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REGIME PSEUDO-STATIONNAIRE EN CINETIQUE HETEROGENE

M. SOUSTELLE (ECOLE NATIONALE SUPERIEURE DES MINES SAINT ETIENNE)

Les régimes pseudo-stationnaires constituent une famille essentielle de solutions approchées de la vitesse d'une réaction qui conduisent à la plupart des lois cinétiques rencontrées en corrosion haute température.

RAPPELS SUCCINCTS DE QUELQUES RESULTATS DE CINETIQUE

Nous considérons une réaction hétérogène écrite sous la forme :

(gaz) G' β B(solid) β G(gaz) β A(solide) G' B G + → + [R.1] 1.1. VITESSES DE REEACTION
Si nous reprenons la réaction écrite sous la forme [R.1], nous pouvons définir un avancement par rapport à chacun des constituants à un instant donné comme la quantité de ce constituant ayant réagi ou formé de ce constituant à cet instant par son coefficient stoechiométrique compté négativement pour un réactant et positivement pour un produit de la réaction, nous aurons donc :

{ } { } 0 A A A - = ξ ; { } { } G 0 G G β ξ G - = ; { } { } B 0 B B β ξ B + = ; { } { } G' 0 G' ' G' β ξ G + = [1]
A partir de ces avancements, on défini des degrés d'avancement en les divisant par la quantité initiale du solide A :

{ } A 0 A A ξ α = ; { } A 0 B B ξ α = ; { } A 0 G G ξ α = ; { } A 0 G' G' ξ α = [2]
D'ù découlent les définitions des vitesses absolues v et des réactances r : 

v A A dt dξ = ; v B B dt dξ = ; v G G dt dξ = ; v G' G' dt dξ = [3] A A dt r α = ; B B dt r α = ; G G dt r α = ; G' G' dt r α = [4]
+ ⇔ X β [Et.1] ... .... 2 2 , 2 1 2 , 1 + ⇔ + X X β β [Et.2] ------------------------------- ... .... , 1 , 1 + ⇔ + - - i i i i i i X X β β [Et.i] ------------------------------- ... .... 1 , ⇔ + + n n n X β [Et.n+1]
On sait qu'une combinaison linéaire de ces étapes redonne la réaction globale [R.1]. On appelle coefficient multiplicateur, de la ρ ème étape le nombre λ ρ par lequel il faut la multiplier dans la combinaison linéaire précédente. Ces coefficients multiplicateurs satisfont les conditions suivantes :

1 A, = ∑ ρ ρ β ; B B, β β ρ ρ = ∑ ; G G, β β ρ ρ = ∑ ; G' , G' β β ρ ρ = ∑ [5]
Chaque étape a une réactance r i donnée par le produit de sa réactivité, fonction que de la température et des concentrations par sa fonction d'espace fonction que de la localisation de cette étape et des grandeurs morphologiques (aires, épaisseur) de la zone de localisation. On aura donc pour chaque étape :

i i E r φ i = [6]
Les réactivités φ i sont données pour une réaction d'interface (f i est le facteur de vitesse c'est à dire le produit du coefficient de vitesse par les concentrations des réactants et produits qui entrent dans l'étape i élevées, chacune, à la puissance ce leur coefficient stoechiométrique dans l'étape i) par :

[ ]                               - = i G G G G e G G G G i i P P P P f λ β β β β φ / 1 ' ' i ' ' exp 1 X [7]
Pour une diffusion par :

[ ] [ ] ( )                                 - = - = i G G G G e G G G G e i P P P P D D λ β β β β φ / 1 ' ' i i ' ' exp 1 X X [8]
Les fonctions d'espace E i sont données pour une réaction d'interface plane d'aire S 0 par :

0 0 ] A [ S E i = [9]
Et pour une diffusion à travers une couche d'épaisseur X par :

0 0 ] A [ X S E i = [10] 1.3. REGIMES CINETIQUES -REGIMES QUASI-QTATIONNAIRES
Dans des conditions données la vitesse de la réaction est une fonction complexe des variables du système. On appelle régime une expression particulière de cette fonction obtenue à partir d'hypothèses restrictives physiques qui simplifient l'expression de la vitesse. Une famille de solution particulière est fournie par ce que l'on a appelé l'Approximation des états stationnaires (A.E.Q.S.). Cette famille est définie en faisant l'hypothèse que dans certaines conditions les variations des concentrations des espèces intermédiaires restaient très faibles et qu'elles ne variaient pratiquement pas avec le temps, ce qui se traduit pour chaque intermédiaire X i par la double condition sur les concentrations :

[ ] 0 X d i ≅ dt et [ ]petite X i [7]
Cette approximation est justifiée par un cas d'école qui est celui d'une réaction à un seul intermédiaire X et qui est la succession de deux étapes mono moléculaire schématisées par :

B X A → → [R.2]
Ce cas peut effectivement être traité sans approximation pour conduire à une solution complète. Les courbes de concentrations des espèces A, B et C sont alors données par celles de la figure 1.

On constate sur la figure I qu'effectivement dans le cas étudié et pour un jeu de valeurs des deux coefficients de vitesse des deux étapes du premier ordre, la concentration de l'espèce intermédiaire X reste faible devant celles du réactant A et du produit C et qu'elle passe par un maximum très aplati qui permet d'accepter la première condition d'une vitesse quasiment indépendante du temps à la condition de ne jamais intégrer cette approximation. Sur ce modèle et sans plus de justification a été construite, depuis Bodenstein, la cinétique chimique homogène de l'A.E.Q.S.

Figure 1 -Courbes de concentrations des espèces mises en jeu dans deux étapes

successives du premier ordre.

REGIMES PSEUDO-STATIONNAIRE

Une catégorie de régimes joue un rôle particulièrement important par la fréquence de leur occurrence et la grande simplification apportée, ce sont les régimes pseudostationnaires.

La grande différence de ces régimes pseudo-stationnaires par rapport aux régimes quasistationnaires ci-dessus est qu'ils seront définis à la fois expérimentalement et théoriquement ainsi ils pourront être vérifié sur chaque réaction étudiée et dans les conditions choisies pour réaliser les expériences et avec les mêmes intervalles de confiance.

DEFINITION THEORIQUE DES REGIMES PSEUDO-STATIONNAIRES

Nous dirons alors que nous sommes dans un régime pseudo-stationnaire si les deux conditions suivantes sur les quantités de matière de chacun des intermédiaires réactionnels sont respectées :

{ } 0 d X d ≅ t et { } { } { } { } { }, G' ou , G , B , A X << [8]
Cela signifie qu'il n'y a aucune accumulation (positive ou négative) de ces espèces dans le système au cours du temps.

PROPRIETES DES REGIMES PSEUDO-STATIONNAIRES

Les régimes pseudo-stationnaires possèdent deux propriétés très importantes qu'il est aisé de démontrer [SOU 6a].

La première est l'invariance pour toutes les étapes du produit de la réactivité de cette étape par sa fonction d'espace pondéré par l'inverse de son coefficient multiplicateur soit :

1 1 1 1 1 1 1 ... 1 ... 1 + + + = = = = n n n i i i E E E φ λ φ λ φ λ [9]
Ce théorème est parfois connu sous le nom de théorème de l'égalité des vitesses car si tous les coefficients multiplicateurs des étapes sont égaux, on obtient effectivement l'égalité des vitesses de toutes les étapes élémentaires.

La deuxième est qu'une seule réactance caractérise le système et elle vaut (i étant l'une quelconque des étapes du mécanisme) : Les réciproques des ces deux propriétés sont également démontrées, c'est-à-dire que si des étapes élémentaires sont telles que l'une ou l'autre des deux propriétés sont vraies, le système est pseudo-stationnaire.

PSEUDO-STATIONNARITE ET QUASI-STATIONNARITE

Comme on peut le voir il existe un parallèle entre les deux notions posées par les conditions [7] et [8].. D'ailleurs à partir de la définition de la concentration en X i et en désignant par {X i } la quantité de X i et par a l'épaisseur de la zone dans laquelle se produit l'étape, on peut écrire :

{ } [ ] 0 d d X d d X d X d . d X d 0 0 0 ≅ + + = t a S t S a t S a t i i i i [11]
Dans le cas d'une réaction d'interface plane, a est de l'ordre de grandeur de l'épaisseur d'une couche atomique et ne varie pas dans le temps, l'aire S 0 est également constante et donc la pseudo-stationnarité théorique de confond avec la quasi-stationnarité.

Dans le cas d'une diffusion à travers le solide B, l'aire S 0 reste constante mais l'épaisseur a se confond avec celle X de la couche du solide B, mais comme la solution de la deuxième loi de Fick choisie est à gradient pratiquement constant cela signifie que :

CORROHT 2010 [ ] 0 d X d ≅ t i et donc 0 d d ≅ t a [12]
Et donc on en conclue que l'on choisit un gradient quasiment constant on obtient une solution qui est à la fois quasi-stationnaire et pseudo-stationnaire, c'est le cas de la loi parabolique.

REMARQUE : En cinétique chimique homogène les surfaces et volumes restent constants et donc la pseudo-stationnarité se confond avec la quasi-stationnarité, ce qui explique que les auteurs se soient plus intéressés à cette dernière.

DEFINITION EXPERIMENTALE D'UN REGIME PSEUDO-STATIONNAIRE

Nous définirons une réaction suivant un régime pseudo-stationnaire si le rapport de la vitesse mesurée par thermogravimétrie à celle mesurée par calorimétrie est à tout instant indépendant du temps et s'exprime en fonction des seules masses molaires des gaz mis en jeu, de l'enthalpie de la réaction H et des coefficients stoechiométriques algébriques (positifs pour les produits et négatifs pour les réactants) des gaz dans l'écriture de la réaction par la relation :

H M dt dQ dt m d G G G ∑ = ν ∆ [13]
On remarquera que les deux mesures peuvent être menées au cours d'une expérience conduite en conditions isotherme et isobare ou non dans un faible intervalle de température dans lequel l'enthalpie ne varie pratiquement pas.

EQUIVALENCE DES DEUX DEFINITIONS EXPERIMENTALES ET THEORIQUES

Si on exprime la variation de masse prenant en compte les différentes étapes ρ du mécanisme, la vitesse de masse peut s'écrire :

∑         ∑ - = ρ ρ ρ ρ φ ν G G G E M n t ∆m , 0 d ) d( [14]
On notera que seules les étapes se faisant avec consommation ou production d'un gaz interviendront de fait dans l'expression précédente.

Si maintenant on exprime le flux de chaleur dégagé ou consommé par la réaction à chaque instant il est donné en fonction des enthalpies H ρ de chacune des étapes par :

∑ = ρ ρ ρ ρ φ E H n t Q 0 d d [15]
Ecrivons maintenant le rapport des deux vitesses :

∑ ∑         ∑ - = ρ ρ ρ ρ ρ ρ ρ ρ φ φ ν ∆ E H n E M n dt dQ dt m d G G G 0 , 0 [16]
Si l'on veut que le rapport [16] satisfasse l'équation [13], il faut et il suffit que l'on ait :

1 1 1 1 1 1 1 ... 1 ... 1 + + + = = = = n n n i i i E E E φ λ φ λ φ λ [17]
C'est-à-dire que le système évolue en suivants un régime pseudo-stationnaire.

REGIMES PURS A UNE ETAPE DETERMINANTE

DEFINITION

Un régime à une étape déterminante est un régime dans lequel l'une des étapes (i), appelée l'étape déterminante, a ses coefficients de vitesse finies alors que ceux des autres étapes sont infinies. La conséquence est que toutes ces étapes non-déterminantes sont à l'équilibre thermodynamique.

PROPRIETE FONDAMENTALE D'UN REGIME E ETAPE DETERMINANTE

L'une des propriétés importantes de ces régimes est que la réactance est séparable. On dit qu'une réaction est à réactance séparable si cette dernière peut se mettre sous la forme d'un produit de deux fonctions :

E r φ = [18]
Dans laquelle φ est une fonction des seules variables intensives (température, pression, composition) à l'instant considéré (le temps n'étant qu'une éventuelle variable secondaire à travers les variables intensives si ces dernières varient avec le temps) et s'appelle la réactivité. E est une fonction qui dépend uniquement de la distribution des phases et des dimensions des interfaces, c'est à dire de la morphologie de l'espace réactionnel, à l'instant considéré (le temps n'étant encore qu'une variable secondaire à travers les variations morphologiques) et s'appelle la fonction spatiale.

La réactivité s'exprime en moles par mètre carré et par seconde, la fonction spatiale s'exprime en mètres carrés par mole.

Cette définition explique pourquoi l'approximation de la réactance séparable est aussi appelée approximation du φE.

Bien entendu pour calculer la réactance de la réaction on peut utiliser l'expression [10] en choisissant pour i l'étape déterminante.

REMARQUES: 1°) On notera que si la réaction est effectuée en gardant constante toutes les variables intensives, la réactivité ne dépend pas du temps et si, dans ces conditions, la réactance en dépend ce ne peut être qu'au travers de la fonction spatiale.

CORROHT 2010 2°) La variable temps n'étant jamais une variable principale cela signifie que la réaction se déroule en régime pseudo-stationnaire.

3°) Dans le cas de réaction d'une solution solide (alliages), la réactivité va dépendre des concentrations des constituants de la solution. Ces concentrations sont susceptibles de varier au cours du temps si les différents constituants ne réagissent pas à la même vitesse et donc la réactivité, à température et pressions partielles des gaz constants dépendra tout de même du temps.

REGIME PUR ET PSEUDO-STATIONNARITE

On notera que par suite des équilibres des étapes non déterminantes, les concentrations des différentes espèces aux interfaces sont constantes donc ces régimes sont déjà stationnaires. De ce fait, on ne considère en général que les régimes à une étape déterminante qui sont pseudo-stationnaire.

REGIMES MIXTES A DEUX ETAPES DETERMINANTES

DEFINITION

Un régime est dit à mixte ou à deux étapes déterminantes si deux étapes ont leurs coefficients de vitesse finies, celles des autres étapes non déterminantes sont infinies.

Régimes mixtes et pseudo-stationnarité.

REGIMES MIXTES ET PSEUDO-STATIONNARITE

Les régimes mixtes peuvent être ou non pseudo-stationnaires. C'est ainsi que la loi parabolique complète est un régime mixte pseudo-stationnaire alors qu'une des interprétations de la loi para-linéaire repose sur un régime mixte de réactions d'interface non pseudo-stationnaire.

REGIMES MIXTES PSEUDO-STATIONNAIRES A DEUX ETAPES DE MEME FONCTION D'ESPACE

Dans le cas de régimes pseudo-stationnaires, la vitesse globale peut encore être séparable et obéir ainsi à l'équation [10], seulement si les fonctions spatiales de toutes les étapes déterminantes sont égales entre elles à chaque instant, comme par exemple deux étapes d'interface interne et externe dans l'oxydation plane. Pour réaliser le test on effectue simultanément dans une thermobalance équipée en calorimètre les mesures des deux vitesses et on porte avec la même abscisse du temps la vitesse de variation de la calorimétrie (Figure 2). Si le test est satisfait le rapport des distances HM/HK doit être indépendant du temps.

Quelques fois on préfère essayer de confondre les deux courbes en déterminant une valeur du rapport pour un temps donné et en l'appliquant ensuite à toute la courbe calorimétrique. Ou bien on trace l'une des vitesses en fonction de l'autre et on doit obtenir une droite passant par l'origine.

La figure 3a) montre ce test dans le cas de l'oxydation du magnésium par l'oxygène [START_REF] Surla | Oxydation d'un alliage liquide aluminium magnésium, méthodologie de détermination des mécanismes à partir d'expériences non nécessairement reproductibles[END_REF], les deux courbes de thermogravimétrie et de calorimétrie sont parfaitement confondues après application d'un rapport convenable.

La figure 3b) montre le même test dans le cas de l'oxydation du zircaloy 4 par la vapeur d'eau [TUP02], on constate que le test est parfaitement vérifié avant la transition cinétique qui caractérise l'oxydation de cet alliage, ce qui n'est plus le cas dans la période post-transition qui n'est donc pas un régime pseudo-stationnaire. 

  est que dans ce cas que les expressions [1] sont égales de même que les expressions [2], les expressions [3] et les expressions [4].
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 2 Figure 2. Comparaison des courbes ATG et DSC
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 34 Figure 3. Test de pseudo-stationnarité a) pour l'oxydation du magnésium par l'oxygène, b) pour l'oxydation du zircaloy 4 par la vapeur d'eau

  Tous les cours de cinétiques affirment dès les premières lignes que les relations [1] (et [2]) sont toutes égales entre-elles, les relations [3] (ainsi que les relations [4]) sont aussi toutes égales entre elles définissant ainsi la vitesse absolue de la réaction.
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	des adsorption-désorption, des réactions quasi-chimiques ou des diffusions. Un tel
	mécanisme peut être schématisé par les n+1 étapes [Et. 1], [Et. 2], …[Et. i]… [Et. n+1]
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  Une série de régimes mixtes s'exprime de façon simple par ce que l'on appelle la loi des lenteurs qui exprime que l'inverse de la solution d'un régime mixte pseudo-stationnaire est égal à la somme des inverses des deux régimes déterminants correspondants . Ainsi pour un régime mixte pseudo-stationnaire déterminé par deux étapes i et j, la loi des lenteurs a la forme[19]. REMARQUE IMPORTANTE : On notera que cette formule n'est valable que si les deux étapes déterminantes ont le même coefficient multiplicateur. Par exemple on ne peut pas l'utiliser dans un cas mixte d'adsorption dissociative et de diffusion par exemple. Par contre on peut l'utiliser pour un régime mixte de diffusion réaction pseudo-stationnaire ce qui conduit à la loi parabolique complète.Le test de pseudo-stationnarité a pour but de valider ou non la possibilité de considérer une réaction comme se déroulant en régime pseudo-stationnaire ou non. Il s'appuie sur la définition [13] de la pseudo-stationnarité [SOU 06b]. Si cette expression est vraie les courbes de vitesse de prise de masse et de flux de chaleur se déduisent l'une de l'autre par une affinité orthogonale d'axe le temps, de direction l'axe des vitesses et de rapport celui donné par l'expression[13]. Cela signifie si on trace les deux courbes sur le même système d'axe le rapport (figure2) HK/HM est indépendant du temps.
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