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On Evaluation of a Population of Bayesian Networks

Two new evaluation of quality approaches for a population of Bayesian networks (BN) are proposed in this paper. The first approach relies on the use of statistical principle with application of well-known evaluation methods. The other bases on epsilon-quasi essential graph (QEG), an extension of essential graph (EG), that is a presentative graph for all BN of the population. In QEG, each edge is statistically weighted in two parts: (1) undirected part that represents the power of the relationship; (2) arrow part that represents the reliability of the orientation. Results of application to the both simulated and real-world problems show that these proposed approaches are the others helpful solutions for the problem of edge orientation and for the visualization of results of evaluation methods.

I. INTRODUCTION

Bayesian networks (BN) are one of the powerful graphical probabilistic models for representing and analyzing uncertainty knowledge. One of the strong interest of BN is the ability to learn the best structure that gives the best fit to the observational data. In the literature, the most of BN structure learning algorithm keeps only one the best structure. But with some others algorithms, the final result can be many BN instead of one, for example: evolutionary algorithms [START_REF] Larranaga | Structure learning of bayesian networks by genetic algorithms: A performance analysis of control parameters[END_REF], Bootstrap [START_REF] Friedman | Data analysis with bayesian networks: A bootstrap approach[END_REF]. The issue is if we keep the best structure with an evaluation criteria, the others can be also the best structures with another criteria. Thus, we need the good evaluation method that can evaluate also the others structures.

The evaluation of quality of BN is a crucial step in BN structure learning. Although, there are various proposed methods in the literature [START_REF] Lam | Learning bayesian belief networks. an approach based on the mdl principle[END_REF]- [START_REF] Tsamardinos | The max-min hill-climbing bayesian network structure learning algorithm[END_REF], but the problem of poverty of evaluation and visualization method for a population of structures still remains to be solved. To our knowledge, we can only cite here a related work presented by the research team of Imoto, Kamimura that based on the Boostrap analysis [START_REF] Imoto | Bootstrap Analysis of Gene Networks Based on Bayesian Networks and Nonparametric Regression[END_REF], [START_REF] Kamimura | Multiscale bootstrap analysis of gene networks based[END_REF]. Due to the cause of dimensionality and complexity of the data, this work still has the problem of the orientation among edges. They do not take into account the problem of Markov-equivalent class. Moreover, if the orientation is defined only by the edge intensity it can be cause the problem of cycle and irreversible edges. Therefore, to describe the most common properties of all population, the theory and the methodology must be expected to not only a statistical point of view but also some typical rules for orientation of BN structure. Our purpose is to establish two new approaches for measuring and describing more clearly the relationships among variables in order to estimate precisely the quality of the population: the first approach relies on the mean of quality of all BN. The quality of each BN can be estimated by one of these well-known evaluation methods: score, Kullback Leibler divergence, sensibility/specificity, edit distance. This technique allows us to identify directly a global quality of population by the available evaluation methods. The other approach bases on epsilon-quasi essential graph (QEG). QEG is an extension of essential graph (EG). The QEG based evaluation algorithm allows to construct statistically a unique representative graph for all population of BN. In QEG, each edge is weighted in two parts: [START_REF] Larranaga | Structure learning of bayesian networks by genetic algorithms: A performance analysis of control parameters[END_REF] undirected part that represents the power of the relationship; (2) arrow part that represents the reliability of the orientation. This technique allows us to obtain firstly a representant of population. Then we can evaluate the quality of population via this representant.

II. METHOD A. Basics concepts

Definition 1: Directed graph is defined by a couple G = (V, E) where:

• V is a definite set of vertices; • E ⊆ V × V is a set of couples of vertices called edges.
Definition 2: Markov condition is defined as following: Each variable X i is conditionally independent to a set of its non-descendants, N onDesc(X i ), given its parents, P a(X i ), therefore we can note P (Xi|P a(X i ), N onDesc(X E) is a directed acyclic graph (DAG) that the vertices represent a set of random variables X = (X 1 , ..., X n ) and θ i = [P (X i |P a(X i ))] is the matrix of conditional probabilities of vertices i given its parents in G and the couple (G, θ) verifies the Markov condition. The joint probability distribution on X is defined by :

i )) = P (X i |P a(X i )). Definition 3: B = (G, θ) is a Bayasian network if G = (X,
P (X 1 , X 2 , ..., X n ) = n i=1 P (X i |P a(X i )) (1) 

B. Statistical approach

The idea of this approach is to reuse evaluation methods for one BN (presented below) in order to evaluate the quality of each BN of the population and then we calculate the mean of all obtained results as the quality of a population of BN. This approach can be applied by two ways: (1) without equivalence class: we can evaluate directly the quality of each BN without taking into account the problem of Markovequivalent class. By this way, we can apply the score based method and Kullback-Leibler divergence based method; [START_REF] Friedman | Data analysis with bayesian networks: A bootstrap approach[END_REF] with equivalence class: we need to take into account the problem of Markov-equivalent class before evaluating the quality of each the BN. That means we have to transform all BN to essential graph (EG) (see section II.B.5). With this way, we can use sensitivity/specificity based method and edit distance based method.

1) Score based method: The idea of the score is simple: It is the posterior probability distribution conditioned to the available data; The best network is the one that maximizes this score. There are different kinds of scores: entropy and information based [START_REF] Rodriguez | The abc of model selection: Aic, bic and the new cic[END_REF], the minimum description length based [START_REF] Bouckaert | Probabilistic Network Construction Using the Minimum Description Length Principle[END_REF] and Bayesian approaches [START_REF] Heckerman | Learning bayesian networks: The combination of knowledge and statistical data[END_REF].

The score-based method is one of the fondamental methods to evaluate the quality of BN. There are various researches to improve its performance. However, it's hard to distinguish the performance between different types of score [START_REF] Carvalho | Scoring functions for learning bayesian networks[END_REF]. The choice of score depends on the specific context of the application. Moreover, in the case of Markov equivalence between BN, the score is incapable of distinguishing the BNs in the same equivalent class [START_REF] Chickering | Learning equivalence classes of bayesian-network structure[END_REF] (section II.B.5). This disadvantage becomes important in the case of comparison of the structural diffrence between two networks.

2) Kull-back Leibler divergence based method: Kullback-Leibler (KL) divergence is a measure of dissimilarity between two probability distributions [START_REF] Kullback | On information and sufficiency[END_REF]. It is used to measure the difference between the probability distribution of learned network , P B and the golden network, P B0 . If two probability distributions are discrete, this divergence is defined by:

D KL (B, B 0 ) = X P B (X)log P B (X) P B0 (X) (2) 
where X is a set of random variables X = X 1 , ..., X n . This formula is used with a convention that: 0 log 0 = 0. The value of KL is nonnegative and equal to zero when the laws P B and P B0 are identical. For two continuous probability distributions, P B and P B0 , this measure is defined by an integral.

KL divergence is a often used method in the probabilistic graphical models learning, including Gaussian models. However, the KL divergence suffers from its limitations when there are many variables, the computational complexity of this measure becomes large.

3) Sensibility/specificity based method: Inspired for statistics, the evaluation method for a BN based on sensitivity/specificity is a measure of the ability to match the edges presented learned BN to golden BN. The sensibility indicates the capacity of the learning algorithm to identify an edge presented in golden structure. The specificity indicates the capacity of the learning algorithm to identify an edge absent in golden structure. More precisely, the sensibility and specificity can be calculated as follows:

Sensibility = T P T P + F N (3) 
Specificity = T N T N + F P (4) 
where T P (true positive) = number of edges present in the both learned and golden network; T N (true negative) = number of edges missing in the both learned and golden network; F P (false positive) = (number of arcs in the learned network -TP); F N (false negative) = (number of edges missing in the golden network -TN);

This measure is often used in the literature. It is capable of distinguishing the BN in the same equivalence class. So it's interesting to study the differential structure of BN. However, this advantage also becomes a limitation. In fact, the structural difference between the BN of the same equivalence class is regarded as errors (section II.B.5).

4) Edit distance based method: If the sensitivity/specificity allows to describe the similarity between the learned and golden BN, the edit distance is interested in dissimilarity between them. It calculates the cost of modifying operations to transform the learned graph to golden graph. To calculate the cost of edit operations, you should use the concept of "matching" that is defined as follows [START_REF] Bunke | On a relation between graph edit distance and maximum common subgraph[END_REF]: Given G(V, E) and G 0 (V 0 , E 0 ) represent respectively the DAG of learned BN, B and golden BN, B 0 . The (matching) of G to G 0 is defined respectively by the bijective functions as following:

• f v : V → V 0 , where V ⊆ V is a subset of vertices of G and V 0 ⊆ V 0 is a subset of vertices of G 0 ; • f : E → E 0 , where E ⊆ E is a subset of edges of G et E 0 ⊆ E 0 is a subset of edges of G 0 ;
The cost associated with each edit operation to make of G(V, E) in G 0 (V 0 , E 0 ) can be defined as following:

• Addition:

1) the cost of adding a node is defined by:

A i (X i ) = 1 if X i ∈ V 0 -V 0 0 otherwise (5)
2) the cost of adding an edge is defined by:

A ij (E ij (X i , X j )) =          1 if E ij (X i , X j ) ∈ E 0 -E 0 and E ij (X i , X j ) ∈ E where X i , X j ∈ V 0 -V 0 0 otherwise (6) 
• Deletion:

1) the cost of deleting a node is defined by:

D i (X i ) = 1 si X i ∈ V -V 0 otherwise (7)
2) the cost of deleting an edge is defined by:

D ij (E ij (X i , X j )) =          1 if E ij (X i , X j ) ∈ E -E and E ji (X j , X i ) ∈ E 0 where X i , X j ∈ V -V 0 otherwise (8) 
• Inversion: the cost of reversing an edge is defined by:

I ij (E ij (X i , X j )) =          1 if E ij (X i , X j ) ∈ E 0 -E 0 and E ji (X j , X i ) ∈ E where X i , X j ∈ V 0 -V 0 0 otherwise (9)
The edit distance is the total of all edit costs above [START_REF] Bunke | On a relation between graph edit distance and maximum common subgraph[END_REF]. If the total cost of edit operations calculated only on the edges is called the Structural Hamming Distance SHD) [START_REF] Tsamardinos | The max-min hill-climbing bayesian network structure learning algorithm[END_REF]. This is a well-known evaluation method that easy to calculate. However, as the approach based on sensitivity/specificity, the equivalence of certain differently oriented edges in the sense of Markov is also considered as errors (section II.B.5).

5) Problem of the Markov-equivalent class: Firstly, as previously indicated, when two BN encodes the same conditional independence, the score is impossible to distinguish them (because they have the same score) (section II.B.1). These networks are equivalent under Markov condition (Definition 2). This is the problem of the Markov-equivalent class [START_REF] Chickering | Learning equivalence classes of bayesian-network structure[END_REF]. For example, given three variables X, Y, Z. Suppose that we have four BN B 1 , B 2 , B 3 , B 4 and their conditional probabilities are presented respectively as follows:

(B1) X→Y→Z P B 1 (X, Y, Z) = P (X) * P (Y |X) * P (Z|Y ) (B2) X←Y→Z P B 2 (X, Y, Z) = P (X|Y ) * P (Y ) * P (Z|Y ) (B3) X←Y←Z P B 3 (X, Y, Z) = P (X|Y ) * P (Y |Z) * P (Z) (B4) X→Y←Z P B 4 (X, Y, Z) = P (X) * P (Y |X, Y ) * P (Y )
According to the definition of conditional probability, we have: Secondly, The methods based on sensitivity/specificity or edit distance consider the difference between equivalent BN as errors or the costs of edit operations. Indeed, in the example above, there are some differences in orientation of edges in the three RB equivalents B 1 , B 2 , B 3 . Instead of taking into account as equivalent arcs, these methods count as a false (positive or negative) or cost of reversal operations. This is also anther type of problem associated to the Markov-equivalent class.

P (X|Y ) * P (Y ) = P (Y |X) * P (X) et P (Z|Y ) * P (Y ) = P (Y |Z) * P (Z). So, P B 1 (X, Y, Z) = P (X) * P (Y |X) * P (Z|Y ) = P (X|Y ) * P (Y ) * P (Z|Y ) = P B 2 (X, Y, Z) and P B 2 (X, Y, Z) = P (X|Y ) * P (Y ) * P (Z|Y ) = P (X|Y ) * P (Y |Z) * P (Z) = P B 3 (X, Y, Z). So, B 1 , B 2 ,
Before describing the solution for the problem of the Markov-equivalent class, we give some useful definitions and theorems:

Definition 4: Two DAGs are Markov-equivalent if they have the same set of Markov conditions.

Definition 5: Skeleton is the undirected graph obtained by removing directions from all arcs.

Definition 6: V-structure is one of a kind of Markov constraints for three variables X, Y, Z where: (1) X → Y and Z → Y ; (2) X and Z are not adjacent.

Theorem 1 [START_REF] Verma | Equivalence and synthesis of causal models[END_REF] Two DAGs are equivalent if and only if they have the same skeleton and the same v-structures.

Definition 7:

(Compelled edge) A directed edge x → y is a compelled edge in G if for every DAG G equivalent to G, x → y exists in G .
A consequence of Theorem 1 is that any edge participating in a v-structure is compelled. However every compelled edge not necessarily participates in a v-structure. This is the case of inferred edge.

Definition 8: Inferred edge is a directed and irreversible edge because its edge inversion create another v-structure.

A solution initially proposed by Chickering [START_REF] Chickering | Learning equivalence classes of bayesian-network structure[END_REF] solves this problem through a graph unique representing all equivalent BN. This graph is called essential graph.

Definition 9: Essential graph1 (EG) is a graph that retains all the directed edges that are common to all the Markov equivalent graphs and removes the direction of the remaining edges.

In order to solve the problem of the Markov-equivalent class, we transform firstly the DAG to EG [START_REF] Chickering | Learning equivalence classes of bayesian-network structure[END_REF]. Then, with the obtained EG, we can apply normally all evaluation methods presented above (except the edit distance based method, we must modified some edit costs to calculate the distance between two EGs [START_REF] Tsamardinos | The max-min hill-climbing bayesian network structure learning algorithm[END_REF]). The quality of the essential graph is also the quality of its original BN.

C. Epsilon-quasi Essential graph based approach

The idea of epsilon-quasi essential graph (QEG) based approach, that we refer to as EG-EVAL, is to take into account firstly the problem of the Markov equivalence class and then we summarize all obtained essential graphs of the population into a unique presentative essential graph, called epsilon-quasi essential graph (QEG). In QEG, each edge is weighted in two parts: [START_REF] Larranaga | Structure learning of bayesian networks by genetic algorithms: A performance analysis of control parameters[END_REF] undirected part that represents the power of the relationship defined by its occurrence frequency; (2) arrow part that represents the reliability of the orientation defined by the mean of occurrence frequencies of v-structures that contain it. The EG-EVAL algorithm consists of two stages: construct EG of population and evaluate EG:

In the first stage, we choose any DAG from the population and transform it to EG. Several researchers (Verma and Pearl [START_REF] Verma | Equivalence and synthesis of causal models[END_REF], Meek [START_REF] Meek | Causal inference and causal explanation with background knowledge[END_REF] and Andersson et al. [START_REF] Andersson | A characterization of markov equivalence classes for acyclic digraphs[END_REF]), present rule-based algorithms to implement DAG-to-EG. The idea is as follows:

1) construct skeleton by removing the direction of every edge in a DAG 2) direct and add v-structures to obtained skeleton 3) direct and add inferred edges to obtained skeleton (after adding V-structures) by applying a set of rules that transform undirected edges into directed edges. In this work, we use three Meek rules proofed in [START_REF] Meek | Causal inference and causal explanation with background knowledge[END_REF]: In the second stage, we evaluate the quality of this EG by methods presented in VI such as: sensibility/specificity, edit distance. This is also the quality of the population.

The next pseudo-code represents the EG-based algorithm for resuming of a population of equivalent BNs, EG-EVAL: 1) Epsilon-Quasi essential graph based (QEG-EVAL) approach for a population of random BN : In this section, we describe an evaluation algorithm based on EG-based-EVAL for a random population of BNs structures, that we refer to as QEG-EVAL. The QEG-EVAL takes as input a population of random DAGs, and outputs the quality of this population via an epsilon-quasi essential graph (QEG) representation of population.

Definition 10: The epsilon-quasi essential graph (QEG) is an essential graph that represents statistically almost common properties of a population of random DAGs. All small frequency edges are eliminated by a threshold > 0.5.

Each undirected edge of QEG is labeled by a weight that's its occurrence frequency in the population. Each directed edge of QEG is weighted in two parts: (1) a weight represents the occurrence frequency of undirected part; (2) another weight represents the occurrence frequency of arrow part associated to the mean weight of the V-structures that contain it (see section II.E for details).

Inspired from EG-EVAL, the QEG-EVAL consists also of two stages: construct QEG of population and evaluate QEG. In the first stage, there are three steps: 1) construct skeleton for population by adding one weightundirected edge for each direct dependencies found in population of DAG.

The undirected-edge weight is its occurrence frequency in the population. In order to control noisy-edges with the small frequency, we apply a threshold > 0.5. This threshold is superior to 0.5 to avoid the confliction of direction that issues in the next step;

2) direct and add v-structures to obtained skeleton by each triple of edges formed a V-structure.

The weight of each V-structure a → b ← c is the total by three parts: the occurrence frequency of a → b ← c, one half of the occurrence frequency of a → b and one half of the occurrence frequency of b ← c. By this way, the weight of v-structure is systematically smaller than the weight of its pair-edges. So, to avoid to eliminate the small frequency v-structures, their weight must be normalized by divide this total for M ax(w(a -b), w(b -c)); In order to control noisy-v-structures with the small weight, we apply a threshold > 0.5. This threshold is superior to 0.5 to avoid the confliction of direction when two v-structures are created from the same edge but oriented differently;

3) direct and add inferred edges to obtained skeleton (after adding V-structures) by Meek rules [START_REF] Meek | Causal inference and causal explanation with background knowledge[END_REF]. The weight of each inferred edge is calculated as following:

• For Meek rule R1: If w(a → b) = 1.0 and w(b - c) = 1.0 then w(b → c) = 1.0. If w(a → b) * w(b - c) > β then w(b → c) = w(a → b) • For Meek rule R2: If w(a → b) * w(b → c) * w(a -c) = 1.0 then w(a → c) = 1.0. If w(a → b) * w(b → c) * w(a -c) > β then w(a → c) = w(a → b) * w(b → c) • For Meek rule R3: If w(b → c) * w(d → c) * w(a - b) * w(a-d) * w(a-c) = 1.0 then w(a → c) = 1.0. If w(b → c) * w(d → c) * w(a-b) * w(a-d) * w(a- c) > β then w(a → c) = w(b → c) * w(b → c)
In the second stage, we evaluate the quality of this QEG by extended version of edit distance based evaluation methods for QEG presented nextly in II.D. This is also the quality of the population. The next pseudo-code represents the evaluation algorithm for a population of random BNs, QEG-EVAL: W ← 0; 13:

for i = 1 to N do 14:

//one v-structure found in EG i 15:

if a → b ← c ∈ EG i then 16:

W ← W + 1; 17:

end if 18:

//one half edge of v-structure found in EG i 19:

if a → b ∈ EG i then 20:

W ← W + 1 2 ; 21:

end if 22:

//another half edge of v-structure found in EG i 23:

if b ← c ∈ EG i then 24:

W ← W + 1 2 ; 25:

end if 26:

end for 27:

//calculate and normalize the total weight of v-structure 28:

W 

D. Extended version of edit distance based evaluation methods for QEG

In order to evaluation the quality of the population, we must calculate now the distance between the QEG in comparison to the EG of the golden graph. This distance is based on the version of distance SHD presented in II.B.4 and we add a more weighted cost, ξ, to each edit cost for transforming QEG to EG of the golden graph. ξ ij (E(X i , X j )) = 1-w(E(X i , X j )), where w(E(X i , x j )) is the weight of edge E(X i , x j ) of QEG. Figure 2 shows these edit costs for the transformations between different kinds of edges: E. Visualization for QEG based method

The visualization for QEG based method bases on the principle of the graph comparaison method. Originally, the graph comparison is a method for results representation of the graph matching. It use the color to spot the graphical differences between one graph in comparison to the other. In the context of BN structure learning, the graph comparaison method is used to illustrate the differences between learned BN and the golden BN. In general, the idea of this method is simple and easy to implement. It is an important to use different colors for different kind of edges: need to add, need to delete, need to reverse and verified (matched). A major constraint to check is that the learned BN and the golden BN should have the same set of nodes and the placement of nodes should have the same coordination. The following figure illustrates this method: Decision: The more black and the less colored edges/nodes, the BN is better.

III. EXPERIMENTATION AND RESULTS

1) Context and protocol of experimentation:

In order to generate a population of networks, we applied the genetic algorithm for BN structure learning by using two C++ libraries: EO (Evolving Object), ProBT_SLP (P roBT Structure Learning Package) and Graphiz for some available methods: genetic algorithm, scoring, KL divergence and visualization. We also implemented the rest of methods, including: sensibility/specificity, edit distance and QEG-EVAL.

To evaluate the performance of each evaluation method, we used two golden networks: ASIA and ASIA * (add, delete, inverse some edges of ASIA) to generate some datasets with different sizes as learning data. From this, we compare the results of each method by learning with different datasets. It allows to observe the behaviour of each evaluation method. Especially, for QEG -EV AL, we learned from Saccharomyces cerevisiae gene expression data (GDS2350 at GEO (Gene Expression Omnibus) server) with 11 selected genes and 50 test samples. We used a golden structure presented in [START_REF] Ko | Inference of gene pathways using mixture bayesian networks[END_REF] (see Figure 10.a). The obtained result allows to verify the quality of the structure learning algorithm in comparison to the others works in the literature.

2) Results: The Figure 5-9 present the results identified by means of evaluation with statistical approach. By comparing the change of the different value of each measures, the results show that:

• the score based method can recognize perfectly the change of sample size.

• the sensitivity and specificity based methods can also recognize the effect of change sample size. They are easy to understand how different or similar between learned network and golden network.

• the method based on Kullback-Leibler divergence seems the worst method. Because it clearly shows the uncertainty of its result. For example, the value of KL very ideal in theory, 0.03 -0.04, but we can not decide that the learned BN verify "perfectly" the golden BN. • the method based on edit distance shows its facility and its performance in term of methodology. We can differentiate easily and precisely each structural dissimilarity between two networks.

In general, all methods based on statistical approach allow to obtain only means evaluations. They do not give enough information about the structural quality of population. Almost methods base on the golden network given by experts. The evaluation method based on the comparison to this network needs take into account the problem of equivalence class (see TABLE 1 for a global view of methods).

Figure 10.b presents the result of QEG based evaluation method. With a set of properties such as, line types, edge colors, edge weight/size, arrow head weight/size, the visualization result offer a rich information about the population. This allows to more easily situate the similarity/difference between structures. This also helps the non-Bayesian experts to infer statistically not only each relationship between vertices via the edges intensity, but also precisely the reliability of edges orientation by a set of fondamental Meek rules. 

IV. CONCLUSION

The paper describes two evaluation approaches for evaluation of a population of Bayesian networks. We present the details of the algorithms and their implementation and explain how to resolve effectively some crucial problems in evaluation for a population of structures such as Markovequivalent class, edge orientation. The experimental results identified the helpfulness of proposed methods. They has been presented in the context of the evaluation of quality of a population of Bayesian networks. But they can be also applied to the evaluation of another kind of structures based on directed acyclic graph. We implemented and presented an extended version of edit distance for the epsilon-quasi essential graph based method. Perspectively, the extension of others well-known evaluation methods as score, Kullback Leibler divergence and sensibility/specificity will be also developed especially for epsilon-quasi essential graph.
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 1 FIGURE 1: Three fondamental Meek rules in an essential graph [18]: (R1) If the edge were oriented in the opposite direction there would be a new v-structure; (R2) If the edge were oriented in the opposite direction there would be a new cycle; (R3) If the edge were oriented in the opposite direction then by two applications of rule R2 on triple(a, b, c) and triple(a, d, c) there would be two new v-structures;

Algorithme 5 .

 5 EG-EVAL(eDAG POP) Require: Population of equivalent DAGs, eDAG P OP . Ensure: Quality of eDAG P OP . //STEP 1: DAG => EG P OP 1: EG POP← ∅; 2: Choose randomly a DAG, G, from eDAG P OP 3: //transform DAG to essential graph 4: EG POP← DAG2EG(G); //STEP 2: Evaluation of EG P OP 5: return Quality of eDAG POP ← EVAL(EG POP) 6: //EVAL can be one of methods presented in VI.

Algorithme 6 .

 6 QEG-EVAL(rndDAGP OP, )Require: A population of random DAGs and threshold, , to filter edges and v-structures with the small weight (α > 0.5). Ensure: Quality of rndDAG P OP . 1: N ← |rndDAGP OP |; 2: //transform all DAGs to essential graphs 3: for i = 1 to N do 4: EG i ← DAG2EG(G i ); 5: end for 6: //Union all skeletons of EGs into one weight-skeleton UG 7: [U G, w 1 (u.edges)] ← U nion{Skeleton(EG i )}; 8: //filter noisy-undirected-edges of UG and create QEG POP 9: QEG P OP ← {u.edges ∈ U G/w 1 (u.edges) > }; 10: //add and set weight v-structure for QEG POP 11: for ∀triple(a, b, c)/a -b -c ∈ QEG P OP and notAdj(a, c, QEG P OP ) do 12:

  ← W/[N * M ax(w 1 (u.edges(a, b)), w 1 (u.edges(c, b)))]; 29: //filter noisy-v-structure from QEG POP 30: if W > then 31: //direct v-structure in QEG POP 32: orient a → b ← c ∈ QEG P OP ; 33: //set weight for v-structure in QEG POP 34: w 2 (a, b, c, QEG P OP ) ← W ; 35: end if 36: end for 37: // add inferred edges 38: for Each inferred edge found in QEG POP do 39: Apply Meek rules; 40: end for 41: return Quality of rndDAG POP ← EVAL(QEG POP)

FIGURE 2 :

 2 The edit costs of SHD between QEG and EG of golden graph: ∅: without edge; -: undirected edge; →: edge oriented right; ←: edge oriented left; ∅ ⇔ -: cost =1 + ξ; -⇔←: cost = 1 + ξ; -⇔→: cost =1 + ξ; ∅ ⇔→: cost = 2 + ξ; ∅ ⇔←: cost =2 + ξ; →⇔←: cost =2 + ξ;

FIGURE 3 :

 3 Comparison of learned colored graph and the golden graph. Interpretation: Line types and colors represent the state of the edges/nodes: "continuous-line": edges/nodes verified golden graph, "dashed-line": edges/nodes need to add to learned graph; Black = edges/nodes verified; Blue = edges/nodes need to add; Red = edges/nodes need to delete; Gray = edges need to reverse.

  (a) ASIA golden network (b) ASIA* golden network
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 4 FIGURE 4: Two golden networks used to generate different learning datasets.
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 5 FIGURE 5: Results of Score based method.
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 6 FIGURE 6: Results of KL divergence based method.
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 7 FIGURE 7: Results of Sensibility based method.

FIGURE 8 :

 8 FIGURE 8: Results of Specificity based method.
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 9 FIGURE 9: Results of Edit distance based method.

FIGURE 10 .

 10 FIGURE 10.a Golden structure presented by Ko et al. 2009 [19]. Legend: Solid lines and arrows denote direct relationships predicted and confirmed in the BioGRID (B), SGD (S), KEGG (K) databases, literature (L) or by Friedman et al. (F) [20]. Dashed lines denote indirect relationships predicted and confirmed in the databases. Arrows denote directional relationships reported in the KEGG pathway.Lines denote non-directional relationships reported in the KEGG pathway.

FIGURE 10 .

 10 FIGURE 10.b: QEG of population of BN learned from Ko golden graph (Figure 7.a): Legend: Line types and colors represent the state of the edges/nodes: "continuous-line": edges/nodes verified golden graph, "dashed-line": edges/nodes need to add to learned graph; Black = edges/nodes verified; Blue = edges/nodes need to add; Red = edges/nodes need to delete; Gray = edges need to reverse. The weight of each edge contains two parts: first part is the occurrence frequency of undirected part, second part is the occurrence frequency of arrow head that is associated to the mean of weights of v-structures that contain it. The size of edge and arrow head represent their weights. Decision: By application of extended version of edit distance for QEG, SHD(QEG, EG(Ko)) = 21.5

  B 3 are equivalent in the sense of Markov (see Definition 2). But, with P B4 (X, Y, Z), P (Y |X, Y ) can not be simplified. So, B 4 is not equivalent with respect to the three others.

TABLE 1 :

 1 [START_REF] Husmeier | Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic bayesian networks[END_REF] Global view of methods (Equiv. class): if the method is a solution for the problem of equivalence class; (Complex.): if the calculation of method is complex; (Indep. to GS.): if it the method depends on the golden structure; (Indep. to data): if it the method depends on data;

	Methods	Equiv. class	Complex.	Indep. to GS.	Indep. to data
	1. Score	-	-	+	-
	2. KL divergence	+	-	-	+
	3. Sensib./Specif.	-	+	-	+
	4. Edit distance	-	+	-	+

(+): favorable; (-): unfavorable

Note that, in the literature, essential graph is also called as "completed PDAG" (CPDAG)[START_REF] Andersson | A characterization of markov equivalence classes for acyclic digraphs[END_REF] or "maximally oriented graphs"[START_REF] Meek | Causal inference and causal explanation with background knowledge[END_REF].
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