Navigation of an Autonomous Vehicle is based on its interaction with the environment, through information acquired by sensors. The perception of the environment is a major issue in autonomous and (semi)-autonomous systems. This work presents the embedded real-time visual perception problem applied to experimental platform. In this way, a robust horizon finding algorithm that finds the horizon line was proposed and applied to generate the navigable area. It permits to investigate dynamically only a small portion of the image (road) ahead of the vehicle. From a dynamic threshold search method based on Otsu segmentation and Hough transform, this system was robust to illumination changes and does not need any contrast adjustments. It can also be used with infrared camera.

I. INTRODUCTION

HE robot navigation is based on its interaction with the environment. In order to obtain information about it, sensors are needed, which in many cases may be limited in scope and subject to noise. However, when incorporating several types of sensors, there is an increase of autonomy and "intelligence" degrees, especially in relation to navigation in unknown environments. On the other hand, the type and quantity of sensors determine the volume of data for processing that requires a high computational cost.

Furthermore, the important factors are the variety and complexity of environments and situations. For military or civil purposes, some of these applications include: the Grand Challenge [START_REF] Thrun | Stanley, the robot that won the DARPA Grand Challenge[END_REF] and Urban Challenge [START_REF]Spirit of Berlin: An Autonomous Car for the DARPA Urban Challenge Hardware and Software Architecture[END_REF]; Advanced Driver Assistance Systems (ADAS) [START_REF] Gietelink | Development of advanced driver assistance systems with vehicle hardware-in-the-loop simulations[END_REF]; autonomous perception system [START_REF] Ulrich | Appearance-Based Obstacle Detection with Monocular Color Vision[END_REF], [START_REF] Bonin-Font | Visual Navigation for Mobile Robots: A Survey[END_REF], and aerial robots [START_REF] Kim | Swarming Unmanned Aerial Vehicles: Concept Development and Experimentation, A State of the Art Review on Flight and Mission Control[END_REF], [START_REF] Ettinger | Vision-guided flight stability and control for micro air vehicles[END_REF]. These applications have a common issue: providing to the robot/vehicle platform the capability of perceiving and interacting with its neighbour environment.

Although extremely complex and highly demanding, thanks to the great deal of information it can deliver, machine vision is a powerful means for sensing the environment and has been widely employed to deal with a large number of tasks in the automotive field [START_REF] Bertozzi | Visionbased intelligent vehicles: state of the art and perspectives[END_REF].

Due to the general applicability of it, the problem of mobile robots navigation is dealt with using more complex techniques [START_REF] Bertozzi | Visionbased intelligent vehicles: state of the art and perspectives[END_REF]. Besides their intrinsic higher computational complexity caused by a significant increment in the amount of data to be processed, the most common vision systems (such as the processing of non-monocular images) must also be robust enough to tolerate noise caused by platform movements and drifts in the calibration of the multiple cameras' setup.

For land vehicle navigation, the monocular vision systems have been designed to investigate the road information, and in order to decrease the volume of data for processing, some systems have been designed to investigate only a small portion of the road ahead of the vehicle where the absence of other vehicles has been assumed [START_REF] Bertozzi | Visionbased intelligent vehicles: state of the art and perspectives[END_REF]. Otherwise, the sky region is not a region of interest, and the horizon line threshold is applied to generate a road image [START_REF] Hann | Vision-based Lane-Vehicle Detection and Tracking[END_REF]. Stanford Racing Team [START_REF] Dahlkamp | Self-Supervised Monocular Road Detection in Desert Terrain[END_REF] implemented the horizon finding algorithm originally proposed by [START_REF] Ettinger | Vision-Guided Flight Stability and Control for Micro Air Vehicles[END_REF] to eliminate all pixels above that horizon.

Additionally, these techniques has been used for flight stability and control system to Micro Air Vehicles [START_REF] Ettinger | Vision-Guided Flight Stability and Control for Micro Air Vehicles[END_REF], for the control of the airship [START_REF] Rives | Linear Structures Following by an Airship using Vanishing Point and Horizon Line in Visual Servoing Scheme[END_REF] and landing aircraft control [START_REF] Entzinger | Modeling of the visual approach to landing using neural networks and fuzzy supervisory control[END_REF]. It also was employed as an absolute attitude sensor which is useful for low-level control of an unmanned aerial vehicle [START_REF] Hwangbo | Robust monocular vision-based navigation for a miniature fixed-wing aircraft[END_REF].

In this way, from a dynamic threshold search method based on Otsu segmentation [START_REF] Otsu | A threshold selection method from graylevel histogram[END_REF] and Hough transform [START_REF] Ballard | Generalized Hough transform to detect arbitrary shapes[END_REF], a robust horizon finding algorithm that finds the horizon line was proposed and applied to generate the navigable area. It permits to investigate dynamically only a small portion of the image (road) ahead of the vehicle. This algorithm is robust to illumination changes and does not need any contrast adjustments.

The Section II presents the sensor perception review and monocular vision contributions. From the Section III and IV the results are presented, and the conclusions are given in Section V.

II. SENSOR PERCEPTION

Several models of distributed vehicle navigation architecture are presented in the literature [START_REF] Thrun | Stanley, the robot that won the DARPA Grand Challenge[END_REF], [START_REF]Spirit of Berlin: An Autonomous Car for the DARPA Urban Challenge Hardware and Software Architecture[END_REF], [START_REF] Greco | Real-Time Forward Urban Environment Perception for an Autonomous Ground Vehicle Using Computer Vision And Lidar[END_REF]. The perception layer uses many types of sensors, including ultrasonic sensors, laser rangefinders, radar, cameras, etc.

However, these sensors are not perfect: ultrasonic sensors are cheap but suffer from specular reflections, and laser rangefinders and radar provide better resolution but are more complex and more expensive [START_REF] Ulrich | Appearance-Based Obstacle Detection with Monocular Color Vision[END_REF].

According to [START_REF] Bertozzi | Visionbased intelligent vehicles: state of the art and perspectives[END_REF], the vision-based sensors are defined as passive sensors, the image scanning is performed fast enough for Intelligent Transportation Systems, and it can be used for some specific applications: road marking
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On the other hand, for range-based obstacle detection systems have difficulty for detecting small or flat objects on the ground, and range sensors are also unable to distinguish between different types of ground surfaces [START_REF] Ulrich | Appearance-Based Obstacle Detection with Monocular Color Vision[END_REF]. Notwithstanding, the main problem with the use of active sensors is represented by interference among sensors of the same type, hence, foreseeing a massive and widespread use of these sensing agents, the use of passive sensors obtains key advantages [START_REF] Bertozzi | Visionbased intelligent vehicles: state of the art and perspectives[END_REF].

Fig. 1 illustrates the monocular vision contribution to the DARPA Grand Challenge [START_REF] Dahlkamp | Self-Supervised Monocular Road Detection in Desert Terrain[END_REF]. This diagram shows that the reach of lasers was approximately 22 meters (left), whereas the monocular vision module often looks 70 meters ahead (right). It also shows the horizon detection for sky removal. On the safety front, the ADAS including front bumper mounted cameras. The progressive safety systems will be developed the manufacturing of an "intelligent bumper" (safety belt) peripheral to the vehicle in answering new features as: lane change assistant, blind spot detection, frontal and lateral pre-crash, etc. The objective in terms of cost to fill ADAS functions has to be very lower than the current Adaptive Cruise Control (500 Euros) [18].

Aware that in the majority of the navigation systems, the machine vision system is working together with other sensors, added to its low cost, this paper presents a monocular vision-based system that includes a robust horizon finding algorithm. Because it uses simple techniques and fast algorithms, the system is capable to achieve a good performance, where the compromise between processing time and images acquisition is fundamental.

III. ROBUST HORIZON FINDING ALGORITHM

In a general way, the navigation system must be capable to drive the vehicle (or to help the driver in its driver process), using the information received from all sensors. Processes conducted by the machine vision have as goal, in addition to the visual information, to process image data for machine perception. Its algorithms carry through operations on images, with the purpose to reduce noise and to segment them.

One way to perform segmentation of an image is to use thresholds. This type of segmentation technique, called thresholding, is very simple and computationally fast, however the identification of the ideal threshold can be sufficiently complicated. The best thing to do in this case is to use techniques and algorithms that search the thresholds automatically. Thresholding methods are divided in two groups: global and local. The global ones divide the image using only one threshold and the local ones are those that divide the image in sub-images and for each one of them a threshold is defined [START_REF] Neto | A Simple and Efficient Road Detection Algorithm for Real Time Autonomous Navigation based on Monocular Vision[END_REF].

What this work proposes is a global thresholding method, which seeks not the ideal threshold for the whole image, but an ideal threshold associated at each portion (local information), that contributes to the final decision. Details of this search are described below.

A. Image pre-processing

Most research groups face this problem using highly sophisticated image filtering algorithms [START_REF] Bertozzi | Visionbased intelligent vehicles: state of the art and perspectives[END_REF]. This work uses a color or gray-level image and smooth them using a Gaussian filter. The Gaussian smoothing operator is a 2-D convolution operator. It acts as low-pass frequency filters [START_REF] Gonzalez | Digital Image Processing[END_REF]. In order to reduce the number of data, it includes the resolution reduction of image (to 128x96).

If the image is colored, in order to utilize the most important information of the color image, the candidate color channel that was dominant in certain color space is selected to generate the histogram image [START_REF] Yanqing | Vision-based Road Detection by Monte Carlo Method[END_REF]. For us this space represents 60% of the image (Fig. 5). It is described by Eq. [START_REF] Thrun | Stanley, the robot that won the DARPA Grand Challenge[END_REF].
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where Cc means the color channel and R N means the number of the dominant color channel in certain referenced region.

B. Image segmentation and sky removal advantage

The purpose of segmentation here is the line horizon detection (horizon finding) for sky removal. Right after the images pre-processing, it can use the search for an ideal threshold based on Otsu [START_REF] Otsu | A threshold selection method from graylevel histogram[END_REF].

The Otsu method exhaustively searches for the threshold that minimizes the intra-class variance, defined as a weighted sum of variances of the two classes. The thresholding process is seen as the partitioning of pixels of an image in two classes (foreground and background): C1={0, 1,…, T} and C2={T+1, T+2,…, N-1}, where T is the chosen threshold and N the number of intensity levels of the image. It is described by: The class probabilities are estimated as:
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The class means are given by:
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Finally, the individual class variances are:
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where H is the histogram of the selected channel in Eq. ( 1). One of the great advantages of this method is that it does not restrict itself to the type of histogram of the image, that is, it can be applied to unimodal, bimodal or multimodal histograms, but it presents better performance in images with bigger intensity variance. Its main disadvantage is its sensitivity to noise in the image, what can be reduced with the application of a filter.

Region recognition can be handled by popular thresholding algorithm such as Maximum Entropy, Invariant Moment and Otsu thresholding method (OTM). For road detection, because OTM supplies a more satisfactory performance in image segmentation, it was used to overcome the negative impacts caused by environmental variation [START_REF] Yanqing | Vision-based Road Detection by Monte Carlo Method[END_REF].

Furthermore, some authors consider the OTM as one of the best choices for real-time applications in machine vision [START_REF] Sahoo | A survey of thresholding techniques[END_REF], [START_REF] Lee | A Comparative Performance Study of Several Global Thresholding Techniques for Segmentation[END_REF]. It still remains one of the most referenced thresholding methods [START_REF] Sezgin | Survey over image thresholding techniques and quantitative performance evaluation[END_REF].

Although the Otsu method is an excellent method to choose an ideal threshold, it considers for all cases the information of the image as a whole (global information).

Let's see an example for land vehicle navigation, where the main task is road detection. Fig. 3 illustrates that probably for images that possess the horizon (sky) in its composition, the algorithm may not have a satisfactory result.

To deal with this problem, a robust horizon finding algorithm is proposed. After sky removal, it permits to investigate only a small portion of the image ahead of the vehicle, and the new result can be seen in Fig. 4.

C. Visual-based line horizon detection

According to [START_REF] Sezgin | Survey over image thresholding techniques and quantitative performance evaluation[END_REF], cluster-Otsu (clustering thresholding) minimizing the weighted sum of intra-class variance of the foreground and background pixels to establish an optimum threshold, that minimization of intra-class variance is tantamount to the maximization of between-class scatters. The Otsu method gives satisfactory results when the numbers of pixels in each class are close to each other. Using as reference Fig. 5, the horizon finding results can be seen in Table I. It presents an example of land vehicle navigation, where the range of horizon analysis was empirically limited to a maximum height of 60% of the image.

The horizon finding algorithm creates empirically cuts that divide image in ten parts (sub-images) of equal heights. All these sub-images are then submitted to the segmentation algorithm: Eq. ( 2), where the output is a vector with Otsu thresholds values of each sub-image. Then, a threshold is calculated at each sub-image (Fig. 6), which depends on local information and variance of the pixel neighborhood.

Subsequently, in order to find the optimal threshold that is capable to get a more efficient segmentation and to distinguish with bigger precision, for each found local Otsu threshold, all sub-images are again submitted to the segmentation algorithm. The purpose is to analyze how much each local sub-image contributes positively to increase or reduce horizon points.

Then, the algorithm initiates by analyzing the sub-image closest to the vehicle, that is, the first more inferior slice of the image, going from the bottom edge of the image (red line, Fig. 6) to the last more superior sub-image.

Using as reference Fig. 6, it obtains the local Otsu thresholds and its percentage of foreground points (horizon). They are represented in blue by the diagonal matrix in Table I, respectively, threshold (T) and percentage (P): 6 Another interaction is next necessary. For each local Otsu threshold found, all sub-images are again submitted to the segmentation algorithm.

Taking as reference the data in Table I, from an Otsu threshold equal to 135, the result of the first interactions can be seen in column (a). For example, it has in row (a)-10 its percentage of foreground points equal to 28 (blue) which refers to the sub-image closest to the vehicle. In the following, using the same Otsu threshold, in row (a)-9, the result equal to 14 refers to the second sub-image analyzed, and so on for others rows in column (a).

As a second example, in column (j) it has an Otsu threshold equal to 118. From this threshold (last more superior sub-image analyzed), in row (j)-10 the percentage of foreground points equal to 53 refers to the sub-image closest to the vehicle. In the following, in row (j)-9 the result equal to 23 refers to the second sub-image analyzed.

The columns (k) and (l) are, respectively, sum of rows and percentage difference between the value of a row and its previous one. Then, considering that the algorithm search the region of greatest difference in the image, the yellow filled row [START_REF] Bertozzi | Visionbased intelligent vehicles: state of the art and perspectives[END_REF] is the one where it finds the value 91.

The horizon line separates the image into two regions that have different appearance [START_REF] Ettinger | Vision-Guided Flight Stability and Control for Micro Air Vehicles[END_REF]. The choice of this method was based on [START_REF] Neto | A Simple and Efficient Road Detection Algorithm for Real Time Autonomous Navigation based on Monocular Vision[END_REF], because the use of a global segmentation method, not always the analysis of a bigger image portion can contribute for a better result in the most critical region (Fig. 3: in land navigation, the region closer to the vehicle), where obstacles should be detected and avoided as fast as possible. On the contrary, when separating the superior portion of the original image (sky removal), it is capable to get a more efficient segmentation and to distinguish with bigger precision the obstacles from the navigation area.

Once the Otsu horizon line is found, the Hough transform [START_REF] Ballard | Generalized Hough transform to detect arbitrary shapes[END_REF] is used, and a rapprochement between both results is triggered based on the weighted average. The Canny detector [START_REF] Canny | A computational approach to edge detection[END_REF] was employed as input of Hough transform due to its robust performance and accurate edge localization.

Finally, due to the fact that in small time intervals, there will be no abrupt changes in the positioning of new horizon line (NHL), it has decided to use a simple decaying filter followed by a Kalman filter (KF) [START_REF] Kalman | A new approach to linear filtering and prediction problems[END_REF]. It is presented in Fig. 7. 

IV. IMPLEMENTATION AND RESULTS

A. Robust horizon finding algorithm (sky removal)

Fig. 8 to 11 present the performance of the horizon line detection process in unknown environments: desert road videos available by DARPA [START_REF]DARPA Grand Challenge Rulebook[END_REF]; urban environment data obtained by the intelligent vehicle platform presented in Fig. 14; and infrared road video available by FLIR [START_REF] Flir | Thermal imaging and the PathFindIR: An automotive night vision camera[END_REF].

For each image a real horizon line (black) was registered manually. In (a) the green line represents the Otsu horizon line detection; in (b) the magenta line represents the weighted average of the Hough transformation lines; in (c) the blue line represents the weighted average between the Otsu horizon line detection and the Hough transformation result; in (d), finally, the red line represents the robust horizon finding algorithm based on Otsu segmentation, Hough transformation and filtering (Fig. 7).

B. Real-time considerations

According to [START_REF] Laplant | Real-Time System Design and Analysis[END_REF], a real-time system must satisfy explicit response-time constraints, including failure. A real-time system is one whose logical correctness is based on both the correctness of the outputs and their timeliness.

For unstructured environments, the scenario for study is dynamic, with several elements in motion. As a consequence, running an autonomous system from a starting point to a destination, or assisting a driver with his task, involves carrying out complex, and non-deterministic operations and real-time constraints.

The main problem that has to be faced when real-time imaging is concerned and which is intrinsic to the processing of images is the large amount of data [START_REF] Bertozzi | Visionbased intelligent vehicles: state of the art and perspectives[END_REF]. Based on the idea to reduce information acquired in order to reduce processing time, and taking into account that it has been estimated that humans perceive visually about 90% of the environment information required for driving [START_REF] Bertozzi | Visionbased intelligent vehicles: state of the art and perspectives[END_REF], in [START_REF] Neto | Pearson's Correlation Coefficient for Discarding Redundant Information in Real Time Autonomous Navigation Systems[END_REF], [START_REF] Neto | Nondeterministic Criteria to Discard Redundant Information in Real Time Autonomous Navigation Systems based on Monocular Vision[END_REF] was proposed an automatic image discarding criteria method based on Pearson's Correlation Coefficient (PCC) [32], a low complexity and easy implemented solution. This method improves the performance of a realtime system by choosing, in an automatic way, which images to discard and which ones to process. The Pearson's method is widely used in statistical analysis, pattern recognition and image processing. It is described by Eq. ( 2) [32]:
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Fig. 12 presents the computational mean time of this robust horizon finding algorithm in unknown environment data (Fig. 9 / desert road video 2) available by DARPA [START_REF]DARPA Grand Challenge Rulebook[END_REF]. In (b), from an empirical PCC threshold, it was 833 Hz (1.20 ms). In (a) it was 159 Hz (6.27 ms) without the discarding method. In (c), above the gray line (d), it has the discarded images. 

V. CONCLUSION

The machine vision research area is still in evolution. This can be observed by the great number of research being published in the last few years. In this work, a realtime perception problem is applied to intelligent vehicles. It is a simple solution that solves the problem related to the visual perception of the environment during the navigation of intelligent vehicles and robots. From an image captured by a single camera, the purpose of it was to present a realtime algorithm capable of identifying the horizon area and apply it to generate the navigable area (region of interest). It is important to notice that our algorithm is not based on previous knowledge of the environment neither camera calibration.
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 1 Fig. 1 -Monocular vision: comparison of the laser-based (left) and the image-based (right) mapper. Circles are spaced around the vehicle at 10 meters distance. It also shows the horizon detection for sky removal [10].
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 3 Fig. 3 -Original image and Otsu segmentation.
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 4 Fig. 4 -Left: Otsu segmentation (road detection) after sky removal; Right: Global Otsu threshold (104); new Local Otsu threshold (32) after sky removal.
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 5 Fig. 5 -Sub-images and the horizon line detection.
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 6 Fig. 6 -The clusters-Otsu and its optimal local thresholds.

  (a) T = 135 / P = 28% | (f) T = 150 / P = 57% (b) T = 132 / P = 15% | (g) T = 143 / P = 48% (c) T = 123 / P = 7% | (h) T = 133 / P = 53% (d) T = 136 / P = 59% | (i) T = 125 / P = 53% (e) T = 154 / P = 80% | (j) T = 118 / P = 52%

Fig. 7 -

 7 Fig. 7 -Horizon Line (HL) and New Horizon Line (NHL).
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 8 Fig. 8 -Desert road video 1 [27].
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 9 Fig. 9 -Desert road video 2 [27].
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 10 Fig. 10 -Urban environment data obtained by the intelligent vehicle platform presented in Fig. 14
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 11 Fig.11-Infrared road video[START_REF] Flir | Thermal imaging and the PathFindIR: An automotive night vision camera[END_REF].
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 12 Fig. 12. The computational mean time in desert roads.

Fig. 13

 13 Fig.13presents the computational mean time of the robust horizon finding algorithm in unknown and urban environment data (Fig.10) obtained by the intelligent vehicle platform presented in Fig.14. In (b), from an empirical PCC threshold, it was 196 Hz (5.09 ms). In (b) it was 64 Hz (15.62 ms) without the discarding method. In (c), above the gray line (d), it has the discarded images.
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 13 Fig. 13. The computational mean time in urban environment.
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 14 Fig. 14. Carmen: The experimental vehicle with the monocular vision system.
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2[START_REF]Spirit of Berlin: An Autonomous Car for the DARPA Urban Challenge Hardware and Software Architecture[END_REF] where x i is the intensity of the i th pixel in image 1, y i is the intensity of the i th pixel in image 2, x m is the mean intensity of image 1, and y m is the mean intensity of image 2.
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