Diameter (m)	Mass density	Wave Speed	Gage Position
				(Kg/m 3 )	(m/s)	(m)
	Striker	1.204	0.0203	7960	4795	
	Input Bar	3.01	0.02017	7960	4795	1.495
	Output Bar	2.009	0.02017	79607	4795	0.375
	Specimen	0.00645	0.00513	7805		
	Striker speed: 2.79 m/s				
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Appendix 1

Calculations details for solution of Problem

Substituting in equations ( 49) and (50) the expressions of and found in ( 16) and ( 17), then applying the boundary conditions we obtain:

Solving ( 53),(54) we obtain

Substituting these expressions for A and B into Eqs. ( 16) and ( 17), we get:

By applying the inverse Laplace transform to Eq. ( 58), we obtain:

This complex integral is similar to the one obtained by Eason [START_REF] Eason | The displacements produced in an elastic half-space by a suddenly applied surface force[END_REF] in the case of a half-plane loaded by a sudden constant force. In the current problem, we have a double pole at and simple poles at , where is the speed of Rayleigh waves. We have branch points at and resulting from variables and in the numerator. These two variables are square-roots functions of the complex number and therefore are multi-valued at the point .

Consider the integral (60)

along the vertical path of the contour (Fig. 17). Applying Cauchy's residue theorem, we obtain The two integrals of (67) will be evaluated at .

Integrals of the type are discontinuous; their solutions are given by Watson cannot be expected that the displacements given by equations ( 20) and ( 44) have exactly the same value at .

We calculate the function (Fig. 18) that expresses the relative distance at , between the short and long time displacement solutions. We use for the speed of Rayleigh waves the accurate approximation [START_REF] Graff | Wave motion in elastic solids[END_REF] , and we keep in mind that in the neighborhood of we still can approximate the real applied force by a linear loading function of time:

Then, can be written: . Fig. 18 shows that depending on and , the displacements given by solutions ( 20) and (44) at are not equal. For a steel bar the relative distance between both solutions varies between 0 and 12%, according to the diameter of the sample (relatively to that of the bar).

This gap is observed at the very early instants of the test and does not last more than some microseconds. Furthermore, at this time, the value of the strain is still very small (typically less than 0,1% for standard specimen). This point can be checked with the results of the subsequent numerical simulation (Ref. part 7 of the present paper).

Appendix 3

Information about the numerical simulations carried out Numerical calculations are performed using the general-purpose finite element code Abacus/Explicit version 6.7, with element type CAX4R (axis symmetric element, reduced integration). An automatic time-integration scheme offered by the software is used throughout the simulations. A structured meshing technique was used with square meshes of 0.5 mm side. Non-linear geometry effects were not considered -stiffness matrix remaining the same during the calculations-since in the analytical solutions we consider the initial and final deformed shape of the cylinder as identical (small deformations hypothesis). The mesh distortion correction is automatically controlled by the software and was checked to be without influence on the results.

M A N U S C R I P T A C C E P T E D

The loading was introduced by the mean of tabulation, and did not lead to numerical perturbations that are usually induced by the high frequencies, since the beginning of the load is mainly a linear function of time. Displacements are considered at the nodes located at the loaded surface of the cylinder, and not at the integration points.

Appendix 4

Information about the experiments carried out

The characteristics of the steel specimen are given in the table below. The SHPB set-up is made of steel bars

In Fig. 19 the basic schematics of the experimental equipment is shown:

• L i -the length of the bars and striker