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ABSTRACT 

By carefully selecting flyer plate thickness and the geometry of a target capsule for 

bacterial broths and emulsions, we have successfully subjected the contents of the capsule to 

simultaneous shock and dynamic compression when subjected to a flyer-plate impact 

experiment. The capsules were designed to be recovered intact so that post experimental 

analysis could be done on the contents. ANSYS® AUTODYN hydrocode simulations were 

carried out to interrogate the deformation of the cover plate and the wave propagation in the 

fluid. Accordingly, we have shown that microorganisms such as Escherichia coli, 

Enterococcus faecalis and Zygosaccharomyces bailii are not affected by this type of loading 

regime. However, by introducing a cavity behind the broth we were able to observe limited 

kill in the yeast sample. Further, on using this latter technique with emulsions it was shown 

that greater emulsification of an oil-based emulsion occurred due to the cavitation that was 

introduced. 

 

Keywords: shock wave; capsule design; bacteria; yeast; emulsification 
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INTRODUCTION 

 

The shock behaviour of fluids has been extensively studied over the years 

using flyer-plate techniques. This is a standard approach that invokes a condition of 

uniaxial strain in both the target and the flyer plate leading to the formation of a shock 

wave in both. Typically the fluid is contained in a capsule that is usually destroyed on 

impact, during which the particle velocity is measured either by using a VISAR 

(Velocity Interferometer System for Any Reflector) system or inferred from the time-

of-arrival of the shock measured by two spatially separated gauges, the Hugoniot 

properties of the flyer plate and its impact velocity.  

The behaviour of bacterial broths that have been subjected to shock loading 

has also been the subject of a number of studies. Usually, this is achieved either by 

electrohydraulic action where an electrodischarge generates a shock wave in a 

suspension e.g., [1] or by using an explosive charge [2,3] where pressures of several 

hundreds of MPa are expected. Some studies have also focussed on high velocity 

plate impact studies where gas-driven or explosively-driven flyer plates are 

accelerated to high velocities. The impact of these flyer plates has resulted in high 

shock pressures (many GPa scale) being generated in spore-loaded minerals such as 

gabbro [4]. Other researchers have used high pressure shock tubes for dynamically 

loading the biological sample [5] whereas other experiments have centred around 

hypervelocity impacts where spherical projectiles are accelerated to hypervelocity 

(c.a. 2-5 km/s) which results in large shock pressures (many GPa scale) being 

temporarily sustained by the organisms in question [6].  

The behaviour of bacterial spores being subjected to shock wave loading is 

important, not least as it could provide an alternative route to pasteurisation. Loske et 
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al. [7] subjected E. coli in suspension to hundreds of shock waves using an 

electrohydraulic shock wave generator. Using a parabolic reflector, they showed it 

was possible to produce a plane shock front and expose many samples to shock at the 

same time. Experimental results indicated that electrohydraulically generated shock 

waves are capable of producing a significant reduction in an E. coli population with 

average shock magnitudes of 44 MPa. However, the authors also pointed out that their 

system generated UV light that could have contributed to the kill mechanism. 

Furthermore, a negative pressure pulse of 6 MPa was also measured which ultimately 

would have caused cavitation, again possibly contributing to the kill mechanism. 

Zuckerman et al. [8] generated pressures ranging from 80 to 100 MPa using a 

piezoelectric probe. They showed that up to 7.5 log reduction was observed for E. coli 

after the application of five pulses. Furthermore, a 4-5 log reduction of Lactic acid 

and Staphlococcus aureus was also seen when subjected to identical loading 

conditions to the E. coli. Again, it was thought that UV radiation may have played a 

part in the lethal effects. 

There is evidence that certain types of bacteria are made inactive when 

subjected to certain pressure regimes. Abe et al. [9] loaded a bacterial broth housed in 

an aluminium capsule such that pressures of 200 MPa resulted in the inactivation of 

marine Vibrio sp that had been isolated from sea water. Electron microscope and 

protein analysis showed that the shock waves did not kill the bacteria; instead the 

bacteria were deformed by the process.  Whereas, shock pressures generated by shock 

wave lithotripsy in a vat of water containing E. coli  and Listeria monocytogenes 

resulted in no inactivation with up to 8000 single shock waves of magnitude 38 MPa 

[10]. Nevertheless there was a reduction in activity when multiple dual shock waves 

were used. 
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There is however, some evidence that yeast has increased mortality under high 

shock pressure. Kani [11] used a powder gun to accelerate copper flyer discs at a 

stainless steel capsule containing yeast. In this work the author showed that applying a 

shock pressure of c.a. 1 GPa, provided by an impact velocity of 450 m/s, the vital 

force became weak (assessed by the reduction in cultivated colonies after shock 

loading); it was suggested that it may even disappear altogether with an increase in 

applied pressure. 

There is some evidence that certain bacteria survive very high shock pressures. 

For example, Burchell et al. [12] has shown that when transient shock pressures are 

formed from hypervelocity impacts of spherical projectiles into targets, Rhodococcus 

erythropolis cells survive. The authors noted that although survival rates were low at a 

shock pressure of 78 GPa, they were still finite. Their results indicated that survival 

fell with a log law as the shock pressure increased. They also noted that for a different 

organism, Bacillis subtilis, the survival rate at 78 GPa was found to be higher than 

that of the Rhodococcus erythropolis indicating that survival rate may well depend on 

the type of bacteria. Stöffler et al. [4] has also shown high survival rates of bacterial 

spores (Bacillus subtilis), cyanobacteria (Chroococcidiopsis sp.), and lichen 

(Xanthoria elegans) embedded in gabbro when subjected to high shock stresses (>10 

GPa). Willis et al. [13] also reported limited mortality rates for Escherichia coli 

shocked to an initial shock pressure of 0.26 GPa using the flyer-plate technique. 

Unlike most other previous work, they were able to shock their bacteria in suspension 

to high pressures. However, they were only able to recover one of the four samples in 

the original liquid with the other three requiring re-suspension. As the authors point 

out this may have affected the recorded survival rates for 3 of the 4 samples. Where 
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dead bacteria were recovered, they were able to conduct TEM analysis that revealed 

cell wall rupture and delamination. 

 Some of these experimental techniques are disadvantaged in that they produce 

simultaneous cavitation in the medium as well as high shock pressure, they generate 

UV light or they do not allow for sample recovery after the experiment without risk of 

contamination. Cavitation is also a concern as this is also thought to contribute to the 

kill mechanism of bacteria. In this paper, we report the design of a capsule that can be 

used during 1D uniaxial strain plate impact experiments to shock compress a volume 

of fluid to c.a. 1.2 GPa where cavitation is suppressed by virtue of the dynamic 

loading by a front plate. Additionally, modification to the design of the capsule to 

allow the introduction of controlled levels of cavitation in the sample is discussed.  

The capsule was designed to be recoverable so that no contamination would occur 

during the experiment. ANSYS® AUTODYN hydrocode simulations are also 

presented that show the ringing up of the shock within the fluid layer as well as the 

pressures achieved in dynamic (cover-plate) compression. Results are presented that 

show that Escherichia coli, Enterococcus feacalis and Zygosaccharomyces bailii  are 

not affected by high compressive loads where cavitation is suppressed which suggests 

that the main mechanisms of kill seen by previous researchers using pulsed electrical 

discharges was not due to the shock pressure. Finally, by testing coarse emulsions 

using the same technique we will show that it is possible to induce cavitation leading 

to significant emulsification of the sample.  
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EXPERIMENTAL DESIGN 

 

Background to the experiment 

 

Plate impact experiments are commonly used to induce shock waves in target 

materials. In the plate impact configuration, targets are struck with flying-plates 

carefully aligned so that all points on the projectile’s surface make contact with the 

target simultaneously. This requires that both the impacting plate and the target are 

flat and parallel to within a tolerance of micrometres. The impact of a flyer-plate 

generates a planar shock wave in the target. In this situation, all strain is 

accommodated along the impact axis while the orthogonal components of strain are 

zero due to inertial confinement. Consequently, the orthogonal components of stress 

are non-zero. Therefore in summary, the conditions of stress and strain in the target 

are: 

 

0==≠ zyx εεε  and 0≠=≠ zyx σσσ ,      

 

where subscript x is denotes the condition along the impact axis and subscripts y and z 

denote the conditions orthogonal to the impact axis.  

 

Capsule design 

 

The capsule was manufactured from AISI 304 L by RTS (Leeds) Ltd. The 

manufacturer’s data sheet stated a UTS value of 591 MPa and an elongation to failure 

of 55%. The elastic properties of the steel, as measured using 5MHz quartz 
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transducers with a Panametrics 5077PR pulser-receiver in the pulse-echo 

configuration, are shown in Table 1. The purpose of one of the experiments was to 

load the bacterial broths in compression to high pressures whilst at the same time 

suppressing cavitation in the fluid layer. To that end, ductile steel was chosen. 

Furthermore, this particular brand of stainless steel is commonly used within the food 

industry and the shock behaviour of this stainless steel is relatively well understood 

[14-17]. 

 

Table 1: Elastic properties of the AISI 304 L material used to manufacture the 

capsule. 

Material ρ0 (g/cc) cL (mm/µs) cS (mm/µs) G (GPa) ν 

AISI 304L 7.903 5.739 3.155 78.5 0.283 

 

The capsule design is as shown in Figure 1. A 10-mm thick 304 L cover plate 

was bolted to the cup using ten M6 bolts on a 76 mm pitch-circle diameter; the 

diameter of the capsule was 88 mm. The test specimens were instrumented with a 

single manganin pressure gauge manufactured by Vishay (LM-SS-125CH-048) which 

was encapsulated by two 25μm Mylar layers. A copper front plate (5 mm) was used 

to protect the gauge. Calibration of this gauge was according to the method of 

Rosenberg et al. [18]. 
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10 16
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Cu cover plate 304 L cover plate
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31
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Gauge package

Cu cover plate 304 L cover plate

 

 

Figure 1: An exploded view of the capsule design; all dimensions are in mm. 

 

For the first set of experiments, the capsule as shown in Figure 1 was used. In 

a second set of experiments, a hollow steel cylindrical insert of length 3 mm was 

placed in the 46-mm diameter cavity. The wall thickness of this insert was 1 mm. The 

purpose of the steel insert was to provide support for a 15 µm Mylar barrier that was 

glued to the top surface of the insert. This barrier would provide separation between 

the liquid sample and an air pocket trapped beneath the Mylar thereby causing 

cavitation in the fluid. A similar 13-mm long hollow cylinder was glued on top of the 

3-mm long cylinder to sandwich the Mylar and to ensure sealing. 

 

Experiments 

 

All the experiments were conducted using a 50-mm single-stage light gas gun 

[19].  10-mm thick copper flyer plates were accelerated to velocities of between 345 
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m/s and 450 m/s and were used to dynamically load each capsule containing the fluid 

of interest.  The velocities of the projectile were measured by using a sequential pin 

shorting system to an accuracy of 0.5%. A fast digital storage oscilloscopes (2 GS/s) 

was used to capture the arrival and shape of the shock; subsequent data reduction and 

analysis was done on a PC. Two different types of microorganism-loaded fluids and 

an emulsion were tested. 

 

Test specimens 

 

The microorganisms used for this experiment were Zygosaccharomyces bailii 

DSM 70492 and a cocktail of Escherichia coli NCTC 9001 and Enterococcus 

faecalis, culture ATCC 19433. Zygosaccharomyces bailii is a common spoilage yeast 

in the food industry chiefly affecting fruit juices; Escherichia coli and Enterococcus 

faecalis are relatively harmless members of the normal gut flora. 

The Z. bailii experimental culture was prepared by incubating in malt extract 

broth (prepared from Oxoid powder) at 25°C for 3 days to provide a 108 colony 

forming units/ml (cfu/ml). A cocktail of E. coli and E. faecalis was incubated in 

nutrient broth (prepared from Oxoid powder) at 37°C for 1 day to achieve the 108 

cfu/ml. These cultures were then individually subjected to shock loading. 

After subjecting the capsules to the shockwave the capsules were recovered 

and opened using aseptic techniques. A 1 ml sample was withdrawn and serially 

diluted into 8 by 9 ml of half-strength ringer’s solution. 0.1 ml of each of the dilutions 

was then plated onto nutrient agar for incubation and subsequent numerical 

evaluation.  
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The formation of fine emulsions is an important part of food-processing 

industry and consequently two separate trials were carried out to evaluate the role of 

shock-wave application in preparation of emulsions. Coarse / crude emulsions were 

prepared with 10% vegetable oil, 10% gum arabic and 80% water, using a Silverson 

homogeniser and shock loaded in a similar fashion to that described above. The 

emulsions were examined by light microscopy immediately before and after firing. 

Analysis of the particle size distributions pre and post shock loading was performed 

on a Malvern Mastersizer 2000. 

A summary of the experiments carried out is show in Table 2. 

 
Table 2: Summary of flyer-plate experiments. In each case a 10-mm copper flyer-
plate was used. 
 

Sample Flyer velocity 
(m/s) 

Air-gap? 

Bacteria 345 No 
Yeast 446 No 
Emulsion 345 No 
Bacteria 448 Yes 
Yeast 450 Yes 
Emulsion 441 Yes 

 
 

Numerical modelling 

 

Hydrocode simulations were carried out to calculate the pressure in the central 

cavity and to confirm the dynamic (cover-plate) compression of the fluid layer, which 

was modelled as water. All computations were carried out using 2D axial symmetry 

using a Lagrangian mesh in the explicit non-linear transient dynamic numerical code  

– ANSYS® AUTODYN. The cell size was chosen to be 0.25 mm. This software is 

explained in detail elsewhere [20] and a useful overview of these types of codes is 

provided by Anderson [21]. However in brief, this code solves the conservations laws 
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of mass and momentum based on initial boundary conditions. The user is prompted 

for an equation of state that describes the pressure in terms of the internal energy and 

volume and a constitutive relationship that calculates the flow stress in terms of a 

number of material and application-dependent parameters including strain, strain-rate 

and temperature. Failure models can be introduced to describe the failure. 

The equation of state for all of the materials use was of Mie-Grüneisen form 

[22] derived from a linear shock-particle Hugoniot thus: 

 

ps SucU += 0          (1) 

 

where Us and up are the shock and particle velocities respectively, c0  is the bulk sound 

speed and S is the slope in the Us versus up diagram. A Johnson-Cook strength model 

was applied to both the 304 L and the copper and was of the form [23]: 

 

( )( )( )m
Hp

n
p TlnCBA −++= 11 εεσ       (2) 

 

where  A  is the yield strength at zero plastic strain, B is the strain hardening constant, 

n is the strain hardening exponent, C is a strain-rate constant, TH is the homologous 

temperature (T-Troom)/(Tm-Troom) and m is the thermal softening exponent. T and Tm are 

the temperature and melting temperature of the material respectively.  

The material models for the copper, water and epoxy resin were taken from 

the AUTODYN material library and are summarised in Table 2 and Table 3. 

Although other researchers have simulated the shock compression of water using a bi-

linear Hugoniot e.g., [24], a linear Hugoniot for the water was justified given the low 

shock pressures that were anticipated e.g., [25]. The hydrodynamic data for the 
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stainless steel and the copper were taken from the AUTODYN material library whilst 

the Johnson-Cook strength model for the stainless steel was taken from [26].  The 

Johnson-Cook model for the copper is based on a slight modification to the one 

provided in the AUTODYN material library and was provided by [27]. 

Figure 2 shows the model setup. Epoxy resin was used to simulate the 

presence of the O-rings as both rubber and the resin have relatively low shock 

impedance values when compared to the stainless steel [28, 29]. Epoxy resin was also 

used to model the presence of the thin Mylar barrier due to its similarity in shock 

impedance. 

 
Table 3: Hydrodynamic data for the copper, stainless steel, water and the epoxy resin. 

 Notation Copper 
AISI 

304L 
H2O 

Epoxy 

resin 

Reference 

density (kg/m3) 
ρ0 8,900 7,903 1,000 1,186 

Bulk sound 

speed (m/s) 
c0 3,958 4,570 1,483 2,730 

Slope in Us 

versus Up 

diagram 

S 1.497 1.49 1.75 1.493 

Grüneisen 

coefficient 
Γ 2.00 1.93 0.28 1.13 
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Table 4: Strength data for the copper and stainless steel; the Johnson-Cook data for 

the stainless steel was taken from [26]; the data for the copper was provided by [27] 

 Notation Copper 
AISI 

304L 

Yield strength 

(MPa) 
A 90 110 

Work hardening 

constant (MPa) 
B 292 1500 

Work hardening 

exponent 
n 0.05 0.36 

Strain rate 

hardening 

coefficient 

C 0.005 0.014 

Melting 

temperature 

(°K)  

Tm 1356 1696 

Reference 

temperature (°K) 
Troom 300 300 

Thermal 

softening 

coefficient 

m 1.09 1.0 

 

The fluid layer was modelled as though it behaved in an identical fashion to 

water. Cavitation was assumed to occur when the pressure in the water was -10 MPa. 

This value is assumed to be the pressure to which the water can sustain continuous 
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expansion and is implemented using the Pmin criteria within AUTODYN. This figure 

was based on the work of Boteler and Sutherland [30] who measured the average 

tensile strength for shock-induced cavitation in the water to be 8.7±0.2 MPa. In this 

case, when P≤-10 MPa, the pressure in the cell is set to zero until a higher (>-10 MPa)  

compression wave traverses the cell. This allowed visible tracking of the potential 

cavitation zones. An erosion strain of 200% was added to allow the simulation to 

progress to completeness. 

Copper flyer-plate

Impact direction

Capsule

Copper
cover plate

‘O’ ring

Sample

Copper flyer-plate

Impact direction

Capsule

Copper
cover plate

‘O’ ring

Sample

Copper flyer-plate

Impact direction

Capsule

Copper
cover plate

‘O’ ring

Sample

 

Figure 2: Numerical set-up in ANSYS® AUTODYN (no air gap); the flyer plate is 

seen to the rear of the image. 
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RESULTS AND DISCUSSION 

 

Stress history in the AISI 304 L 

 

Below are the results recorded from experiments conducted with an impact 

velocity of 345 m/s and 446 m/s. These results are compared with data from the 

simulations where a gauge point is encapsulated in 500 μm of epoxy resin (two cell 

widths).  
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Figure 3: Shock stress seen in the AISI 304 L steel during the experiments; the 

simulation results are provided for comparison. 

 

 There are several things to note from Figure 3. Firstly, it can be seen from 

both experiments that the shock is characterised by a very fast rise time (c. 100 ns) 

resulting in ringing in the gauge. This ringing is electrical in nature and is commonly 
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reported for these types of gauges embedded between metallic plates [31]. Secondly, 

it should be pointed out that the rise time observed in the models was relatively slow 

compared to experiments. This is to be expected and is due to the shock wave being 

smeared across the cells. The gauge is seen to fail in both experiments at roughly the 

same time and is probably due to the extensive plastic deformation observed in the 

copper cover plate coupled with the arrival of the release wave. 

 

Pressure history in the fluid layer 

 

From 1D hydrodynamic calculations using the Rankine-Hugoniot 

relationships, the magnitude of the shock in the fluid layer was calculated as initially 

being 0.64 GPa and 0.87 GPa for the experiments with an impact velocity of 345 m/s 

and 446 m/s respectively. However, 2D simulations using ANSYS® AUTODYN 

showed that the shock was higher than this in the fluid layer due to ringing. Figure 4 

shows the pressure history in a capsule that has been struck by a copper flyer plate at 

446 m/s. At 0 μs (a reference time corresponding to 8 μs after impact), a shock of 

magnitude 0.8 GPa is seen to propagate in the fluid layer. Eventually this shock wave 

reaches the fluid / steel boundary; 5 μs later it is seen to have been reflected. The 

reflection resulted in a pressure increase as the shock wave travels back towards the 

impact interface. Eventually, the shock wave encounters the stainless steel cover plate 

that is deforming due to it being pressed into the cavity. Consequently, on contact 

with the stainless steel cover plate, the shock in the fluid layer undergoes a shape 

change from a reasonably flat wave to that of a divergent wave. In essence, the shock 

wave rang up in the fluid layer before dissipating to a steady state. 
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 The suppression of the cavitation that would have otherwise occurred was due 

to the thickness of the flyer plate and by virtue of the deformation of the cover plate 

attached to the main cup of the capsule assembly. Figure 5 shows the deformation of 

the cover from the experiment and the simulation; in both cases the impact velocity of 

the flyer plate was 446 m/s. Firstly it can be seen that the distinct similarity of the 

final profile gives confidence in the Johnson-Cook model for the stainless steel that 

was taken from [26]. Secondly, it is evident that the ductility of the steel used here 

was advantageous in allowing the plastic flow into the cavity. Consequently, the 

choice of a ductile steel that is able to flow, over and above a relatively strong steel 

that would have provided little ductility is desirable. 

Shock wave in the fluid layer (0 μs) +5 μs

+15 μs+10 μs

Shock wave in the fluid layer (0 μs) +5 μs

+15 μs+10 μs  

Figure 4: ANSYS® AUTODYN simulation of the experiment without the air cavity; 

velocity of impact = 446 m/s. 
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Experiment

Simulation

Experiment

Simulation  

 

Figure 5: Deformation of the cover plate showing the results from an impact at 446 

m/s for both the experiment (top) and the simulation (bottom). 

 

 

Shock wave in the fluid layer (0 μs) +5 μs negative phase

+15 μs+10 μs

Air cavity

Shock wave in the fluid layer (0 μs) +5 μs negative phase

+15 μs+10 μs

Air cavity

 

Figure 6: ANSYS® AUTODYN simulation of the experiment with the air cavity; 
velocity of impact = 446 m/s.  
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Introducing a cavity behind the fluid layer resulted in a different response as 

shown in Figure 6.  The simulation has been done using the same impact velocity as 

the case presented in Figure 4 for comparison. Again, the shock is seen to traverse the 

fluid layer however 5 μs later, due to the presence of the cavity, a negative pressure 

phase occurs as the release wave propagates from the membrane barrier towards the 

direction of the impact face. This resulted in a condition where the fluid layer is 

essentially “stretched” [32]. A second shock occurs as the fluid contacts the base of 

the cavity and propagates back towards the impact face. Eventually, the shock again 

rings up within the fluid layer before reaching a steady state. By 15 μs, erosion of the 

lagrangian cells within the encapsulated fluid is evident. 

The loading regime for these experiments is considerably different to the first 

set of experiments and consequently subjected the fluid to a negative pressure thereby 

invoking cavitation followed by reloading.  

The numerical calculations of the pressure history in the suspension for both 

types of experiments (velocity of impact = 446 m/s) are presented in Figures 7 and 8. 

In each case, the pressure history over 40 μs is presented for two gauge tracer points 

located in a line at 10.00 mm from the axis of symmetry and placed at 0.25 mm and 

10.25 mm from the interface between the stainless steel cover plate and the 

suspension. 
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Figure 7: Pressure history calculations from the simulation without the air cavity; 
velocity of impact = 446 m/s. 
 

For the pressure-history trace of the experiment without the air gap (Figure 7), 

the initial shock in the suspension is seen at 3 μs from the point of time of impact by 

the copper flyer-plate.  The shock state is seen to release at this gauge location before 

reload occurs at c.a. 16 μs due to the reflection of the shock wave from the stainless 

steel rear boundary. At Gauge-point 2, the reload is seen to occur much quicker by 

virtue of the fact that this gauge location is closer to the rear boundary than Gauge 1. 

Finally, the pressure dissipated to a steady state of c.a. 0.2 GPa at 100 μs (not shown). 
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Where the air cavity was introduced, the pressure history is shown in Figure 8. 
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Figure 8: Pressure history calculations from the simulation with the air cavity; 
velocity of impact = 446 m/s. 
 
 

Again the arrival of the pressure pulse is seen to occur at c.a. 3 μs before 

releasing to P= 0 GPa at c.a. 16 μs. The second gauge shows the release of the shock 

at c.a. 11 μs before a rapid reload at 16 μs. The second reload was caused by the 

impact of the suspension against the rear stainless steel surface (see Figure 6).  

 

Effect of the compression on the fluid layers 

  

Analysis of the shocked specimens showed that the compression pulse had 

little effect on the bacterial samples when cavitation was suppressed; no reduction in 

numbers was observed when compared to the control (unshocked) specimen. This is 

somewhat surprising given the high compression that was achieved using this 

technique and given that other researchers have noted bacterial kill with much lower 
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pressures [7,8]. This confirms that the mechanisms of kill were not dependent on the 

magnitude of the pressure but rather the degree of repetition and, perhaps, exposure to 

UV light. It should be pointed out that the materials in the structure of the cells do 

have very similar shock properties to the medium in which they are suspended. 

Nevertheless, it is known that the cell walls of microorganisms such as 

Saccharomyces cerevisiae [33] do possess small but finite stiffness values. 

Consequently, it is envisaged that very high single shock pressures are required to 

cause delamination of the cell structure. Willis et al. [13] did see mortality in their 

specimens that were shocked in a fluid medium to higher shock states observed here. 

One suggested explanation the observed mortality was put down to the shock–induced 

phase transformation during near-isentropic compression of the suspension leading to 

the formation of ice VI or ice VII. These high pressure phases are 20 % to 25 % 

denser than the liquid and consequently would lead to over pressures in the liquid 

cytoplasm. An alternative explanation was also provided by Willis et al. for the 

observed cell mortality.  The density variations in the cell’s makeup may give rise to 

Richtmyer-Meshkov fluid instabilities induced by the shock acceleration of the 

interfaces between each cell layer. However, this latter explanation appears less likely 

given the shock pressures achieved in our experiments and the observed survivability. 

However, when the air-gap was introduced in the cavity limited kill was 

observed with 1-log reduction in the yeast sample only. Given the violence associated 

with cavitation, it is perhaps surprising that these microorganisms demonstrate 

significant survivability. These results confirm the hardy nature of micro-organisms 

that have been subjected to shock loading as noted by Burchell et al. [6, 12]. 

 Perhaps more enlightening are the effects that the shock wave had on the 

emulsification of the oil-based solutions. Figure 9 shows the effect on the sample 
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when the sample has been subjected to shock compression and where cavitation had 

been suppressed (with no air gap). The coarse emulsions prior to the passage of the 

shock wave possessed a volume mean particle size of 13.6 µm with a distribution (by 

% volume) of particle sizes as follows: 10% ≤ 1.2 μm, 50% ≤ 13.0 μm and 90% ≤ 

25.1 μm. After the passage of the shockwave, the droplet size distribution changed, 

producing smaller droplets with a volume mean particle size of 8.2 μm and a 

distribution of: 10% ≤ 1.2μm, 50% ≤ 7.3 μm and 90% ≤ 16.7μm. 

 For the second experimental setup where cavitation was expected, significant 

emulsification occurred as shown in Figure 10. After the passage of the shockwave, 

the droplet size distribution changed, producing smaller droplets with a volume mean 

particle size of 7.8 µm and a distribution as follows: 10% ≤ 0.7 μm, 50% ≤ 2.6 μm 

and 90% ≤ 16.5 μm. These results demonstrate a shift in population from 10-20 

micrometres to 1-10 micrometres (see Figure 11) that remained stable when tested 7 

days later. We should point out however that this occurred at a higher impact velocity 

(441 m/s as opposed to 345 m/s). Nevertheless, it is probable that the increased impact 

velocity should have little effect on the degree of cavitation as this is solely governed 

by wave reflections. To the authors’ knowledge, no work has been done to examine 

high pressure shock wave interaction with emulsions, although ultrasonic approaches 

have been extensively studied [34-37]. Current thinking suggest that emulsification by 

ultrasound at least is governed by a localised cavitation zone [38]. These results are 

consistent with our shock studies and confirm that the capsule is behaving as expected 

from the modelling results. However, as noted above, a certain degree of 

emulsification has occurred in Figure 9. Consequently, as we are suppressing 

cavitation in this experimental setup, a different mechanism of break up must be at 

play and this demands explanation. One possibility is that the divergent wave front 
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reflected from the deforming cover plate (see Figure 4) is inducing shear in the oil 

droplets. This may well be expected to cause a breakdown of the particle however we 

are unable to verify this using the current setup. 
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Figure 9: Pre and post shock particle distribution (no air gap at the rear); velocity of 
impact = 345 m/s. 
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Figure 10:  Pre and post shock particle distribution (with an air gap at the rear); 
velocity of impact = 441 m/s. 
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Figure 11: Light micrographs of (a) Emulsion before treatment and (b) emulsion after 
the passage of the shock wave (with air gap). 
 
 

CONCLUSIONS 

 

Different bacterial solutions have been subjected to shock loading where the 

magnitude of the shock wave in the suspension approached c.a. 1.2 GPa. It was found 

that using a ductile cover plate for the capsule resulted in suppression of cavitation in 

the fluid layer by virtue of extrusion of the plate into the cavity. The capsules were 

recovered intact so that post experimental analysis could be done on the contents. 

Furthermore, we have also shown that microorganisms such as Zygosaccharomyces 

bailii, Escherichia coli and Enterococcus faecalis are not affected by this type of 

loading regime. However, a limited amount of emulsification of a simple oil water 

mixture did occur and it was thought that this was most likely due to the presence of 

the divergent wave front due to the deforming front plate. 

By introducing a cavity behind the fluid sample it was possible to encourage 

cavitation and consequently, increase the degree of emulsification that occurred. This 

resulted in the formation of a stable emulsion. It was also noted that the yeast sample 
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suffered a 1-log reduction in numbers due to the passage of the shock wave and 

resulting violence from cavitation; the bacterial sample was largely unaffected. 

Further, other researchers have noted significant bacterial kill with much lower 

pressures [1,7,8]. This confirms that the mechanisms of kill in the earlier work were 

not purely dependent on the magnitude of the pressure but rather the degree of 

repetition and, perhaps, exposure to UV light. 

Numerical simulations of the experiments were conduced using ANSYS® 

AUTODYN that showed good correlation with the experimental results. 
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LIST OF CAPTIONS 

 

Figure 1: An exploded view of the capsule design; all dimensions are in mm. 

 

Figure 2: Numerical set-up in ANSYS® AUTODYN (no air gap); the flyer plate is 

seen to the rear of the image. 

 

Figure 3: Shock stress seen in the AISI 304 L steel during the experiments; the 

simulation results are provided for comparison. 

 

Figure 4: ANSYS® AUTODYN simulation of the experiment without the air cavity; 

velocity of impact = 446 m/s. 

 

Figure 5: Deformation of the cover plate showing the results from an impact at 446 

m/s for both the experiment (top) and the simulation (bottom). 

 

Figure 6: ANSYS ®AUTODYN simulation of the experiment with the air cavity; 

velocity of impact = 446 m/s. 

 

Figure 7: Pressure history calculations from the simulation without the air cavity; 

velocity of impact = 446 m/s. 

 

Figure 8: Pressure history calculations from the simulation with the air cavity; 

velocity of impact = 446 m/s. 
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Figure 9: Pre and post shock particle distribution (no air gap at the rear); velocity of 

impact = 345 m/s. 

 

Figure 10:  Pre and post shock particle distribution (with an air gap at the rear); 

velocity of impact = 441 m/s. 

 

Figure 11: Light micrographs of (a) Emulsion before treatment and (b) emulsion after 

the passage of the shock wave (with air gap). 

 

TABLES 

 

Table 1: Elastic properties of the AISI 304 L material used to manufacture the 

capsule. 

Material ρ0 (g/cc) cL (mm/µs) cS (mm/µs) G (GPa) ν 

AISI 304L 7.903 5.739 3.155 78.5 0.283 

 
 
 
 
 
 
 
 
 
Table 2: Summary of flyer-plate experiments. In each case a 10-mm copper flyer-
plate was used. 
 

Sample Flyer velocity 
(m/s) 

Air-gap? 

Bacteria 345 No 
Yeast 446 No 
Emulsion 345 No 
Bacteria 448 Yes 
Yeast 450 Yes 
Emulsion 441 Yes 
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Table 3: Hydrodynamic data for the copper, stainless steel, water and the epoxy resin. 

 Notation Copper 
AISI 

304L 
H2O 

Epoxy 

resin 

Reference 

density (kg/m3) 
ρ0 8,900 7,903 1,000 1,186 

Bulk sound 

speed (m/s) 
c0 3,958 4,570 1,483 2,730 

Slope in Us 

versus Up 

diagram 

S 1.497 1.49 1.75 1.493 

Grüneisen 

coefficient 
Γ 2.00 1.93 0.28 1.13 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

 35

Table 4: Strength data for the copper and stainless steel; the Johnson-Cook data for 

the stainless steel was taken from [26]; the data for the copper was provided by [27]. 

 

 Notation Copper 
AISI 

304L 

Yield strength 

(MPa) 
A 90 110 

Work hardening 

constant (MPa) 
B 292 1500 

Work hardening 

exponent 
n 0.05 0.36 

Strain rate 

hardening 

coefficient 

C 0.005 0.014 

Melting 

temperature 

(°K)  

Tm 1356 1696 

Reference 

temperature (°K) 
Troom 300 300 

Thermal 

softening 

coefficient 

m 1.09 1.0 

 

 


