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ABSTRACT

In their seminal paper, Kendall and Babington Smith (1939) suggested a measure W
to quantify the agreement between d rankings of n objects. Its distribution was essentially

investigated under the assumption of independent rankings. In many applications, however,

the rankings are not independent. This paper reconsiders Kendall’s W, investigating its

distribution for dependent rankings using copula theory. We show that Kendall’s W is

asymptotically normally distributed under very weak assumptions and that its variance can

be estimated by means of bootstrap and jackknife. We present an application of Kendall’s

W to returns and volatilities of the German DAX-30 assets.

1 Introduction

If n objects are ranked by d individuals according to some property, the question arises

whether the d rankings show any agreement or are more or less independent. In their seminal

paper, Kendall and Babington Smith (1939) suggested a measureW (now known as Kendall’s

W) to quantify the strength of agreement. It was defined in such way that 0 ≤ W ≤ 1 and

W = 1 if and only if the d rankings are identical. Kendall’s W was essentially used as a

test statistic to test for the null hypothesis of d independent rankings. For this reason its

distribution was investigated under the assumption of independence, usually called the null

1
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case.

This paper argues, however, that W is not a suitable test statistic for testing the inde-

pendence of d rankings. It can be shown that W is based on pairwise rank correlation and

therefore can only test against pairwise independence. Moreover, testing the independence

of d rankings, where d ≥ 2, has been intensively considered in the literature and powerful

tests have been suggested. Recent contributions, for instance, include Genest and Rémillard

(2004) and Genest et al. (2007).

Instead of testing for independence, Kendall’s W is a useful statistic to measure the

strength of agreement of the d rankings or the closeness of the d rankings to perfect agreement,

i.e., to comonotonicity. For this, however, it is crucial to know the distribution of W in the

non-null case, i.e., in the case where the rankings are not independent. This paper reconsiders

Kendall’s W under this aspect. Former literature addressing the non-null case includes only

some special results (see, e.g., Mallows (1957), Loretta and Schucany (1975), Kraemer (1976),

Palachek and Schucany (1984)). A major problem seems to be the definition of a proper

population version (or theoretical version) for W in the non-null case.

The present paper uses copula theory for this purpose. A copula can be viewed as a

continuous version of a table of d rankings of n objects, and thus the copula approach

seems to be the most general approach for the definition of W. The use of copulas entails

the assumption, that the d rankings are based on d latent continuous variables X1, . . . , Xd

with copula C. Observations of X1, . . . , Xd, however, are not required and the procedures

suggested are solely based on the original table of ranks. Using results on the so-called

empirical copula process, it can be shown that the normalized empirical version of Kendall’s

W is asymptotically normally distributed under very weak assumptions on the basic copula

and that a closed formula for its asymptotic variance exists.

Asymptotic normality of Kendall’s W in the non-null case makes it possible to construct

confidence intervals or hypothesis tests for the strength of agreement of the d rankings,

which might be useful in empirical applications. The crucial point is the determination of

the standard deviation of Kendall’s W which is possible by using resampling methods such

2
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as the bootstrap or the jackknife.

The structure of the paper is as follows: Section 2 introduces notations and some basic

concepts of copula theory and statistics to be used in further sections. Subsection 3.1 pro-

poses a population version of Kendall’s W using copulas. In subsection 3.2, the empirical

version of Kendall’s W is shown to be asymptotically normally distributed under very weak

assumptions on the copula. Subsection 3.3 discusses variance estimation for Kendall’s W us-

ing the jackknife and the bootstrap. A simulation study based on the Gaussian and Clayton

families of copulas investigates the performance of these resampling methods in small- and

medium-sized samples. Subsection 3.4 explores the goodness of fit of normal approximations

to Kendall’s W for the above stated families of copulas. In an empirical example, section 4

applies Kendall’s W to measure the strength of association of returns and volatilities of the

30 assets of the German DAX index. Section 5 concludes.

2 Notation and definitions

Throughout the paper we assume that X = (X1, . . . , Xd), where d ≥ 2, is a random vector

with continuous distribution function

F (x) = P (X1 ≤ x1, . . . , Xd ≤ xd), x = (x1, . . . , xd) ∈ R
d

and continuous marginal distribution functions Fi(xi) = P (Xi ≤ xi) for xi ∈ R and i =

1, . . . , d. Thus, according to Sklar’s (1959) theorem, a unique copula

C : [0, 1]d → [0, 1]

exists such that

F (x) = C(F1(x1), . . . , Fd(xd)) for x ∈ R
d.

The copula C is the joint distribution function of the random vector

U = (U1, . . . , Ud) = (F1(X1), . . . , Fd(Xd)),

3
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i.e.,

C(u1, . . . , ud) := P (U1 ≤ u1, . . . , Ud ≤ ud) for u = (u1, . . . , ud) ∈ [0, 1]d.

The univariate margins Ui are uniformly distributed on [0, 1].

A detailed treatment of copulas is given in Joe (1997), Cherubini et al. (2004) and Nelsen

(2006). An important example of a parametric family of copulas is the Gaussian copula (see

Joe (1997)) which will be used in the subsequent sections. It is defined by

CΘ(u1, . . . , ud) = ΦΘ

(
Φ−1(u1), . . . ,Φ

−1(ud)
)
,

where ΦΘ is the distribution function of a multivariate normal distribution with mean zero,

unit variances and correlation matrix Θ = (θij)i,j=1...d. Φ
−1 denotes the quantile function of

a standard normal distribution.

Another example for a parametric family of copulas is the Clayton family (see Clayton

(1978)), given by

Cθ(u1, . . . , ud) :=

(
d∑

i=1

u−θ
i − (d− 1)

)−1/θ

,

where θ > 0.

It is well known that every copula C is bounded in the following sense

W (u) := max {u1 + . . .+ ud − (d− 1), 0}

≤ C(u) ≤ min {u1, ..., ud} =: M(u), for u ∈ [0, 1]d,

where M and W are called the upper and lower Frechet-Hoeffding bounds, respectively. The

lower bound W is a copula itself only if d = 2. The upper bound M = min {u1, ..., ud} is

always a copula and is called comonotonic copula. A random vectorX with copulaM is called

comonotonic. Comonotonicity is a pairwise property: X = (X1, . . . , Xd) is comonotonic if

and only if any pair (Xk, Xl) is comonotonic, where k 6= l and k, l ∈ {1, . . . , d}. For a proof

see Dhaene et al. (2000a).

Another important copula is the independence copula

Π(u) =
d∏

i=1

ui, u ∈ [0, 1]d.

4
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It is the copula of a vector X of independent random variables X1, . . . , Xd. Contrary to

comonotonicity, independence is not a pairwise property. Pairwise independence of Xk and

Xl for k < l and k, l ∈ {1, . . . , d} doesn’t entail independence of X. For example, consider a

d-variate Farlie-Gumbel-Morgenstern copula,

C(u1, ..., ud) =

d∏

i=1

ui + θ

(
d∏

i=1

ui(1− ui)

)
, |θ| ≤ 1.

For θ 6= 0 the copula C is not the independence copula but the copulas of its d∗ < d-

dimensional margins are independence copulas.

Gaussian and Clayton copulas interpolate the comonotonic and the independence copula:

For the Gaussian copula CΘ(u) = Π(u) if and only if Θ = I. For the case of equicorrelation,

i.e., Θ = (1− θ)I+ θ11′ and − 1
d−1

< θ < 1, it can be shown that

lim
θ→1

C(1−θ)I+θ11′(u) = M(u) for u ∈ [0, 1]d.

For the Clayton copula we have

lim
θ→0

Cθ(u) = Π(u) and lim
θ→∞

Cθ(u) = M(u) for u ∈ [0, 1]d.

A well known measure of bivariate association of two random variables is Spearman’s

rho, ρS. For Xk and Xl it is

ρS,kl =
cov (Fk (Xk) , Fl (Xl))√

var (Fk (Xk))
√

var (Fl (Xl))

=
cov (Uk, Ul)√

var (Uk)
√

var (Ul)
= 12

1∫

0

1∫

0

Ckl (uk, ul) dukdul − 3,

where Ckl(uk, ul) = C(1, . . . , 1, uk, 1, . . . , 1, ul, 1, . . . , 1) denotes the marginal copula of Xk

and Xl. It can be seen that ρS,kl depends on the copula Ckl only, and is invariant with respect

to the marginal distributions of Xk and Xl. It is ρS,kl = 1 if and only if Ckl = min{uk, ul}
and therefore ρS,kl = 1 if and only if Xk and Xl are comonotonic, see Nelsen (2006). Using

that comonotonicity is a pairwise property, it follows that X = (X1, . . . , Xd) is comonotonic

if and only if every ρS,kl = 1, where k < l and k, l ∈ {1, . . . , d}.

5
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In contrast, ρS,kl = 0 does not imply independence of Xk and Xl, and thus ρS,kl = 0

for k < l and k, l ∈ {1, . . . , d} does not imply that X = (X1, . . . , Xd) has independent

components.

Let X1,X2, . . . ,Xn be a sequence of i.i.d. observations on X, where

Xj = (X1j , . . . , Xdj)
′

for j = 1 . . . , n and let

F̂i,n(x) =
1

n

n∑

j=1

1{Xij≤x}

be the empirical distribution function for i = 1, . . . , d and x ∈ R.

Further, set

Ûij,n := F̂i,n(Xij)

for i = 1, . . . , d and j = 1, . . . , n. Note that

Ûij,n =
1

n
(rank of Xij in Xi1, . . . , Xin) =

1

n
Rij,n.

Let

Ûj,n = (Û1j,n, . . . , Ûdj,n)
′

for j = 1, . . . , n and let

R = (R1,n, . . . ,Rn,n) = (nÛ1,n, . . . , nÛn,n)

denote the corresponding d × n table of ranks. Statistical inference for Kendall’s W in the

following sections is entirely based on R. Knowledge of the latent variables X1,X2, . . . ,Xn

is not required.

3 Kendall’s W

This section reconsiders Kendall’s W and its asymptotic and finite sample distribution. In

order to investigate distributional issues about Kendall’s W, we must have a population

6
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version, i.e., a theoretical version of Kendall’s W which depends on the distribution of the

basic random vector X = (X1, . . . , Xd) via its copula, but does not depend on the marginal

distribution of Xi, i = 1, . . . , d. The following subsection 3.1 considers such a version of

Kendall’s W.

3.1 A population version of Kendall’s W

Let X = (X1, . . . , Xd) denote the basic random vector with continuous marginal distribution

functions Fi and uniquely determined copula C, i.e.,

C(u1, . . . , ud) = P (U1 ≤ u1, . . . , Ud ≤ ud)

= P (F1(X1) ≤ u1, . . . , Fd(Xd) ≤ ud)

for u = (u1, . . . , ud) ∈ [0, 1]d. We consider the following variable

U :=
d∑

i=1

Ui =
d∑

i=1

Fi(Xi).

Obviously, EC(U) = d/2 for every copula C. The variance of U, however, depends on C. If

C = Π (i.e., the variables X1, . . . , Xd are independent), we have:

varΠ(U) =
1

12
· d.

If C = M (i.e., the variables X1, . . . , Xd are comonotonic), we have:

varM(U) = var(d · U1) =
1

12
· d2.

The value d2/12 is an upper bound for varC(U) for arbitrary C. A lower bound is varC(U) = 0.

We look for examples of copulas C where varC(U) = 0.

1. For d = 2 let C(u1, u2) = W (u1, u2). Then U2 = 1− U1 and U = U1 + U2 = 1 = const.

Thus varC(U) = 0. Related examples can be constructed for d > 2. For d = 4, for

example, the copula C(u1, u2, u3, u4) = W (u1, u2)W (u3, u4) has varC(U) = 0.

7
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2. For d ≥ 2 let X1, . . . , Xd be such, that the corresponding U1 = F1(X1), . . . , Ud =

Fd(Xd) are equicorrelated with

corr(Ui, Uj) = − 1

d− 1
.

Then

var(U) =
1

12
d+ d(d− 1)

(
− 1

d− 1

)
· 1

12
= 0.

We now define W0 by normalizing var(U) :

W0 :=
var(U)

d2/12
=

12var(U)

d2
. (1)

From the upper and lower bounds of var(U), we get

0 ≤ W0 ≤ 1.

Further, W0 = 1/d if U = (U1, . . . , Ud) is independent. However, as discussed above, W0 =

1/d does not imply the independence of U.

W0 is a population version of Kendall’s W. It is closely related to the mean ρ̄S of

d(d− 1)/2 pairwise Spearman’s rho, ρS,kl, of Uk and Ul.

Indeed

var(U)− d/12

d2/12− d/12
=

1

d(d− 1)
(12var(U)− d)

=
1

d(d− 1)

(
12

(
d∑

i=1

var(Ui) +
∑

k 6=l

cov(Uk, Ul)

)
− d

)

=
1

d(d− 1)

(
12

d

12
+ 12

∑

k 6=l

cov(Uk, Ul)− d

)

=
1

d(d− 1)

(
12
∑

k 6=l

cov(Uk, Ul)

)

=

(
d

2

)−1∑

k<l

corr(Uk, Ul) =

(
d

2

)−1∑

k<l

ρS,kl = ρ̄S,

8
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where ρS,kl = corr(Uk, Ul) is the population version of Spearman’s rho of Xi and Xj. We thus

have

W0 =
(d− 1) · ρ̄S + 1

d
(2)

and

ρ̄S =
dW0 − 1

d− 1
. (3)

In the following, we provide examples of W0 and ρ̄S for some special copulas C described

in section 2.

• If C = Π then ρ̄S = 0 and W0 = 1/d. Note that the converse is not true. For example,

for the Farlie-Gumbel-Morgenstern copula mentioned above, all pairwise Spearman’s

rho are equal to zero and therefore W0 = 1/d although C is not the independence

copula.

• W0 = ρ̄S = 1 if and only if C = M , i.e., W0 = ρ̄S = 1 if and only if X = (X1, . . . , Xd)

is comonotonic. This is directly derived from the fact that ρ̄S = 1 if and only if

ρS,kl = 1 for k, l = 1, ..., n and k 6= l, because this is equivalent to the comonotonicity

of X = (X1, . . . , Xd).

• If C = CΘ, a d-dimensional Gaussian copula with parameter matrix Θ = (θij), i, j =

1 . . . d, then

ρ̄S =
6

π

(
d

2

)−1∑

i<j

arcsin(θij/2)

(see Embrechts et al. (2002)) and

W0 =
12

πd2

∑

i<j

arcsin(θij/2) +
1

d
.

In the case of equicorrelation, i.e., if θij = θ for i 6= j and −1
d−1

≤ θ ≤ 1, we have

W0 =

(
d− 1

d

)
6

π
arcsin(θ/2) +

1

d
.

• In case of the Clayton copula a simple formula to express Spearman’s rho as a function

of θ is not available. Numerical evaluations, however, are possible (see Joe (1997)).

9
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3.2 Empirical version of Kendall’s W and its asymptotic distribu-

tion

This section introduces empirical versions, i.e., estimators, of W0 and ρ̄S . The estimators

are based on ranks given by the table R as defined in section 2. It is assumed that the

joint distribution function F, the copula C and the marginal distribution functions Fi are

all unknown.

A natural estimator for ρ̄S =
(
d
2

)−1∑
k<l ρS,kl is

̂̄ρS,n =

(
d

2

)−1∑

k<l

ρ̂S,kl,n,

where

ρ̂S,kl,n =

∑n
j=1

(
Rkj,n − n(n+1)

2

)(
Rlj,n − n(n+1)

2

)

n3−n
12

=

∑n
j=1

(
Ûkj,n − n+1

2

)(
Ûlj,n − n+1

2

)

n3−n
12n2

.

To estimate W0 let

Û·j,n =

d∑

i=1

Ûij,n

with mean
1

n

n∑

j=1

Û·j,n =
1

n
d
n(n+ 1)

2n
=

1

n
d
n + 1

2

and variance

1

n

n∑

j=1

(
Û·j,n − d

n+ 1

2n

)2

=

∑n
j=1

(
nÛ·j,n − dn+1

2

)2

n3
.

In the case of comonotonicity of the ranks, we have Û·j,n = d/n · j without loss of

generality. The variance term above is then equal to

d2

12

(
1− 1

n2

)
.

10
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Therefore, an estimator of W0 is

Ŵn =
12
∑n

j=1

(
nÛ·j,n − dn+1

2

)2

d2(n3 − n)
,

which coincides with the original Kendall statistic, Kendall’s W, suggested in Kendall and

Babington Smith (1939).

It has been shown in Kendall and Gibbons (1990) that

̂̄ρS,n =

(
d

2

)−1∑

k<l

ρ̂S,kl,n =
dŴn − 1

d− 1

and

Ŵn =
(d− 1)̂̄ρS,n + 1

d
,

which are the empirical counterparts to equations (2) and (3) in section 3.1.

The asymptotic distribution of Ŵn is established in the following theorem:

Theorem (Asymptotic normality of Ŵn).

Let F be a continuous d-dimensional distribution function with copula C. Under the ad-

ditional assumption that the i-th partial derivatives DiC(u) exist and are continuous for

i = 1, . . . , d, we have

√
n(Ŵn −W0)

w−→ Z ∼ N(0, σ2
C),

where

σ2
C = 144

(
d− 1

d

)2 ∑

k<l,s<t

(
d

2

)−2 ∫

[0,1]2

∫

[0,1]2

E
[
GC(u

(k,l))GC(v
(s,t))

]
dvsdvtdukdul

and
w−→ denotes convergence in distribution. Further,

GC(u) = BC(u)−
d∑

i=1

DiC(u)BC(u
(i)),

where BC is a tight centered Gaussian process on [0, 1]d with covariance function

E(BC(u)BC(v)) = C(u ∧ v)− C(u)C(v)

11
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and

u(k,l) = (1, . . . , 1, uk, 1, . . . , 1, ul, 1, . . . , 1),

u(i) = (1, . . . , 1, ui, 1, . . . , 1).

Proof: See appendix.

Thus, Ŵn is asymptotically normally distributed under weak assumptions concerning the

basic copula C. Note that these assumptions exclude C = M, i.e., the case of comonotonicity.

In the latter case it is easy to see that W0 = Ŵn ≡ 1 and the variance of Ŵn is zero.

The asymptotic variance σ2
C of Ŵn depends on the copula C and, in general, cannot be

written as a function of W0 as there are different copulas C with the same W0.

However, for the cases C = Π with W0 = 1
d
, i.e., in the case of independence, it follows

that

σ2
Π =

(
d− 1

d

)2(
d

2

)−1

=
2(d− 1)

d3
=

2

d

(
1

d

(
1− 1

d

))

and σ2
Π is a function of d and W0 = 1/d. The proof can be found in the appendix. The

independence case, however, is not the focus of this paper. It would be interesting to know

whether a similar formula for W0 can at least serve as an approximation to σ2
C in the general

case.

3.3 Variance estimation for Kendall’s W

Although the theorem in section 3.2 yields an explicit formula for σ2
C , its use in empirical

applications is limited, as it relies on the unknown copula C and is of extremely difficult

structure. Reliable estimators for the variance or standard deviation of Ŵn can be obtained

by resampling methods such as the bootstrap or the jackknife. For asymptotic justification

of these methods see Shao and Dongsheng (1995). Note that these justifications are

with respect to n (i.e., n → ∞) whereas d is arbitrary but fixed. Concerning the

12
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bootstrap it is assumed (as in section 2) that the basic latent variables X1, . . . ,Xn,

are i.i.d. It has been shown that the bootstrap is asymptotically valid under this

assumption (see Schmid and Schmidt (2007)).

The bootstrap is performed as follows. Let

(nÛ1,n, . . . , nÛn,n) = (R1,n, . . . ,Rn,n) = R

denote the d×n table of ranks as introduced in section 2. Let (R
(b)
1,n, . . . ,R

(b)
n,n), b = 1, . . . , B

denote the b-th bootstrap sample from (R1,n, . . . ,Rn,n). Each bootstrap sample is derived

by sampling with replacement and reranking it in the case of ties, e.g., by using mid-ranks.

The bootstrap standard deviation of Ŵn is then estimated by

σ̂B
Ŵn

=

√√√√ 1

B − 1

B∑

b=1

(
Ŵ(b)

n − Ŵn

)2
,

where Ŵ(b)
n is the estimate of Kendall’s W based on the b-th bootstrap sample.

Like the bootstrap, the jackknife has to be done with respect to objects (i.e.,

by deleting a column of the table R). Jackknifing with respect to the d rankings

(i.e., deleting a row in the table) changes the dependence structure of the d

rankings and leads to implausible results in simulations. For the jackknife estimate

let

R−j = (R1,n, . . . ,Rj−1,n,Rj+1,n, . . . ,Rn,n)

denote the d× (n−1) table obtained from R by deleting the j-th column (j = 1, . . . , n). By

R̃−j we denote the reranked table (with ranks from 1 to (n− 1)).

If Ŵ(j)
n−1 denotes Kendall’s W based on R̃−j,

σ̂J
Ŵn

=

√√√√n− 1

n

n∑

j=1

(
Ŵ(j)

n−1 − Ŵn−1

)2

defines the jackknife estimate of the standard deviation of Ŵn.

The properties of both estimators in finite samples are investigated by simulation. We

consider the Gaussian copula (table 1) and the Clayton copula (table 2) with different di-

mensions d = 3, 5, 10 and different parameters. The Gaussian copula is in general

13
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determined by n(n− 1)/2 correlation parameters. In order to reduce the number

of parameters in our simulations, we have confined ourselves to the equicor-

relation case. Simulations for more complex correlation structures have been

conducted and the results may be obtained from the authors on request. We

did not find, however, any fundamental differences to the case of equicorrelation.

Contrary to the Gaussian copula, the Clayton copula has lower tail dependence.

Therefore, the Clayton copula shows strong association for low ranks. An asso-

ciation structure like that may well occur in practice. Think of referees showing

strong agreement for the best ranked candidates but weak for the others. The

sample sizes selected are n = 5, 10, 20, 50, 100. W0 denotes the true value of Kendall’s W for

the parameters considered and m( . ) and s( . ) denote the mean and standard deviation of

the respective quantity over N = 10000 Monte Carlo replications. Each bootstrap estimator

relies on B = 500 bootstrap samples.

The interpretation of the simulation results is straightforward. Comparing columnm(Ŵn)

and column W0 in tables 1 and 2 proves that there is some bias in Ŵn for n = 5, 10 and 20,

in particular when the value of W0 is near 0 and 1. Comparing column s(Ŵn) with m(σ̂B)

and m(σ̂J) shows that the bootstrap and the jackknife estimates are reliable for the stan-

dard deviation of Ŵn for n ≥ 20 and that there is no noticeable difference between the two

estimates. Even for n = 5 and 10, none is superior to the other.

Comparing the standard deviations of both methods, i.e., columns s(σ̂B) and s(σ̂J), it

can be seen that s(σ̂B) is often smaller than s(σ̂J) for n = 5 and 10. For n ≥ 20 there is

no noticeable difference. Note, however, that the Jackknife is computationally more efficient

for the considered sample sizes.

The simulated and the asymptotic standard deviation of Ŵn can be compared

in the case of independence (i.e., θ = 0 for the Gaussian copula). Comparing

s(Ŵn) in table 1 with σΠ/
√
n (see end of section 3.2) shows good agreement. The

deviations are smaller than 0.01 for n ≥ 10.
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θ n W0 m(Ŵn) s(Ŵn) m(σ̂B) m(σ̂J ) s(σ̂B) s(σ̂J ) CPB CPJ

Dimension d = 3
−0.45 5 .044 .09 .06 .05 .07 .04 .06 .74(.81) .80(.80)

10 .044 .07 .03 .04 .04 .02 .02 .97(.98) .96(.97)
20 .044 .06 .02 .02 .02 .01 .01 .99(.99) .98(.98)
50 .044 .05 .01 .01 .01 .00 .00 .98 .97

100 .044 .05 .01 .01 .01 .00 .00 .97 .96
−0.25 5 .174 .20 .14 .11 .15 .07 .11 .66(.67) .84(.86)

10 .174 .19 .09 .09 .10 .03 .04 .90(.92) .90(.92)
20 .174 .18 .06 .06 .06 .02 .02 .93(.94) .92(.94)
50 .174 .18 .04 .04 .04 .01 .01 .94 .94

100 .174 .18 .03 .03 .03 .00 .00 .94 .94
0 5 .333 .33 .19 .16 .22 .07 .11 .83(.86) .82(.86)

10 .333 .33 .13 .12 .14 .03 .04 .88(.91) .89(.91)
20 .333 .33 .09 .09 .09 .02 .02 .92(.93) .92(.94)
50 .333 .33 .06 .05 .06 .01 .01 .93 .94

100 .333 .33 .04 .04 .04 .00 .00 .94 .95
.3 5 .525 .49 .22 .20 .26 .05 .10 .83(.88) .81(.88)

10 .525 .51 .14 .14 .16 .02 .03 .90(.92) .91(.93)
20 .525 .52 .10 .10 .11 .01 .01 .92(.93) .93(.94)
50 .525 .52 .06 .06 .06 .00 .00 .94 .94

100 .525 .52 .04 .04 .04 .00 .00 .94 .95
.5 5 .655 .61 .21 .20 .26 .04 .10 .87(.93) .86(.87)

10 .655 .63 .14 .14 .16 .02 .04 .92(.95) .92(.94)
20 .655 .64 .09 .10 .10 .01 .02 .93(.95) .94(.95)
50 .655 .65 .06 .06 .06 .01 .01 .94 .95

100 .655 .65 .04 .04 .04 .00 .00 .95 .95
.7 5 .789 .73 .19 .20 .23 .04 .11 .93(.95) .94(.96)

10 .789 .76 .11 .12 .13 .03 .05 .95(.97) .92(.94)
20 .789 .77 .08 .08 .08 .02 .02 .95(.96) .94(.95)
50 .789 .78 .05 .05 .05 .01 .01 .95 .95

100 .789 .78 .03 .03 .03 .00 .00 .95 .95
.9 5 .928 .87 .12 .17 .15 .04 .11 .99(.99) .90(.90)

10 .928 .89 .07 .09 .07 .03 .04 .99(1.00) .95(.97)
20 .928 .91 .04 .05 .04 .02 .02 .99(.99) .96(.97)
50 .928 .92 .02 .02 .02 .01 .01 .97 .96

100 .928 .92 .01 .02 .01 .00 .00 .97 .96

Table 1: Gaussian copula with equicorrelation with parameter θ for dimensions d = 3, 5 and
10 and sample sizes n = 5, 10, 20, 50 and 100. W0 denotes the theoretical value of Kendall’s
W for the parameter θ under consideration. m( . ) and s( . ) denote mean and standard
deviation of the respective quantity over N = 10000 Monte Carlo replications. σ̂B/J refers
to the bootstrap (B, 500 samples) and jackknife (J) estimates of the standard deviation of

Ŵn. The last two columns display the simulated coverage probabilities CPB/J for a nominal
95% confidence interval for W0 using σ̂B/J and the Gaussian 95% quantile (and the 95%
quantile of the tν-distribution with ν = n− 1 degrees of freedom in brackets).
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θ n W0 m(Ŵn) s(Ŵn) m(σ̂B) m(σ̂J ) s(σ̂B) s(σ̂J ) CPB CPJ

Dimension d = 5
−0.2 5 .047 .07 .05 .05 .07 .03 .04 .87(.95) .94(.96)

10 .047 .06 .03 .03 .03 .01 .02 .98(.99) .96(.98)
20 .047 .05 .02 .02 .02 .01 .01 .98(.98) .96(.97)
50 .047 .05 .01 .01 .01 .00 .00 .96 .96

100 .047 .05 .01 .01 .01 .00 .00 .96 .96
−0.1 5 .124 .14 .09 .08 .11 .04 .07 .86(.91) .87(.91)

10 .124 .13 .06 .06 .06 .02 .03 .91(.93) .91(.93)
20 .124 .13 .04 .04 .04 .01 .01 .92(.93) .92(.93)
50 .124 .12 .02 .02 .03 .01 .01 .93 .94

100 .124 .12 .02 .02 .02 .00 .00 .94 .94
0 5 .2 .20 .13 .10 .14 .05 .08 .81(.86) .83(.89)

10 .2 .20 .08 .08 .09 .03 .04 .87(.90) .89(.91)
20 .2 .20 .06 .06 .06 .01 .02 .91(.92) .92(.93)
50 .2 .20 .04 .04 .04 .01 .01 .93 .94

100 .2 .20 .03 .03 .03 .00 .00 .94 .94
.3 5 .430 .39 .19 .16 .21 .06 .09 .77(.83) .80(.88)

10 .430 .41 .13 .12 .14 .03 .04 .87(.90) .89(.91)
20 .430 .42 .09 .09 .09 .01 .02 .91(.93) .92(.94)
50 .430 .43 .06 .06 .06 .01 .01 .94 .94

100 .430 .43 .04 .04 .04 .00 .00 .94 .94
.5 5 .586 .53 .20 .18 .23 .05 .09 .83(.89) .85(.88)

10 .586 .55 .13 .13 .15 .02 .03 .90(.93) .91(.94)
20 .586 .57 .09 .09 .10 .01 .01 .93(.94) .93(.95)
50 .586 .58 .06 .06 .06 .01 .01 .94 .95

100 .586 .58 .04 .04 .04 .00 .00 .95 .95
.7 5 .746 .67 .18 .19 .22 .04 .09 .91(.93) .87(.93)

10 .746 .71 .12 .12 .13 .02 .04 .94(.96) .93(.95)
20 .746 .73 .08 .08 .08 .02 .02 .95(.96) .94(.95)
50 .746 .74 .05 .05 .05 .01 .01 .95 .95

100 .746 .74 .03 .03 .03 .00 .00 .95 .95
.9 5 .913 .84 .13 .17 .16 .04 .10 .97(.99) .95(.96)

10 .913 .87 .07 .09 .08 .03 .04 .99(1.00) .96(.98)
20 .913 .89 .04 .05 .04 .01 .02 .99(.99) .97(.97)
50 .913 .90 .02 .02 .02 .01 .01 .97 .96

100 .913 .91 .02 .02 .02 .00 .00 .97 .96

Dimension d = 10
−0.05 10 .057 .06 .03 .03 .03 .01 .01 .91(.93) .91(.93)

20 .057 .06 .02 .02 .02 .01 .01 .92(.94) .92(.93)
50 .057 .06 .01 .01 .01 .00 .00 .94 .94

100 .057 .06 .01 .01 .01 .00 .00 .94 .94
0 10 .1 .10 .04 .04 .05 .02 .02 .86(.89) .87(.90)

20 .1 .10 .03 .03 .03 .01 .01 .89(.91) .90(.91)
50 .1 .10 .02 .02 .02 .00 .00 .93 .93

100 .1 .10 .01 .01 .01 .00 .00 .94 .94
.3 10 .359 .33 .11 .10 .12 .03 .03 .85(.88) .87(.90)

20 .359 .35 .08 .07 .08 .01 .02 .90(.91) .91(.93)
50 .359 .35 .05 .05 .05 .01 .01 .93 .93

100 .359 .36 .03 .03 .03 .00 .00 .93 .94
.5 10 .534 .50 .13 .12 .13 .02 .03 .88(.91) .89(.92)

20 .534 .51 .09 .09 .09 .01 .01 .92(.93) .93(.94)
50 .534 .53 .05 .05 .06 .01 .01 .93 .94

100 .534 .53 .04 .04 .04 .00 .00 .94 .94
.7 10 .715 .67 .12 .12 .13 .02 .04 .93(.95) .93(.95)

20 .715 .69 .08 .08 .08 .01 .02 .94(.96) .94(.96)
50 .715 .70 .05 .05 .05 .01 .01 .95 .95

100 .715 .71 .03 .03 .03 .00 .00 .95 .95
.9 10 .902 .86 .07 .09 .08 .03 .04 .99(.99) .97(.98)

20 .902 .88 .04 .05 .04 .01 .02 .99(.99) .97(.97)
50 .902 .89 .02 .03 .02 .01 .01 .98 .96

100 .902 .90 .02 .02 .02 .00 .00 .96 .95

Table 1: continued
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θ n W0 m(Ŵn) s(Ŵn) m(σ̂B) m(σ̂J ) s(σ̂B) s(σ̂J ) CPB CPJ

Dimension d = 3
.5 5 .530 .50 .22 .20 .26 .05 .10 .83(.87) .81(.88)

10 .530 .51 .15 .14 .16 .02 .04 .89(.91) .90(.92)
20 .530 .52 .10 .10 .11 .01 .01 .92(.94) .93(.94)
50 .530 .53 .06 .06 .07 .00 .00 .94 .94

100 .530 .53 .05 .05 .05 .00 .00 .94 .95
1 5 .652 .60 .22 .20 .26 .05 .10 .85(.92) .83(.86)

10 .652 .63 .14 .14 .16 .02 .04 .91(.93) .91(.93)
20 .652 .64 .10 .10 .10 .01 .02 .93(.94) .93(.95)
50 .652 .65 .06 .06 .06 .01 .01 .94 .94

100 .652 .65 .04 .04 .04 .00 .00 .94 .95
5 5 .923 .87 .13 .17 .15 .04 .11 .98(.99) .87(.87)

10 .923 .89 .07 .09 .08 .03 .04 .99(.99) .94(.95)
20 .923 .91 .04 .05 .05 .02 .02 .98(.98) .94(.95)
50 .923 .92 .03 .03 .03 .01 .01 .96 .94

100 .923 .92 .02 .02 .02 .00 .00 .96 .95

Dimension d = 5
.5 5 .436 .40 .19 .16 .22 .06 .10 .76(.83) .80(.88)

10 .436 .41 .13 .12 .14 .03 .04 .86(.89) .88(.91)
20 .436 .42 .09 .09 .10 .01 .02 .90(.92) .92(.93)
50 .436 .43 .06 .06 .06 .01 .01 .93 .94

100 .436 .43 .04 .04 .04 .00 .00 .94 .94
1 5 .583 .52 .21 .18 .24 .05 .09 .81(.88) .83(.87)

10 .583 .55 .14 .13 .15 .02 .04 .88(.91) .89(.92)
20 .583 .57 .10 .09 .10 .01 .02 .92(.93) .93(.94)
50 .583 .58 .06 .06 .06 .01 .01 .94 .94

100 .583 .58 .04 .04 .04 .00 .00 .95 .95
5 5 .908 .84 .13 .17 .16 .04 .10 .97(.98) .94(.95)

10 .908 .87 .08 .09 .08 .03 .04 .99(.99) .95(.96)
20 .908 .89 .05 .05 .05 .02 .02 .98(.98) .95(.96)
50 .908 .90 .03 .03 .03 .01 .01 .96 .95

100 .908 .90 .02 .02 .02 .00 .00 .96 .95

Dimension d = 10
.5 10 .366 .34 .11 .10 .12 .03 .04 .84(.87) .86(.90)

20 .366 .35 .08 .08 .08 .02 .02 .88(.90) .90(.91)
50 .366 .36 .05 .05 .05 .01 .01 .92 .93

100 .366 .36 .04 .04 .04 .00 .00 .94 .94
1 10 .531 .49 .13 .12 .14 .03 .04 .85(.89) .88(.91)

20 .531 .51 .09 .09 .09 .01 .02 .91(.92) .92(.93)
50 .531 .52 .06 .06 .06 .01 .01 .93 .94

100 .531 .53 .04 .04 .04 .00 .00 .94 .95
5 10 .896 .86 .08 .09 .08 .03 .04 .98(.99) .95(.96)

20 .896 .87 .05 .05 .05 .02 .02 .98(.98) .96(.96)
50 .896 .89 .03 .03 .03 .01 .01 .96 .95

100 .896 .89 .02 .02 .02 .00 .00 .96 .95

Table 2: Clayton copula with parameter θ for dimensions d = 3, 5 and 10 and sample sizes
n = 5, 10, 20, 50 and 100. W0 denotes the theoretical value of Kendall’s W for the parameter
θ under consideration. m( . ) and s( . ) denote mean and standard deviation of the respective
quantity over N = 10000 Monte Carlo replications. σ̂B/J refers to the bootstrap (B, 500

samples) and jackknife (J) estimates of the standard deviation of Ŵn. The last two columns
display the simulated coverage probabilities CPB/J for a nominal 95% confidence interval for
W0 using σ̂B/J and the Gaussian 95% quantile (and the 95% quantile of the tν-distribution
with ν = n− 1 degrees of freedom in brackets).
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3.4 Normal approximations to Kendall’s W

The theorem in section 3.2 shows that Ŵn is asymptotically normally distributed under very

weak conditions on the basic copula C. The simulation results in section 3.3 imply that the

finite sample standard deviation of Ŵn can at least for n ≥ 20 be satisfactorily estimated by

the bootstrap or the jackknife. Even for n = 10 and 5, they provide useful information on

the scattering behavior of Ŵn.

This section investigates how well the distribution of the standardized Ŵn, i.e., of

Ŵn −W0

σ̂
B/J

Ŵn

,

can be approximated by a standard normal distribution, where σ̂
B/J

Ŵn

is a bootstrap or jack-

knife estimator for the standard deviation of Ŵn. For the Gaussian copula with equicorre-

lation and the Clayton copula, N = 10000 Monte Carlo replications of the above statistic

have been generated and kernel density estimates of its density have been plotted for various

combinations of n, d and parameters θ. Eight of these graphs are shown in figures 1 and 2.

The results of the inspection of a large number of these graphs for all considered values

of d (n = 5 is not considered) can be summarized as follows:

- As expected, goodness of fit to the standard normal distribution increases if n increases.

- Using the bootstrap estimates for the standard deviation leads to somewhat better fits

than using the jackknife estimates, in particular for n = 10 and 20. For n = 50 and

n = 100, the difference is negligable.

- The fit is usually better for values of W0 near 0.5 than near the borders 0 or 1. Indeed,

values of W0 near 1 (near 0) imply a distribution of the normalized Ŵn which is skewed

to the right (skewed to the left), in particular for n = 10 and n = 20.

Approximate normality of Ŵn can be used to construct approximate (1− α) confidence

intervals forW0 via Ŵn±Φ−1(1−α/2)σ̂
B/J

Ŵn

. The true probability of coverage was investigated
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Figure 1: Gaussian copula. Kernel density estimates of (Ŵn −W0)/σ̂
B/J

Ŵn

using the bootstrap (B, solid line) and jackknife (J, dashed line) estimates

of the standard deviation of Ŵn. Left skewed densities refer to smaller

values of W0. The dotted line depicts the density of the standard normal

distribution.

for a nominal coverage probability of 1 − α = 0.95 by means of simulation. The results are

displayed in the last two columns of tables 1 and 2 for various combinations of parameters.

The procedure works satisfactorily for n = 50 and 100. For n = 5 and 10 and 20, there

are instances where the true confidence level is too low, in particular for d = 5 and d = 10

and for values of W0 near 1/d, i.e., the independence case. In those cases the coverage

may be improved by using quantiles of the t-distribution instead of Gaussian quantiles when

constructing the confidence intervals. Therefore, for n = 10 and n = 20 the tables also show
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Figure 2: Clayton Copula. Kernel density estimates of (Ŵn −W0)/σ̂
B/J

Ŵn

using the bootstrap (B, solid line) and jackknife (J, dashed line) estimates

of the standard deviation of Ŵn. Left skewed densities refer to smaller

values of W0. The dotted line depicts the density of the standard normal

distribution.

the true coverage probabilities of confidence intervals based on t-distributions with ν = n−1

degrees of freedom (values in brackets). As to be expected, coverage probabilities are higher

now, leading to a better agreement with the nominal coverage rates for values of W0 around

1/2.

The poor fit to the normal distribution for small values of n calls for the exact

small sample distribution of Ŵn. In the case of independence of the rankings, this

distribution has been derived by Kendall and Babington Smith (1939). In the
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dependence case, however, this distribution is not known. Our results on the

asymptotic distribution of Ŵn suggest that the finite sample distribution of Ŵn

depends on the copula C of the rankings and not only on W0. The relationship

between C and the finite sample distribution, however, seems to be extremely

complicated. It remains an open problem if at least some transformation of Ŵn

may lead to a better fit to the Gaussian density.

4 Application to financial data

Until recently, the dependence in financial data has usually been measured by the Pearson

coefficient of correlation. The increasing use of copulas in modelling and analyzing financial

data, however, entails the use of copula-based measures of dependence and association. For

a critical discussion of the related issues, in particular the many shortcomings of Pearson’s

coefficient of correlation, see Embrechts et al. (2002). In finance, the strength of associ-

ation of asset returns (as measured by W) and its development over time provide

useful information on the amount of diversification contained in a portfolio of

assets. A value of W near 1 indicates closeness to comonotonicity and poor di-

versification properties of the portfolio. A review of comonotonicity in finance,

actuarial sciences and, in particular, in risk management is given in Dhaene et al.

(2000a,b). Besides asset returns, volatilities of assets play a crucial role in the

valuation of corresponding derivatives (such as put or call options). Association

of volatilities and its development over time is therefore an interesting indicator

for the derivatives market. In the following, we will apply Kendall’s W to investigate

returns and volatilities of the DAX-30 assets.

Let X = (X1, . . . , X30) denote daily returns of these assets and let X1, . . . ,X250 denote

observations on X on 250 consecutive trading days. From these observations, the 30 × 250

matrix of ranks R of the returns, the empirical value Ŵ250 and the bootstrap and jackknife

estimates σ̂B and σ̂J are computed as in section 3. This is conducted for a moving window
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over a data set from 2nd of January 2003 to 6th of November 2009. The values of Ŵ250,t,

where t denotes the final day included in the window, are displayed in figure 3. The confidence

intervals are computed as in section 3. In the same way Ŵ250,t is computed for the volatilities

|X1|, . . . , |X30|. Both values are compared in figure 4. The width of the 95% confidence

intervals is about 0.078 for Kendall’s W for the returns and 0.091 for the volatilities.

Inspection of both figures reveals significant changes of Kendall’s W for returns and

volatilities over time. This is particularly the case for the volatilities which are between 0.15

and 0.37 with a remarkable increase since the beginning of 2006. Association of returns is

between 0.32 and 0.45 and is always higher than those of the volatilities. The moving pattern

of both series is essentially the same. Volatilities, however, seem to react somewhat stronger

than returns.

Estimating Kendall’s W over the entire time period from January 2nd 2003 to November

6th 2009 (i.e., n = 1787 observations) results in

Ŵn = 0.40 σ̂Wn
= 0.009 for returns,

Ŵn = 0.31 σ̂Wn
= 0.010 for volatilities.

Comparing these results to figure 3, the need to model financial data adaptively by taking

into account the permanent change in the strength of association in the underlying assets,

becomes evident.

5 Conclusion

Kendall’s W is a measure of agreement between d rankings of n objects. Copula theory

enables to investigate W for the non-null case, i.e., the case when the rankings are not

independent, in a very general way. It is possible to define a population version W0 of

Kendall’sW in a straightforward manner. Further, it can be shown that the related estimator

Ŵn for W0 is asymptotically normally distributed under weak assumptions. Its standard

deviation can be determined by the bootstrap and the jackknife in a reliable way for n ≥ 10.

The standardized version of Ŵn can be approximated by the normal distribution at least for
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Figure 3: Kendall’s W for returns with corresponding 95% confidence

interval for the DAX data. The estimates rely on moving windows of

250 trading days. For the confidence intervals, bootstrap estimates

of the variance are used as described in section 3.

n ≥ 20 if W0 is not too close to 0 or 1, i.e., the cases of complete disagreement and agreement

of the rankings. A suitable transformation of Ŵn might be implemented to remove skewness

in these cases but it seems to be an open problem which transformation can serve for this

purpose for a broad range of copulas.

6 Appendix: Proofs

The proof of the theorem relies on the results in Schmid and Schmidt (2007). These authors

have shown that under the assumption of the theorem we have

√
n
(̂̄ρS,n − ρ̄S

) w−→ Z ∼ N(0, σ2)
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Figure 4: Kendall’s W for returns (solid line) and volatilities (dashed

line) for the DAX data. The estimates rely on moving windows of

250 trading days.

where

σ2 = 144

(
d

2

)−2



∑

k<l
s<t

∫

[0,1]2

∫

[0,1]2

E
[
GC(u

(k,l))GC(v
(s,t))

]
d(uk, ul)d(vs, vt)


 .

Because of

W0 =

(
d− 1

d

)
ρ̄S +

1

d

and

Ŵn =

(
d− 1

d

)
̂̄ρS,n +

1

d

the result of the theorem follows.
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In case of independence, i.e., C = Π, Schmid and Schmidt (2007) derived that

√
n
(̂̄ρS,n − 0

) w−→ N(0, σ2),

where

σ2 =

(
d

2

)−1

.

Therefore

√
n

(
Ŵn −

1

d

)
w−→ N(0, σ2

Π),

where

σ2
Π =

(
d− 1

d

)2(
d

2

)−1

=
2(d− 1)

d3
=

2

d

(
1

d

(
1− 1

d

))
.
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Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de

l’Institut de Statistique de l’Universite de Paris 8:229–231.

26

Page 27 of 26

URL: http://mc.manuscriptcentral.com/lssp E−mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics − Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


