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Abstract—Navigation of an Autonomous Vehicle is based 

on its interaction with the environment, through information 

acquired by sensors. The perception of the environment is a 

major issue in autonomous and (semi)-autonomous systems. 

This work presents the embedded real-time visual perception 

problem applied to experimental platform. In this way, a 

robust horizon finding algorithm that finds the horizon line 

was proposed and applied to generate the navigable area. It 

permits to investigate dynamically only a small portion of the 

image (road) ahead of the vehicle. From a dynamic threshold 

search method based on Otsu segmentation and Hough 

transform, this system was robust to illumination changes and 

does not need any contrast adjustments. It can also be used 

with infrared camera. 

I. INTRODUCTION 

HE robot navigation is based on its interaction with the 

environment. In order to obtain information about it, 

sensors are needed, which in many cases may be limited in 

scope and subject to noise. However, when incorporating 

several types of sensors, there is an increase of autonomy 

and “intelligence” degrees, especially in relation to 

navigation in unknown environments. On the other hand, 

the type and quantity of sensors determine the volume of 

data for processing that requires a high computational cost. 

Furthermore, the important factors are the variety and 

complexity of environments and situations. For military or 

civil purposes, some of these applications include: the 

Grand Challenge [1] and Urban Challenge [2]; Advanced 

Driver Assistance Systems (ADAS) [3]; autonomous 

perception system [4], [5], and aerial robots [6], [7]. These 

applications have a common issue: providing to the 

robot/vehicle platform the capability of perceiving and 

interacting with its neighbour environment. 

Although extremely complex and highly demanding, 

thanks to the great deal of information it can deliver, 

machine vision is a powerful means for sensing the 

environment and has been widely employed to deal with a 

large number of tasks in the automotive field [8]. 

Due to the general applicability of it, the problem of 

mobile robots navigation is dealt with using more complex 
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techniques [8]. Besides their intrinsic higher computational 

complexity caused by a significant increment in the 

amount of data to be processed, the most common vision 

systems (such as the processing of non-monocular images) 

must also be robust enough to tolerate noise caused by 

platform movements and drifts in the calibration of the 

multiple cameras’ setup. 

For land vehicle navigation, the monocular vision 

systems have been designed to investigate the road 

information, and in order to decrease the volume of data 

for processing, some systems have been designed to 

investigate only a small portion of the road ahead of the 

vehicle where the absence of other vehicles has been 

assumed [8]. Otherwise, the sky region is not a region of 

interest, and the horizon line threshold is applied to 

generate a road image [9]. Stanford Racing Team [10] 

implemented the horizon finding algorithm originally 

proposed by [11] to eliminate all pixels above that horizon. 

Additionally, these techniques has been used for flight 

stability and control system to Micro Air Vehicles [11], for 

the control of the airship [12] and landing aircraft control 

[13]. It also was employed as an absolute attitude sensor 

which is useful for low-level control of an unmanned aerial 

vehicle [14]. 

In this way, from a dynamic threshold search method 

based on Otsu segmentation [15] and Hough transform 

[16], a robust horizon finding algorithm that finds the 

horizon line was proposed and applied to generate the 

navigable area. It permits to investigate dynamically only a 

small portion of the image (road) ahead of the vehicle. 

This algorithm is robust to illumination changes and does 

not need any contrast adjustments. 

The Section II presents the sensor perception review and 

monocular vision contributions. From the Section III and 

IV the results are presented, and the conclusions are given 

in Section V. 

II. SENSOR PERCEPTION 

Several models of distributed vehicle navigation 

architecture are presented in the literature [1], [2], [17]. 

The perception layer uses many types of sensors, including 

ultrasonic sensors, laser rangefinders, radar, cameras, etc. 

However, these sensors are not perfect: ultrasonic 

sensors are cheap but suffer from specular reflections, and 

laser rangefinders and radar provide better resolution but 

are more complex and more expensive [4]. 

According to [8], the vision-based sensors are defined as 

passive sensors, the image scanning is performed fast 

enough for Intelligent Transportation Systems, and it can 

be used for some specific applications: road marking 
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localization, traffic signs recognition, obstacle 

identification. However, vision sensors are less robust than 

millimeter-wave radars in foggy, night, or direct sun-shine 

conditions. 

On the other hand, for range-based obstacle detection 

systems have difficulty for detecting small or flat objects 

on the ground, and range sensors are also unable to 

distinguish between different types of ground surfaces [4]. 

Notwithstanding, the main problem with the use of active 

sensors is represented by interference among sensors of the 

same type, hence, foreseeing a massive and widespread use 

of these sensing agents, the use of passive sensors obtains 

key advantages [8]. 

Fig. 1 illustrates the monocular vision contribution to 

the DARPA Grand Challenge [10]. This diagram shows 

that the reach of lasers was approximately 22 meters (left), 

whereas the monocular vision module often looks 70 

meters ahead (right). It also shows the horizon detection 

for sky removal. 

 
Fig. 1 – Monocular vision: comparison of the laser-based 

(left) and the image-based (right) mapper. Circles are 

spaced around the vehicle at 10 meters distance. It also 

shows the horizon detection for sky removal [10]. 

 

On the safety front, the ADAS including front bumper 

mounted cameras. The progressive safety systems will be 

developed through the manufacturing of an “intelligent 

bumper” (safety belt) peripheral to the vehicle in 

answering new features as: lane change assistant, blind 

spot detection, frontal and lateral pre-crash, etc. The 

objective in terms of cost to fill ADAS functions has to be 

very lower than the current Adaptive Cruise Control (500 

Euros) [18]. 

Aware that in the majority of the navigation systems, the 

machine vision system is working together with other 

sensors, added to its low cost, this paper presents a 

monocular vision-based system that includes a robust 

horizon finding algorithm. Because it uses simple 

techniques and fast algorithms, the system is capable to 

achieve a good performance, where the compromise 

between processing time and images acquisition is 

fundamental. 

III. ROBUST HORIZON FINDING ALGORITHM 

In a general way, the navigation system must be capable 

to drive the vehicle (or to help the driver in its driver 

process), using the information received from all sensors. 

Processes conducted by the machine vision have as goal, 

in addition to the visual information, to process image data 

for machine perception. Its algorithms carry through 

operations on images, with the purpose to reduce noise and 

to segment them. 

One way to perform segmentation of an image is to use 

thresholds. This type of segmentation technique, called 

thresholding, is very simple and computationally fast, 

however the identification of the ideal threshold can be 

sufficiently complicated. The best thing to do in this case 

is to use techniques and algorithms that search the 

thresholds automatically. Thresholding methods are 

divided in two groups: global and local. The global ones 

divide the image using only one threshold and the local 

ones are those that divide the image in sub-images and for 

each one of them a threshold is defined [19].  

What this work proposes is a global thresholding 

method, which seeks not the ideal threshold for the whole 

image, but an ideal threshold associated at each portion 

(local information), that contributes to the final decision. 

Details of this search are described below. 

A. Image pre-processing 

Most research groups face this problem using highly 

sophisticated image filtering algorithms [8]. This work 

uses a color or gray-level image and smooth them using a 

Gaussian filter. The Gaussian smoothing operator is a 2-D 

convolution operator. It acts as low-pass frequency filters 

[20]. In order to reduce the number of data, it includes the 

resolution reduction of image (to 128x96). 

If the image is colored, in order to utilize the most 

important information of the color image, the candidate 

color channel that was dominant in certain color space is 

selected to generate the histogram image [21]. For us this 

space represents 60% of the image (Fig. 5). It is described 

by Eq. (1). 
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where Cc means the color channel and 
RN  means the 

number of the dominant color channel in certain 

referenced region. 

B. Image segmentation and sky removal advantage 

The purpose of segmentation here is the line horizon 

detection (horizon finding) for sky removal. Right after the 

images pre-processing, it can use the search for an ideal 

threshold based on Otsu [15]. 

The Otsu method exhaustively searches for the threshold 

that minimizes the intra-class variance, defined as a 

weighted sum of variances of the two classes. The 

thresholding process is seen as the partitioning of pixels of 

an image in two classes (foreground and background): 

C1={0, 1,…, T} and C2={T+1, T+2,…, N−1}, where T is 

the chosen threshold and N the number of intensity levels 

of the image. It is described by: 
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proportion of background pixels, ( )T
2

1σ  is the intensity 

variance of background pixels, ( )Tq2
 is the proportion of 

foreground pixels and ( )T
2

2σ  is the intensity variance of 

foreground pixels. 

 

The class probabilities are estimated as: 
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The class means are given by: 
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Finally, the individual class variances are: 
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where H is the histogram of the selected channel in Eq. (1). 

 

Fig. 3 – Original image and Otsu segmentation. 
 

 
Fig. 4 – Left: Otsu segmentation (road detection) after sky 

removal; Right: Global Otsu threshold (104); new Local 

Otsu threshold (32) after sky removal. 

 

One of the great advantages of this method is that it 

does not restrict itself to the type of histogram of the 

image, that is, it can be applied to unimodal, bimodal or 

multimodal histograms, but it presents better performance 

in images with bigger intensity variance. Its main 

disadvantage is its sensitivity to noise in the image, what 

can be reduced with the application of a filter.  

Region recognition can be handled by popular 

thresholding algorithm such as Maximum Entropy, 

Invariant Moment and Otsu thresholding method (OTM). 

For road detection, because OTM supplies a more 

satisfactory performance in image segmentation, it was 

used to overcome the negative impacts caused by 

environmental variation [21]. 

Furthermore, some authors consider the OTM as one of 

the best choices for real-time applications in machine 

vision [22], [23]. It still remains one of the most 

referenced thresholding methods [24]. 

Although the Otsu method is an excellent method to 

choose an ideal threshold, it considers for all cases the 

information of the image as a whole (global information).  

Let's see an example for land vehicle navigation, where 

the main task is road detection. Fig. 3 illustrates that 

probably for images that possess the horizon (sky) in its 

composition, the algorithm may not have a satisfactory 

result. 

To deal with this problem, a robust horizon finding 

algorithm is proposed. After sky removal, it permits to 

investigate only a small portion of the image ahead of the 

vehicle, and the new result can be seen in Fig. 4. 

C. Visual-based line horizon detection 

According to [24], cluster-Otsu (clustering thresholding) 

minimizing the weighted sum of intra-class variance of the 

foreground and background pixels to establish an optimum 

threshold, that minimization of intra-class variance is 

tantamount to the maximization of between-class scatters. 

The Otsu method gives satisfactory results when the 

numbers of pixels in each class are close to each other. 

 
Fig. 5 – Sub-images and the horizon line detection. 

 
Fig. 6 –The clusters-Otsu and its optimal local thresholds. 

 

Using as reference Fig. 5, the horizon finding results can 

be seen in Table I. It presents an example of land vehicle 

navigation, where the range of horizon analysis was 

empirically limited to a maximum height of 60% of the 

image. 

The horizon finding algorithm creates empirically cuts 

that divide image in ten parts (sub-images) of equal 

heights. All these sub-images are then submitted to the 

segmentation algorithm: Eq. (2), where the output is a 

vector with Otsu thresholds values of each sub-image. 

Then, a threshold is calculated at each sub-image (Fig. 6), 

which depends on local information and variance of the 

pixel neighborhood. 

Subsequently, in order to find the optimal threshold that 

is capable to get a more efficient segmentation and to 

distinguish with bigger precision, for each found local 



  

Otsu threshold, all sub-images are again submitted to the 

segmentation algorithm. The purpose is to analyze how 

much each local sub-image contributes positively to 

increase or reduce horizon points. 

Then, the algorithm initiates by analyzing the sub-image 

closest to the vehicle, that is, the first more inferior slice of 

the image, going from the bottom edge of the image (red 

line, Fig. 6) to the last more superior sub-image. 

Using as reference Fig. 6, it obtains the local Otsu 

thresholds and its percentage of foreground points 

(horizon). They are represented in blue by the diagonal 

matrix in Table I, respectively, threshold (T) and 

percentage (P): 

(a)  T = 135 / P = 28%  | (f) T = 150 / P = 57% 

(b)  T = 132 / P = 15%  | (g) T = 143 / P = 48% 

(c)  T = 123 / P = 7%    | (h) T = 133 / P = 53% 

(d)  T = 136 / P = 59%  | (i)  T = 125 / P = 53% 

(e)  T = 154 / P = 80%  | (j)  T = 118 / P = 52% 
 

TABLE I 

LOCAL OTSU THRESHOLDS VALUES OF THE FIG. 6 

 

 

Another interaction is next necessary. For each local 

Otsu threshold found, all sub-images are again submitted 

to the segmentation algorithm. 

Taking as reference the data in Table I, from an Otsu 

threshold equal to 135, the result of the first interactions 

can be seen in column (a). For example, it has in row (a)-

10 its percentage of foreground points equal to 28 (blue) 

which refers to the sub-image closest to the vehicle. In the 

following, using the same Otsu threshold, in row (a)-9, the 

result equal to 14 refers to the second sub-image analyzed, 

and so on for others rows in column (a). 

As a second example, in column (j) it has an Otsu 

threshold equal to 118. From this threshold (last more 

superior sub-image analyzed), in row (j)-10 the percentage 

of foreground points equal to 53 refers to the sub-image 

closest to the vehicle. In the following, in row (j)-9 the 

result equal to 23 refers to the second sub-image analyzed. 

The columns (k) and (l) are, respectively, sum of rows 

and percentage difference between the value of a row and 

its previous one. Then, considering that the algorithm 

search the region of greatest difference in the image, the 

yellow filled row (8) is the one where it finds the value 91. 

The horizon line separates the image into two regions 

that have different appearance [11]. The choice of this 

method was based on [19], because the use of a global 

segmentation method, not always the analysis of a bigger 

image portion can contribute for a better result in the most 

critical region (Fig. 3: in land navigation, the region closer 

to the vehicle), where obstacles should be detected and 

avoided as fast as possible. On the contrary, when 

separating the superior portion of the original image (sky 

removal), it is capable to get a more efficient segmentation 

and to distinguish with bigger precision the obstacles from 

the navigation area. 

Once the Otsu horizon line is found, the Hough 

transform [16] is used, and a rapprochement between both 

results is triggered based on the weighted average. The 

Canny detector [25] was employed as input of Hough 

transform due to its robust performance and accurate edge 

localization. 

Finally, due to the fact that in small time intervals, there 

will be no abrupt changes in the positioning of new 

horizon line (NHL), it has decided to use a simple 

decaying filter followed by a Kalman filter (KF) [26]. It is 

presented in Fig. 7. 

 
Fig. 7 – Horizon Line (HL) and New Horizon Line (NHL). 

IV. IMPLEMENTATION AND RESULTS 

A. Robust horizon finding algorithm (sky removal) 

Fig. 8 to 11 present the performance of the horizon line 

detection process in unknown environments: desert road 

videos available by DARPA [27]; urban environment data 

obtained by the intelligent vehicle platform presented in 

Fig. 14; and infrared road video available by FLIR [28].  

For each image a real horizon line (black) was 

registered manually. In (a) the green line represents the 

Otsu horizon line detection; in (b) the magenta line 

represents the weighted average of the Hough 

transformation lines; in (c) the blue line represents the 

weighted average between the Otsu horizon line detection 

and the Hough transformation result; in (d), finally, the red 

line represents the robust horizon finding algorithm based 

on Otsu segmentation, Hough transformation and filtering 

(Fig. 7). 

B. Real-time considerations 

According to [29], a real-time system must satisfy 

explicit response-time constraints, including failure. A 

real-time system is one whose logical correctness is based 

on both the correctness of the outputs and their timeliness.  

For unstructured environments, the scenario for study is 

dynamic, with several elements in motion. As a 

consequence, running an autonomous system from a 

starting point to a destination, or assisting a driver with his 

task, involves carrying out complex, and non-deterministic 

operations and real-time constraints. 

The main problem that has to be faced when real-time 

imaging is concerned and which is intrinsic to the 

processing of images is the large amount of data [8]. Based 



  

on the idea to reduce information acquired in order to 

reduce processing time, and taking into account that it has 

been estimated that humans perceive visually about 90% of 

the environment information required for driving [8], in 

[30], [31] was proposed an automatic image discarding 

criteria method based on Pearson’s Correlation Coefficient 

(PCC) [32], a low complexity and easy implemented 

solution. This method improves the performance of a real-

time system by choosing, in an automatic way, which 

images to discard and which ones to process. 

 
Fig. 8 – Desert road video 1 [27]. 

 

 
Fig. 9 – Desert road video 2 [27]. 

 

 
Fig. 10 – Urban environment data obtained by the 

intelligent vehicle platform presented in Fig. 14 

 

 

Fig. 11 – Infrared road video [28]. 

 

The Pearson's method is widely used in statistical 

analysis, pattern recognition and image processing. It is 

described by Eq. (2) [32]: 
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where xi is the intensity of the i
th

 pixel in image 1, yi is the 

intensity of the i
th

 pixel in image 2, xm is the mean intensity 

of image 1, and ym is the mean intensity of image 2. 

 

Fig. 12 presents the computational mean time of this 

robust horizon finding algorithm in unknown environment 

data (Fig. 9 / desert road video 2) available by DARPA 

[27]. In (b), from an empirical PCC threshold, it was 833 

Hz (1.20 ms). In (a) it was 159 Hz (6.27 ms) without the 

discarding method. In (c), above the gray line (d), it has 

the discarded images. 

 
Fig. 12. The computational mean time in desert roads. 

 

Fig. 13 presents the computational mean time of the 

robust horizon finding algorithm in unknown and urban 

environment data (Fig. 10) obtained by the intelligent 

vehicle platform presented in Fig. 14. In (b), from an 

empirical PCC threshold, it was 196 Hz (5.09 ms). In (b) it 

was 64 Hz (15.62 ms) without the discarding method. In 

(c), above the gray line (d), it has the discarded images. 

 
Fig. 13. The computational mean time in urban 

environment. 

 

   

Fig. 14. Carmen: The experimental vehicle with the 

monocular vision system. 

 

This time also includes the image pre-processing. It was 

tested on a 2.5GHz Intel Core 2 Quad processor, 3.48 GB 

RAM, Microsoft Windows XP Professional SP3, Visual 

Studio C++ and OpenCV 2.1.0. A video showing the 

application of this method is available in [33]. 



  

V. CONCLUSION 

The machine vision research area is still in evolution. 

This can be observed by the great number of research 

being published in the last few years. In this work, a real-

time perception problem is applied to intelligent vehicles. 

It is a simple solution that solves the problem related to the 

visual perception of the environment during the navigation 

of intelligent vehicles and robots. From an image captured 

by a single camera, the purpose of it was to present a real-

time algorithm capable of identifying the horizon area and 

apply it to generate the navigable area (region of interest). 

It is important to notice that our algorithm is not based on 

previous knowledge of the environment neither camera 

calibration. 
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