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Introduction

If n objects are ranked by d individuals according to some property, the question arises whether the d rankings show any agreement or are more or less independent. In their seminal paper, [START_REF] Kendall | The problem of m rankings[END_REF] suggested a measure W (now known as Kendall's W) to quantify the strength of agreement. It was defined in such way that 0 ≤ W ≤ 1 and W = 1 if and only if the d rankings are identical. Kendall's W was essentially used as a test statistic to test for the null hypothesis of d independent rankings. For this reason its distribution was investigated under the assumption of independence, usually called the null The structure of the paper is as follows: Section 2 introduces notations and some basic concepts of copula theory and statistics to be used in further sections. Subsection 3.1 proposes a population version of Kendall's W using copulas. In subsection 3.2, the empirical version of Kendall's W is shown to be asymptotically normally distributed under very weak assumptions on the copula. Subsection 3.3 discusses variance estimation for Kendall's W using the jackknife and the bootstrap. A simulation study based on the Gaussian and Clayton families of copulas investigates the performance of these resampling methods in small-and medium-sized samples. Subsection 3.4 explores the goodness of fit of normal approximations to Kendall's W for the above stated families of copulas. In an empirical example, section 4 applies Kendall's W to measure the strength of association of returns and volatilities of the 30 assets of the German DAX index. Section 5 concludes.

Notation and definitions

Throughout the paper we assume that X = (X 1 , . . . , X d ), where d ≥ 2, is a random vector with continuous distribution function F (x) = P (X 1 ≤ x 1 , . . . , X d ≤ x d ), x = (x 1 , . . . , x d ) ∈ R d and continuous marginal distribution functions F i (x i ) = P (X i ≤ x i ) for x i ∈ R and i = 1, . . . , d. Thus, according to [START_REF] Sklar | Fonctions de répartition à n dimensions et leurs marges[END_REF] theorem, a unique copula

C : [0, 1] d → [0, 1] exists such that F (x) = C(F 1 (x 1 ), . . . , F d (x d )) for x ∈ R d .
The copula C is the joint distribution function of the random vector U = (U 1 , . . . , U d ) = (F 1 (X 1 ), . . . , F d (X d )), A detailed treatment of copulas is given in [START_REF] Joe | Multivariate Models and Dependence Concepts[END_REF], [START_REF] Cherubini | Copula Methods in Finance[END_REF] and [START_REF] Nelsen | An Introduction to Copulas[END_REF]. An important example of a parametric family of copulas is the Gaussian copula (see [START_REF] Joe | Multivariate Models and Dependence Concepts[END_REF]) which will be used in the subsequent sections. It is defined by

C Θ (u 1 , . . . , u d ) = Φ Θ Φ -1 (u 1 ), . . . , Φ -1 (u d ) ,
where Φ Θ is the distribution function of a multivariate normal distribution with mean zero, unit variances and correlation matrix Θ = (θ ij ) i,j=1...d . Φ -1 denotes the quantile function of a standard normal distribution.

Another example for a parametric family of copulas is the Clayton family (see [START_REF] Clayton | A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence[END_REF]), given by

C θ (u 1 , . . . , u d ) := d i=1 u -θ i -(d -1) -1/θ
, where θ > 0.

It is well known that every copula C is bounded in the following sense always a copula and is called comonotonic copula. A random vector X with copula M is called comonotonic. Comonotonicity is a pairwise property: X = (X 1 , . . . , X d ) is comonotonic if and only if any pair (X k , X l ) is comonotonic, where k = l and k, l ∈ {1, . . . , d}. For a proof see Dhaene et al. (2000a).

Another important copula is the independence copula

Π(u) = d i=1 u i , u ∈ [0, 1] d . 4 F o r P e e r R e v i e w O n l y
It is the copula of a vector X of independent random variables X 1 , . . . , X d . Contrary to comonotonicity, independence is not a pairwise property. Pairwise independence of X k and X l for k < l and k, l ∈ {1, . . . , d} doesn't entail independence of X. For example, consider a d-variate Farlie-Gumbel-Morgenstern copula,

C(u 1 , ..., u d ) = d i=1 u i + θ d i=1 u i (1 -u i ) , |θ| ≤ 1.
For θ = 0 the copula C is not the independence copula but the copulas of its d * < ddimensional margins are independence copulas.

Gaussian and Clayton copulas interpolate the comonotonic and the independence copula:

For the Gaussian copula C Θ (u) = Π(u) if and only if Θ = I. For the case of equicorrelation,

i.e., Θ = (1 -θ)I + θ11 ′ and -1 d-1 < θ < 1, it can be shown that lim θ→1 C (1-θ)I+θ11 ′ (u) = M(u) for u ∈ [0, 1] d .
For the Clayton copula we have

lim θ→0 C θ (u) = Π(u) and lim θ→∞ C θ (u) = M(u) for u ∈ [0, 1] d .
A well known measure of bivariate association of two random variables is Spearman's rho, ρ S . For X k and X l it is

ρ S,kl = cov (F k (X k ) , F l (X l )) var (F k (X k )) var (F l (X l )) = cov (U k , U l ) var (U k ) var (U l ) = 12 1 0 1 0 C kl (u k , u l ) du k du l -3, where C kl (u k , u l ) = C(1, . . . , 1, u k , 1, . . . , 1, u l , 1, . . . , 1) denotes the marginal copula of X k
and X l . It can be seen that ρ S,kl depends on the copula C kl only, and is invariant with respect to the marginal distributions of X k and X l . It is ρ S,kl = 1 if and only if C kl = min{u k , u l } and therefore ρ S,kl = 1 if and only if X k and X l are comonotonic, see [START_REF] Nelsen | An Introduction to Copulas[END_REF]. Using that comonotonicity is a pairwise property, it follows that X = (X 1 , . In contrast, ρ S,kl = 0 does not imply independence of X k and X l , and thus ρ S,kl = 0 for k < l and k, l ∈ {1, . . . , d} does not imply that X = (X 1 , . . . , X d ) has independent components.

Let X 1 , X 2 , . . . , X n be a sequence of i.i.d. observations on X, where

X j = (X 1j , . . . , X dj ) ′
for j = 1 . . . , n and let

F i,n (x) = 1 n n j=1 1 {X ij ≤x}
be the empirical distribution function for i = 1, . . . , d and x ∈ R.

Further, set

U ij,n := F i,n (X ij )
for i = 1, . . . , d and j = 1, . . . , n. Note that

U ij,n = 1 n (rank of X ij in X i1 , . . . , X in ) = 1 n R ij,n . Let U j,n = ( U 1j,n , . . . , U dj,n ) ′
for j = 1, . . . , n and let 

R = (R 1,n , . . . , R n,n ) = (n U 1,n , . . . , n U n,n ) denote the corresponding d × n
= P (U 1 ≤ u 1 , . . . , U d ≤ u d ) = P (F 1 (X 1 ) ≤ u 1 , . . . , F d (X d ) ≤ u d ) for u = (u 1 , . . . , u d ) ∈ [0, 1] d .
We consider the following variable

U := d i=1 U i = d i=1 F i (X i ).
Obviously, E C (U) = d/2 for every copula C. The variance of U, however, depends on C. If C = Π (i.e., the variables X 1 , . . . , X d are independent), we have:

var Π (U) = 1 12 • d.
If C = M (i.e., the variables X 1 , . . . , X d are comonotonic), we have:

var M (U) = var(d • U 1 ) = 1 12 • d 2 .
The value d 2 /12 is an upper bound for var C (U) for arbitrary C. A lower bound is var C (U) = 0.

We look for examples of copulas C where var C (U) = 0. 

1. For d = 2 let C(u 1 , u 2 ) = W (u 1 , u 2 ). Then U 2 = 1 -U 1 and U = U 1 + U 2 = 1 = const.
1 = F 1 (X 1 ), . . . , U d = F d (X d ) are equicorrelated with corr(U i , U j ) = - 1 d -1 . Then var(U) = 1 12 d + d(d -1) - 1 d -1 • 1 12 = 0.
We now define W 0 by normalizing var(U) :

W 0 := var(U) d 2 /12 = 12var(U) d 2 . ( 1 
)
From the upper and lower bounds of var(U), we get where ρ S,kl = corr(U k , U l ) is the population version of Spearman's rho of X i and X j . We thus have

0 ≤ W 0 ≤ 1. Further, W 0 = 1/d if U = (U 1 , . . . ,
(d -1) (12var(U) -d) = 1 d(d -1) 12 d i=1 var(U i ) + k =l cov(U k , U l ) -d = 1 d(d -1) 12 d 12 + 12 k =l cov(U k , U l ) -d = 1 d(d -1) 12 k =l cov(U k , U l ) = d 2 -1 k<l corr(U k , U l ) = d 2 -1 k<l ρ S,
W 0 = (d -1) • ρS + 1 d (2) and ρS = dW 0 -1 d -1 . (3) 
In the following, we provide examples of W 0 and ρS for some special copulas C described in section 2.

• If C = Π then ρS = 0 and W 0 = 1/d. Note that the converse is not true. For example, for the Farlie-Gumbel-Morgenstern copula mentioned above, all pairwise Spearman's rho are equal to zero and therefore W 0 = 1/d although C is not the independence copula.

• W 0 = ρS = 1 if and only if C = M, i.e., W 0 = ρS = 1 if and only if X = (X 1 , . . . , X d )
is comonotonic. This is directly derived from the fact that ρS = 1 if and only if ρ S,kl = 1 for k, l = 1, ..., n and k = l, because this is equivalent to the comonotonicity of X = (X 1 , . . . , X d ). [START_REF] Embrechts | Correlation and dependency in risk management: properties and pitfalls[END_REF]) and

• If C = C Θ , a d-dimensional Gaussian copula with parameter matrix Θ = (θ ij ), i, j = 1 . . . d, then ρS = 6 π d 2 -1 i<j arcsin(θ ij /2) (see
W 0 = 12 πd 2 i<j arcsin(θ ij /2) + 1 d .
In the case of equicorrelation, i.e., if

θ ij = θ for i = j and -1 d-1 ≤ θ ≤ 1, we have W 0 = d -1 d 6 π arcsin(θ/2) + 1 d .
• In case of the Clayton copula a simple formula to express Spearman's rho as a function of θ is not available. Numerical evaluations, however, are possible (see [START_REF] Joe | Multivariate Models and Dependence Concepts[END_REF] A natural estimator for ρS

= d 2 -1 k<l ρ S,kl is ρS,n = d 2 -1 k<l ρ S,kl,n ,
where

ρ S,kl,n = n j=1 R kj,n -n(n+1) 2 R lj,n -n(n+1) 2 n 3 -n 12 = n j=1 U kj,n -n+1 2 U lj,n -n+1 2 n 3 -n 12n 2 . To estimate W 0 let U •j,n = d i=1 U ij,n with mean 1 n n j=1 U •j,n = 1 n d n(n + 1) 2n = 1 n d n + 1 2 and variance 1 n n j=1 U •j,n -d n + 1 2n 2 = n j=1 n U •j,n -d n+1 2 2 n 3 .
In the case of comonotonicity of the ranks, we have U •j,n = d/n • j without loss of generality. The variance term above is then equal to Therefore, an estimator of W 0 is

d 2 12 1 - 1 n 2 .
W n = 12 n j=1 n U •j,n -d n+1 2 2 d 2 (n 3 -n) ,
which coincides with the original Kendall statistic, Kendall's W, suggested in [START_REF] Kendall | The problem of m rankings[END_REF].

It has been shown in [START_REF] Kendall | Rank Correlation Methods[END_REF] that

ρS,n = d 2 -1 k<l ρ S,kl,n = d W n -1 d -1
and

W n = (d -1) ρS,n + 1 d ,
which are the empirical counterparts to equations ( 2) and (3) in section 3.1.

The asymptotic distribution of W n is established in the following theorem:

Theorem (Asymptotic normality of W n ).
Let F be a continuous d-dimensional distribution function with copula C. Under the additional assumption that the i-th partial derivatives D i C(u) exist and are continuous for i = 1, . . . , d, we have

√ n( W n -W 0 ) w -→ Z ∼ N(0, σ 2 C ),
where

σ 2 C = 144 d -1 d 2 k<l,s<t d 2 -2 [0,1] 2 [0,1] 2 E G C (u (k,l) )G C (v (s,t) ) dv s dv t du k du l and w -→ denotes convergence in distribution. Further, G C (u) = B C (u) - d i=1 D i C(u)B C (u (i) ),
where B C is a tight centered Gaussian process on [0, 1] d with covariance function 

E(B C (u)B C (v)) = C(u ∧ v) -C(u)C(v)
u (i) = (1, . . . , 1, u i , 1, . . . , 1).
Proof: See appendix.

Thus, W n is asymptotically normally distributed under weak assumptions concerning the basic copula C. Note that these assumptions exclude C = M, i.e., the case of comonotonicity.

In the latter case it is easy to see that W 0 = W n ≡ 1 and the variance of W n is zero.

The asymptotic variance σ 2 C of W n depends on the copula C and, in general, cannot be written as a function of W 0 as there are different copulas C with the same W 0 .

However, for the cases C = Π with W 0 = 1 d , i.e., in the case of independence, it follows that

σ 2 Π = d -1 d 2 d 2 -1 = 2(d -1) d 3 = 2 d 1 d 1 - 1 d
and σ 2 Π is a function of d and W 0 = 1/d. The proof can be found in the appendix. The independence case, however, is not the focus of this paper. It would be interesting to know whether a similar formula for W 0 can at least serve as an approximation to σ 2 C in the general case.

Variance estimation for Kendall's W

Although the theorem in section 3.2 yields an explicit formula for σ 2 C , its use in empirical applications is limited, as it relies on the unknown copula C and is of extremely difficult structure. Reliable estimators for the variance or standard deviation of W n can be obtained by resampling methods such as the bootstrap or the jackknife. For asymptotic justification of these methods see [START_REF] Shao | The Jackknife and Bootstrap[END_REF]. Note that these justifications are bootstrap it is assumed (as in section 2) that the basic latent variables X 1 , . . . , X n , are i.i.d. It has been shown that the bootstrap is asymptotically valid under this assumption (see [START_REF] Schmid | Multivariate extensions of Spearman's rho and related statistics[END_REF]).

The bootstrap is performed as follows. Let

(n U 1,n , . . . , n U n,n ) = (R 1,n , . . . , R n,n ) = R denote the d × n table of ranks as introduced in section 2. Let (R (b) 1,n , . . . , R (b) n,n ), b = 1, . . . , B denote the b-th bootstrap sample from (R 1,n , . . . , R n,n ).
Each bootstrap sample is derived by sampling with replacement and reranking it in the case of ties, e.g., by using mid-ranks.

The bootstrap standard deviation of W n is then estimated by

σ B Wn = 1 B -1 B b=1 W (b) n -W n 2 , where W (b)
n is the estimate of Kendall's W based on the b-th bootstrap sample. Like the bootstrap, the jackknife has to be done with respect to objects (i.e., by deleting a column of the table R). Jackknifing with respect to the d rankings (i.e., deleting a row in the table) changes the dependence structure of the d rankings and leads to implausible results in simulations. For the jackknife estimate let

R -j = (R 1,n , . . . , R j-1,n , R j+1,n , . . . , R n,n )
denote the d × (n -1) table obtained from R by deleting the j-th column (j = 1, . . . , n). By R -j we denote the reranked table (with ranks from 1 to (n -1)).

If W (j) n-1 denotes Kendall's W based on R -j , σ J Wn = n -1 n n j=1 W (j) n-1 -W n-1 2
defines the jackknife estimate of the standard deviation of W n .

The properties of both estimators in finite samples are investigated by simulation. We consider the Gaussian copula ( determined by n(n -1)/2 correlation parameters. In order to reduce the number of parameters in our simulations, we have confined ourselves to the equicorrelation case. Simulations for more complex correlation structures have been conducted and the results may be obtained from the authors on request. We did not find, however, any fundamental differences to the case of equicorrelation.

Contrary to the Gaussian copula, the Clayton copula has lower tail dependence.

Therefore, the Clayton copula shows strong association for low ranks. An association structure like that may well occur in practice. Think of referees showing strong agreement for the best ranked candidates but weak for the others. The and column W 0 in tables 1 and 2 proves that there is some bias in W n for n = 5, 10 and 20, in particular when the value of W 0 is near 0 and 1. Comparing column s( W n ) with m( σ B ) and m( σ J ) shows that the bootstrap and the jackknife estimates are reliable for the standard deviation of W n for n ≥ 20 and that there is no noticeable difference between the two estimates. Even for n = 5 and 10, none is superior to the other.

Comparing the standard deviations of both methods, i.e., columns s( σ B ) and s( σ J ), it can be seen that s( σ B ) is often smaller than s( σ J ) for n = 5 and 10. For n ≥ 20 there is no noticeable difference. Note, however, that the Jackknife is computationally more efficient for the considered sample sizes.

The simulated and the asymptotic standard deviation of W n can be compared in the case of independence (i.e., θ = 0 for the Gaussian copula). Comparing Table 1: Gaussian copula with equicorrelation with parameter θ for dimensions d = 3, 5 and 10 and sample sizes n = 5, 10, 20, 50 and 100. W 0 denotes the theoretical value of Kendall's W for the parameter θ under consideration. m( . ) and s( . ) denote mean and standard deviation of the respective quantity over N = 10000 Monte Carlo replications. σ B/J refers to the bootstrap (B, 500 samples) and jackknife (J) estimates of the standard deviation of W n . The last two columns display the simulated coverage probabilities CP B/J for a nominal 95% confidence interval for W 0 using σ B/J and the Gaussian 95% quantile (and the 95% quantile of the t ν -distribution with ν = n -1 degrees of freedom in brackets).

s( W n ) in table 1 with σ Π / √ n (
15 Table 2: Clayton copula with parameter θ for dimensions d = 3, 5 and 10 and sample sizes n = 5, 10, 20, 50 and 100. W 0 denotes the theoretical value of Kendall's W for the parameter θ under consideration. m( . ) and s( . ) denote mean and standard deviation of the respective quantity over N = 10000 Monte Carlo replications. σ B/J refers to the bootstrap (B, 500 samples) and jackknife (J) estimates of the standard deviation of W n . The last two columns display the simulated coverage probabilities CP B/J for a nominal 95% confidence interval for W 0 using σ B/J and the Gaussian 95% quantile (and the 95% quantile of the t ν -distribution with ν = n -1 degrees of freedom in brackets). This section investigates how well the distribution of the standardized W n , i.e., of

F
W n -W 0 σ B/J Wn
, can be approximated by a standard normal distribution, where σ

B/J
Wn is a bootstrap or jackknife estimator for the standard deviation of W n . For the Gaussian copula with equicorrelation and the Clayton copula, N = 10000 Monte Carlo replications of the above statistic have been generated and kernel density estimates of its density have been plotted for various combinations of n, d and parameters θ. Eight of these graphs are shown in figures 1 and 2.

The results of the inspection of a large number of these graphs for all considered values of d (n = 5 is not considered) can be summarized as follows:

-As expected, goodness of fit to the standard normal distribution increases if n increases.

-Using the bootstrap estimates for the standard deviation leads to somewhat better fits than using the jackknife estimates, in particular for n = 10 and 20. For n = 50 and n = 100, the difference is negligable.

-The fit is usually better for values of W 0 near 0.5 than near the borders 0 or 1. Indeed, values of W 0 near 1 (near 0) imply a distribution of the normalized W n which is skewed to the right (skewed to the left), in particular for n = 10 and n = 20.

Approximate normality of W n can be used to construct approximate (1α) confidence intervals for W 0 via W n ±Φ -1 (1-α/2) σ the true coverage probabilities of confidence intervals based on t-distributions with ν = n -1 degrees of freedom (values in brackets). As to be expected, coverage probabilities are higher now, leading to a better agreement with the nominal coverage rates for values of W 0 around 1/2.

The poor fit to the normal distribution for small values of n calls for the exact small sample distribution of W n . In the case of independence of the rankings, this distribution has been derived by [START_REF] Kendall | The problem of m rankings[END_REF] 

Application to financial data

Until recently, the dependence in financial data has usually been measured by the Pearson coefficient of correlation. The increasing use of copulas in modelling and analyzing financial data, however, entails the use of copula-based measures of dependence and association. For a critical discussion of the related issues, in particular the many shortcomings of Pearson's coefficient of correlation, see [START_REF] Embrechts | Correlation and dependency in risk management: properties and pitfalls[END_REF]. In finance, the strength of association of asset returns (as measured by W) and its development over time provide useful information on the amount of diversification contained in a portfolio of assets. A value of W near 1 indicates closeness to comonotonicity and poor diversification properties of the portfolio. A review of comonotonicity in finance, actuarial sciences and, in particular, in risk management is given in Dhaene et al. (2000a,b). Besides asset returns, volatilities of assets play a crucial role in the valuation of corresponding derivatives (such as put or call options). Association of volatilities and its development over time is therefore an interesting indicator for the derivatives market. In the following, we will apply Kendall's W to investigate returns and volatilities of the DAX-30 assets.

Let X = (X 1 , . . . , X 30 ) denote daily returns of these assets and let X 1 , . . . , X 250 denote observations on X on 250 consecutive trading days. From these observations, the 30 × 250 matrix of ranks R of the returns, the empirical value W 250 and the bootstrap and jackknife estimates σ B and σ J are computed as in section 3. This is conducted for a moving window Inspection of both figures reveals significant changes of Kendall's W for returns and volatilities over time. This is particularly the case for the volatilities which are between 0.15 and 0.37 with a remarkable increase since the beginning of 2006. Association of returns is between 0.32 and 0.45 and is always higher than those of the volatilities. The moving pattern of both series is essentially the same. Volatilities, however, seem to react somewhat stronger than returns. 

Conclusion

Kendall's W is a measure of agreement between d rankings of n objects. Copula theory enables to investigate W for the non-null case, i.e., the case when the rankings are not independent, in a very general way. It is possible to define a population version W 0 of Kendall's W in a straightforward manner. Further, it can be shown that the related estimator W n for W 0 is asymptotically normally distributed under weak assumptions. Its standard deviation can be determined by the bootstrap and the jackknife in a reliable way for n ≥ 10. n ≥ 20 if W 0 is not too close to 0 or 1, i.e., the cases of complete disagreement and agreement of the rankings. A suitable transformation of W n might be implemented to remove skewness in these cases but it seems to be an open problem which transformation can serve for this purpose for a broad range of copulas.

6 Appendix: Proofs

The proof of the theorem relies on the results in [START_REF] Schmid | Multivariate extensions of Spearman's rho and related statistics[END_REF]. These authors have shown that under the assumption of the theorem we have 

  1 , . . . , u d ) := P (U 1 ≤ u 1 , . . . , U d ≤ u d ) for u = (u 1 , . . . , u d ) ∈ [0, 1] d .The univariate margins U i are uniformly distributed on [0, 1].

W

  (u) := max {u 1 + . . . + u d -(d -1), 0} ≤ C(u) ≤ min {u 1 , ..., u d } =: M(u), for u ∈ [0, 1] d ,where M and W are called the upper and lower Frechet-Hoeffding bounds, respectively. The lower bound W is a copula itself only if d = 2. The upper bound M = min {u 1 , ..., u d } is

  with respect to n (i.e., n → ∞) whereas d is arbitrary but fixed. Concerning the 12 Page 13 of 26 URL: http://mc.manuscriptcentral.com/lssp E-mail: comstat@univmail.cis.mcmaster.

  sample sizes selected are n = 5, 10, 20, 50, 100. W 0 denotes the true value of Kendall's W for the parameters considered and m( . ) and s( . ) denote the mean and standard deviation of the respective quantity over N = 10000 Monte Carlo replications. Each bootstrap estimator relies on B = 500 bootstrap samples. The interpretation of the simulation results is straightforward. Comparing column m( W n )

  approximations to Kendall's WThe theorem in section 3.2 shows that W n is asymptotically normally distributed under very weak conditions on the basic copula C. The simulation results in section 3.3 imply that the finite sample standard deviation of W n can at least for n ≥ 20 be satisfactorily estimated by the bootstrap or the jackknife. Even for n = 10 and 5, they provide useful information on the scattering behavior of W n .

Figure 1 :Figure 2 :

 12 Figure 1: Gaussian copula. Kernel density estimates of ( W n -W 0 )/ σ B/J Wn using the bootstrap (B, solid line) and jackknife (J, dashed line) estimates of the standard deviation of W n . Left skewed densities refer to smaller values of W 0 . The dotted line depicts the density of the standard normal distribution.

  however, this distribution is not known. Our results on the asymptotic distribution of W n suggest that the finite sample distribution of W n depends on the copula C of the rankings and not only on W 0 . The relationship between C and the finite sample distribution, however, seems to be extremely complicated. It remains an open problem if at least some transformation of W n may lead to a better fit to the Gaussian density.

  set from 2nd of January 2003 to 6th of November 2009. The values of W 250,t , where t denotes the final day included in the window, are displayed in figure 3. The confidence intervals are computed as in section 3. In the same way W 250,t is computed for the volatilities |X 1 |, . . . , |X 30 |. Both values are compared in figure 4. The width of the 95% confidence intervals is about 0.078 for Kendall's W for the returns and 0.091 for the volatilities.

  Estimating Kendall's W over the entire time period from January 2nd 2003 to November 6th 2009 (i.e., n = 1787 observations) results in W n = 0.40 σ Wn = 0.009 for returns, W n = 0.31 σ Wn = 0.010 for volatilities. Comparing these results to figure 3, the need to model financial data adaptively by taking into account the permanent change in the strength of association in the underlying assets, becomes evident.

  The standardized version of W n can be approximated by the normal distribution at least for 22

Figure 3 :

 3 Figure 3: Kendall's W for returns with corresponding 95% confidence interval for the DAX data. The estimates rely on moving windows of 250 trading days. For the confidence intervals, bootstrap estimates of the variance are used as described in section 3.

Figure 4 :E

 4 Figure 4: Kendall's W for returns (solid line) and volatilities (dashed line) for the DAX data. The estimates rely on moving windows of 250 trading days.
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  For d ≥ 2 let X 1 , . . . , X d be such, that the corresponding U
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	Thus var C (U) = 0. Related examples can be constructed for d > 2. For d = 4, for
	example, the copula C(u 1 , u 2 , u 3 , u 4 ) = W (u 1 , u 2 )W (u 3 , u 4 ) has var C (U) = 0.
	7

  U d ) is independent. However, as discussed above, W 0 = 1/d does not imply the independence of U.

	W 0 is a population version of Kendall's W. It is closely related to the mean ρS of
	d(d -1)/2 pairwise Spearman's rho, ρ S,kl , of U k and U l .
	Indeed			
	var(U) -d/12 d 2 /12 -d/12	=	d	1
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3.2 Empirical version of Kendall's W and its asymptotic distribution

This section introduces empirical versions, i.e., estimators, of W 0 and ρS . The estimators are based on ranks given by the table R as defined in section 2. It is assumed that the joint distribution function F, the copula C and the marginal distribution functions F i are all unknown.
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(k,l) 

= (1, . . . , 1, u k , 1, . . . , 1, u l , 1, . . . , 1),

table 1

 1 

	) and the Clayton copula (table 2) with different di-
	mensions d = 3, 5, 10 and different parameters. The Gaussian copula is in general
	13
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	Page 15 of 26			
	θ	n W0 m( Wn) s( Wn) m( σ B ) m( σ J ) s( σ B ) s( σ J )	CP B	CP J
	Dimension d = 3 -0.45 5 .044 10 .044 F 20 .044 50 .044 100 .044 o -0.25 5 .174 10 .174 r 20 .174 50 .174 100 .174 0 5 .333 10 .333 P .09 .07 .06 .05 .05 .20 .19 .18 .18 .18 .33 .33 .33 20 .333 50 .333 .33 100 .333 .33 .3 5 .525 .49 e 10 .525 .51 e .06 .03 .02 .01 .01 .14 .09 .06 .04 .03 .19 .13 .09 .06 .04 .22 .14 .52 .10 20 .525 .52 .06 50 .525 .52 .04 100 .525 .5 5 .655 .61 .21 10 .655 .63 .14 r .64 .09 20 .655 50 .655 .65 .06 100 .655 .65 .04 .7 5 .789 .73 .19 10 .789 .76 .11 R .05 .04 .02 .01 .01 .11 .09 .06 .04 .03 .16 .12 .09 .05 .04 .20 .14 .10 .06 .04 .20 .14 .10 .06 .04 .20 .12 .77 .08 .08 20 .789 50 .789 .78 .05 .05 100 .789 .78 .03 .03 .9 5 .928 .87 .12 .17 e .07 .04 .02 .01 .01 .15 .10 .06 .04 .03 .22 .14 .09 .06 .04 .26 .16 .11 .06 .04 .26 .16 .10 .06 .04 .23 .13 .08 .05 .03 .15 10 .928 .89 .07 .09 .07 v e .04 .02 .01 .00 .00 .07 .03 .02 .01 .00 .07 .03 .02 .01 .00 .05 .02 .01 .00 .00 .04 .02 .01 .01 .00 .04 .03 .02 .01 .00 .04 .03 i .91 .04 .05 .04 .02 20 .928 .92 .02 .02 .02 .01 50 .928 100 .928 .92 .01 .02 .01 .00	.06 .02 .01 .00 .00 .11 .04 .02 .01 .00 .11 .04 .02 .01 .00 .10 .03 .01 .00 .00 .10 .04 .02 .01 .00 .11 .05 .02 .01 .00 .11 .04 .02 .01 .00	.74(.81) .80(.80) .97(.98) .96(.97) .99(.99) .98(.98) .98 .97 .97 .96 .66(.67) .84(.86) .90(.92) .90(.92) .93(.94) .92(.94) .94 .94 .94 .94 .83(.86) .82(.86) .88(.91) .89(.91) .92(.93) .92(.94) .93 .94 .94 .95 .83(.88) .81(.88) .90(.92) .91(.93) .92(.93) .93(.94) .94 .94 .94 .95 .87(.93) .86(.87) .92(.95) .92(.94) .93(.95) .94(.95) .94 .95 .95 .95 .93(.95) .94(.96) .95(.97) .92(.94) .95(.96) .94(.95) .95 .95 .95 .95 .99(.99) .90(.90) .99(1.00) .95(.97) .99(.99) .96(.97) .97 .96 .97 .96
		w	
			O n l
					y
		see end of section 3.2) shows good agreement. The
	deviations are smaller than 0.01 for n ≥ 10.		
		14		
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	Page 17 of 26						
	θ θ	n W0 m( Wn) s( Wn) m( σ B ) m( σ J ) s( σ B ) s( σ J ) n W0 m( Wn) s( Wn) m( σ B ) m( σ J ) s( σ B ) s( σ J )	CP B CP B	CP J CP J
	o r Dimension d = 3 Dimension d = 5 -0.2 5 .047 .07 .5 5 .530 .50 10 .047 .06 10 .530 .51 20 .047 .05 50 .047 .05 100 .047 .05 .52 20 .530 .53 50 .530 100 .530 .53 -0.1 5 .124 .14 10 .124 .13 20 .124 .13 50 .124 .12 100 .124 .12 0 5 .2 .20 10 .2 .20 20 .2 .20 50 .2 .20 100 .2 .20 1 5 .652 .60 10 .652 .63 F .64 20 .652 50 .652 .65 100 .652 .65 5 5 .923 .87 10 .923 .89 o r .91 20 .923 .92 50 .923 100 .923 .92	.05 .22 .03 .15 .02 .01 .01 .10 .06 .05 .09 .06 .04 .02 .02 .13 .08 .06 .04 .03 .22 .14 .10 .06 .04 .13 .07 .04 .03 .02	.05 .20 .03 .14 .02 .01 .01 .10 .06 .05 .08 .06 .04 .02 .02 .10 .08 .06 .04 .03 .20 .14 .10 .06 .04 .17 .09 .05 .03 .02	.07 .26 .03 .16 .02 .01 .01 .11 .07 .05 .11 .06 .04 .03 .02 .14 .09 .06 .04 .03 .26 .16 .10 .06 .04 .15 .08 .05 .03 .02	.03 .05 .01 .02 .01 .00 .00 .01 .00 .00 .04 .02 .01 .01 .00 .05 .03 .01 .01 .00 .05 .02 .01 .01 .00 .04 .03 .02 .01 .00	.04 .10 .02 .04 .01 .00 .00 .01 .00 .00 .07 .03 .01 .01 .00 .08 .04 .02 .01 .00 .10 .04 .02 .01 .00 .11 .04 .02 .01 .00	.83(.87) .81(.88) .87(.95) .94(.96) .89(.91) .90(.92) .98(.99) .96(.98) .98(.98) .96(.97) .96 .96 .96 .92(.94) .93(.94) .94 .94 .94 .95 .96 .86(.91) .87(.91) .91(.93) .91(.93) .92(.93) .92(.93) .93 .94 .94 .94 .81(.86) .83(.89) .87(.90) .89(.91) .91(.92) .92(.93) .93 .94 .94 .94 .85(.92) .83(.86) .91(.93) .91(.93) .93(.94) .93(.95) .94 .94 .94 .95 .98(.99) .87(.87) .99(.99) .94(.95) .98(.98) .94(.95) .96 .94 .96 .95
	P e e r R e v i e w 5 .430 .39 .19 .16 .21 .06 .09 10 .430 .41 .13 .12 .14 .03 .04 20 .430 .42 .09 .09 .09 .01 .02 50 .430 .43 .06 .06 .06 .01 .01 100 .430 .43 .04 .04 .04 .00 .00 5 .586 .53 .20 .18 .23 .05 .09 10 .586 .55 .13 .13 .15 .02 .03 20 .586 .57 .09 .09 .10 .01 .01 Dimension d = 5 .3 .5 .5 5 .436 .40 .19 .16 .22 .06 .10 10 .436 .41 .13 .12 .14 .03 .04 P .42 .09 .09 .10 .01 .02 20 .436 50 .436 .43 .06 .06 .06 .01 .01 100 .436 .43 .04 .04 .04 .00 .00 e 1 5 .583 .52 .21 .18 .24 .05 .09 50 .586 .58 .06 .06 .06 .01 .01 100 .586 .58 .04 .04 .04 .00 .00 .7 5 .746 .67 .18 .19 .22 .04 .09 10 .746 .71 .12 .12 .13 .02 .04 20 .746 .73 .08 .08 .08 .02 .02 50 .746 .74 .05 .05 .05 .01 .01 10 .583 .55 .14 .13 .15 .02 .04 e .57 .10 .09 .10 .01 .02 20 .583 .58 .06 .06 .06 .01 .01 50 .583 100 .583 .58 .04 .04 .04 .00 .00 5 5 .908 .84 .13 .17 .16 .04 .10 r 10 .908 .87 .08 .09 .08 .03 .04 100 .746 .74 .03 .03 .03 .00 .00 .9 5 .913 .84 .13 .17 .16 .04 .10 10 .913 .87 .07 .09 .08 .03 .04 20 .913 .89 .04 .05 .04 .01 .02 50 .913 .90 .02 .02 .02 .01 .01 100 .913 .91 .02 .02 .02 .00 .00 Dimension d = 10 -0.05 10 .057 .06 .03 .03 .03 .01 .01 20 .057 .06 .02 .02 .02 .01 .01 50 .057 .06 .01 .01 .01 .00 .00 100 .057 .06 .01 .01 .01 .00 .00 0 10 .1 .10 .04 .04 .05 .02 .02 20 .1 .10 .03 .03 .03 .01 .01 50 .1 .10 .02 .02 .02 .00 .00 100 .1 .10 .01 .01 .01 .00 .00 .3 10 .359 .33 .11 .10 .12 .03 .03 20 .359 .35 .08 .07 .08 .01 .02 50 .359 .35 .05 .05 .05 .01 .01 100 .359 .36 .03 .03 .03 .00 .00 .5 10 .534 .50 .13 .12 .13 .02 .03 .89 .05 .05 .05 .02 .02 20 .908 50 .908 .90 .03 .03 .03 .01 .01 100 .908 .90 .02 .02 .02 .00 .00 Dimension d = 10 R .5 10 .366 .34 .11 .10 .12 .03 .04 e .35 .08 .08 .08 .02 .02 20 .366 .36 .05 .05 .05 .01 .01 50 .366 100 .366 .36 .04 .04 .04 .00 .00 1 10 .531 .49 .13 .12 .14 .03 .04 v .51 .09 .09 .09 .01 .02 20 .531 .52 .06 .06 .06 .01 .01 50 .531 100 .531 .53 .04 .04 .04 .00 .00 i 5 10 .896 .86 .08 .09 .08 .03 .04 e w .87 .05 .05 .05 .02 .02 20 .896 .89 .03 .03 .03 .01 .01 50 .896 100 .896 .89 .02 .02 .02 .00 .00	.77(.83) .80(.88) .87(.90) .89(.91) .91(.93) .92(.94) .94 .94 .94 .94 .83(.89) .85(.88) .90(.93) .91(.94) .76(.83) .80(.88) .86(.89) .88(.91) .90(.92) .92(.93) .93 .94 .94 .94 .81(.88) .83(.87) .93(.94) .93(.95) .94 .95 .95 .95 .91(.93) .87(.93) .94(.96) .93(.95) .95(.96) .94(.95) .95 .88(.91) .89(.92) .92(.93) .93(.94) .94 .94 .95 .95 .97(.98) .94(.95) .99(.99) .95(.96) .95 .95 .95 .97(.99) .95(.96) .99(1.00) .96(.98) .99(.99) .97(.97) .97 .96 .97 .96 .91(.93) .91(.93) .92(.94) .92(.93) .94 .94 .94 .94 .86(.89) .87(.90) .89(.91) .90(.91) .93 .93 .94 .94 .85(.88) .87(.90) .90(.91) .91(.93) .93 .93 .93 .94 .88(.91) .89(.92) .98(.98) .95(.96) .96 .95 .96 .95 .84(.87) .86(.90) .88(.90) .90(.91) .92 .93 .94 .94 .85(.89) .88(.91) .91(.92) .92(.93) .93 .94 .94 .95 .98(.99) .95(.96) .98(.98) .96(.96) .96 .95 .96 .95
	20 .534 50 .534 100 .534 .7 10 .715 20 .715 50 .715 100 .715 .9 10 .902 20 .902 50 .902 100 .902	.51 .53 .53 .67 .69 .70 .71 .86 .88 .89 .90	.09 .05 .04 .12 .08 .05 .03 .07 .04 .02 .02	.09 .05 .04 .12 .08 .05 .03 .09 .05 .03 .02	.09 .06 .04 .13 .08 .05 .03 .08 .04 .02 .02	.01 .01 .00 .02 .01 .01 .00 .03 .01 .01 .00	O n l .01 .92(.93) .93(.94) .01 .93 .94 .00 .94 .94 .04 .93(.95) .93(.95) .02 .94(.96) .94(.96) .01 .95 .95 .00 .95 .95 .04 .99(.99) .97(.98) .02 .99(.99) .97(.97) .01 .98 .96 .00 .96 .95 O n l
								y y
				Table 1: continued
						16	
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