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Abstract: The aim of this paper is to present a UAV’s configuration that combines the
manoeuvrability of a rotary wing vehicle (helicopter) such as slow forward displacement, vertical
take off and landing, and the performance of a fixed wing vehicle (plane) such as fast forward
movement, long reach and superior endurance.
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1. INTRODUCTION

In recent years, the interest for Unmanned Aerial Ve-
hicle (UAV) has steadily increased. Aircrafts have been
used at first mainly in the military, in reconnaissance,
surveillance and also in offensive missions. Nowadays, we
can find civilian applications such as traffic monitoring,
surveillance and environmental protection, the search and
rescue of injured persons or the management of major
infrastructure. The purpose of this work is to develop a
miniature aircraft which has the performance of a plane
for the horizontal flight and the manoeuvrability of a
helicopter for the vertical flight. In the past, this research
has generated a considerable interest because this type
of aircraft doesn’t require a runway and the ability of
hover makes it very useful for aerial surveillance missions.
The most common configuration of convertible aircrafts
is the Tail-sitter thanks to its ability of vertical take-
off and landing and the ability of horizontal flight like a
conventional plane. Among convertible UAVs in the past,
we have been interested in the Heliwing of Boeing and the
T-Wing in Stone [2004] of the University of Sydney. The
Heliwing was developed in 1995, the T-wing in 2003 and
they are both Tail-sitters. Using linear control techniques
to stabilize and control the linearized dynamics, the T-
Wing successfully performed the transition from vertical
to horizontal and vice versa. However, the Heliwing was
lost in an accident during its first transition from the
horizontal flight to the vertical flight. Another interesting
configuration found in Green et al [2009] which presents a
small conventional plane with a capacity of hovering can
make the transition from horizontal to vertical. However,
this configuration presents a problem related to gyroscopic
effect and then the yaw control is not assured when the
plane flies vertically. In addition, this configuration can not
take off and land vertically. Other simulation results for the
transition of a miniature convertible tailsitter UAV using
an adaptive quaternion controller and a quaternion gain
sequencing feedback controller are presented in Knoebel
et al [2008] and Bataillé et al [2008]. However these con-

Fig. 1. Prototype of the Convertible Plane

trol laws are high time-consuming and not suitable for
embedded control.

This paper contributes to a proposed configuration of the
convertible aircraft capable of performing the hovering,
transition, vertical take off and landing (figure 1). The
detailed mathematical model is obtained by the equa-
tions of Newton-Euler and the aerodynamic formulas. In
terms of control, we propose a control strategy using the
quaternion in order to avoid the singularity problem when
the plane is vertical and a motion profile generator to
realize the phases of take-off, landing and transition. The
paper is organized in five sections. The second section is
devoted to the representation of the attitude of the plane.
The mechanical structure and the aerodynamic model of
convertible aircraft will be presented in the third section.
The fourth section contains our contributions, namely the
presentation of a control strategy to achieve a longitudi-
nal flight path. Simulation and experimental results are
presented in the fifth section. Finally, the paper ends with
some conclusions.

2. REPRESENTATION OF THE ATTITUDE

In our implementation, the quaternion was chosen for the
presentation of the attitude as it presents no problem of
singularity with respect to Euler angles when the aircraft
is vertical (the pitch angle is equal to −π/2). The unit



quaternion is composed of a unit vector e, called the Euler
axis and a rotation angle β around this axis:

q =

[
cos

β

2
e sin

β

2

]T
= [ q0 q ]

T
(1)

When the system of coordinates Eb attached to the rigid
body rotates relatively to the inertial coordinate Ef with

an angular velocity ω = [ ωx ωy ωz ]
T
, kinematic equa-

tions in terms of quaternion are given by:

q̇ =

(
q̇0
q̇

)
=

1

2

(
−qT

I3q0 +
[
q×] )ω =

1

2
Ξ(q)ω (2)

In the attitude control, note that qd is the desired attitude
and q the real attitude of the rigid body, the error attitude
is represented by:

qe = q−1
d ⊗ q (3)

where ⊗ is the multiplication of the quaternion and
the conjugate quaternion q−1 is the complement rotation
of quaternion q. In the case where the attitude error
is zero, the error quaternion has two possible values:

qe =
[
±1 0T

]T
. This is due to the non bijection of the

quaternion with the group SO(3).

3. CONVERTIBLE PLANE

In the configuration shown in figure 1, two counter rotating
rotors are placed side by side in the vehicle and inside
the wing. The aircraft was properly calibrated so that the
center of gravity coincides with the aerodynamic center of
the wing and it is at a quarter of the wing’s cord. From
the model of the convertible plane described above and
the kinematic equations (2), the Newton-Euler equations
of motion describing the six degrees of freedom of the
system can be separated in translational motion (ΣP ) and
rotational motion (ΣA):

ΣP :

{
ṗf = Rvb

v̇b = RTgf +
1

m̄
F b

A,T − ω × vb (4)

ΣA :

{
q̇ =

1

2
Ξ(q)ω

Jω̇ = −ω × Jω + ΓA,T

(5)

where: q = [ q0 q ]
T

is the quaternion vector; R is the
rotation matrix from Eb to Ef ; p

f represents the position
of the plane in Ef ; v

b is the linear velocity vector presented
in Eb; m̄ = diag(m) ∈ R3×3 where m (≃ 900g) is the
weight of the plane; gf is the vector of the gravity accel-
eration in Ef ; ω is the angular velocity vector; J ∈ R3×3

represents the inertial matrix of the plane; F b
A,T = F b

A +

F b
T is the control vector of the aerodynamic forces and the

thrusts expressed in the coordinate Eb (see figures 2 and
3); ΓA,T = ΓA + ΓT is the control torque vector.

The forces F b
T and the torques ΓT generated by the actua-

tors are identical in both the horizontal and vertical flight.
As shown in figures 2 and 3, the left motor rotates in the
clockwise direction while the right rotates in anticlockwise
direction. Each motor produces a force Ti parallel to its
axis of rotation and a reactive torque Qi opposite to the
direction of rotation. The combination of the forces Ti and
the reactive torques Qi is given by:{

F b
T = [ T1 + T2 0 0 ]

T

ΓT = [Q2 −Q1 0 (T2 − T1)lm ]
T (6)

Fig. 2. Vertical flight (helicopter mode)

Since the rotor speed reaches very high values (more than
200 rad/sec), we can approximate the forces Ti and the
reactive torques Qi generated by the motors:

Ti = bis
2
i

Qi = kis
2
i

(7)

where si is the rotational speed of rotor; bi and ki are two
positive parameters depending on the density of air, the
radius, the shape, the pitch angle of the blade and other
factors (Fay [2001]).

The aerodynamic forces F b
A and torques ΓA depend on

the working mode of the plane. In the helicopter mode (see
figure 2), the aerodynamic forces and torques are simply
calculated:{

F b
A = [ 0 −P s

r P s
al + P s

ar ]
T ≈ [ 0 0 0 ]

T

ΓA = [ (P s
al − P s

ar) lm (P s
al + P s

ar) ls P s
r ls ]

T (8)

where P s
i = 1

2ρv
2
inS

s
iC

Pδ
i with i = al, ar, r (left aileron,

right aileron, and rudder); ρ is the density of air; CPδ
i =

CP
iδ
δi; δi and Si are the deflection angle and the area of

control surface; vin =
√

2Ti

ρAprop
is the air inflow velocity

created by the propeller (Fay [2001]) and Aprop = πR2
prop

where Rprop is the propeller’s radius.

In horizontal flight, we assume that there is no wind. So
the air velocity is equal to the relative velocity of the UAV,
but in the opposite direction : V air = −V . The vector of
the air velocity creates with the plane an angle of attack
α (figure 3). In this mode, the aerodynamic forces and
torques are given by:{

F b
A =

[
−T b −P s

r P b + P s
ar + P s

al

]T ≈
[
−T b 0 P b

]T
ΓA = [ (P s

al − P s
ar) lm (P s

al + P s
ar) ls P s

r ls ]
T

(9)
The longitudinal dynamic model of the wing is shown in
figure 4, the aerodynamic lift force P b and drag force T b

in the frame Eb are calculated from:

P b = P cosα+ T sinα

T b = −P sinα+ T cosα
(10)

where: α is the angle of attack, P , T are calculated from
the aerodynamic formulas in table 1 (see Mc Cormick
[1995]), S is the wing’s area, the functions fP (α) and
fT (α) are the nonlinear functions of the lift and drag
coefficients depending on the angle of attack and the wing’s
profile (figures 5(a) and 5(b)) and CT0 is the constant
coefficient of the parasite drag.



Fig. 3. Horizontal flight (airplane mode)

Fig. 4. The longitudinal aerodynamic model

(a) The lift coefficient (b) The drag coefficient

Fig. 5. The aerodynamic coefficient depending on the angle
of attack and wing’s profile

Table 1. Aerodynamic forces

Lift force Drag force

P =
1

2
ρV 2SCP

CP = fP (α)

T =
1

2
ρV 2SCT

CT = CTα + CT0

CTα = fT (α)

4. CONTROL STRATEGY

4.1 Control Law

Altitude Control. The control of the altitude is used
when the plane flies vertically but it is not used in the tran-
sition and horizontal flight. Extracting the translational
motion on the z axis of Ef in equation (4) yields:

mz̈ = T cos
(π
2
− θ

)
cosϕ−mg (11)

where T is the total thrust force of both motors. A simple
PD control can guarantee the convergence of the altitude
to the desired altitude zd:

T = T1 + T2 =
−kp(z − zd)− kdż +mg

cos
(
π
2 − θ

)
cosϕ

(12)

But for security reasons and in order to improve the
performance, a PID control with saturation is used:

T =
satT

(
−kp(z − zd)− kdż − ki

∫
(z − zd)

)
+mg

cos
(
π
2 − θ

)
cosϕ

(13)
where satM (x) = {x if |x| 6 M ; Msign(x) if |x| > M}
is the classical saturation function, M is the boundary

saturation and sign(x) is the signum function defined as
sign(x) = {1 if x > 0; − 1 if x < 0}.

Attitude Control. In order to control the attitude and
to avoid the singularity when the plane flies vertically,
the bounded control law with the attitude error calculated
by the quaternion error is used. First, we define a scalar
function H(q0):

Definition 1. H(q0) is a non-negative function on the
interval q0 ∈ [−1, 1] and it vanishes only at q0 = −1 and/or
q0 = 1. H(q0) also satisfies the Lipschitz condition on the

interval q0 ∈ [−1, 1], that means
∥∥∥ ∂H
∂q0

∥∥∥
∞

6 γ.

Theorem 1. For any function H(q0) defined above, the
following bounded control law globally asymptotically
converges the plane to the desired attitude:

Γx = (P s
al − P s

ar) lm = −satMx

(
λxωx − ρ

∂H

∂qe0
qe1

)
(14)

Γy = (P s
al + P s

ar) ls = −satMy

(
λyωy − ρ

∂H

∂qe0
qe2

)
(15)

Γz = (T2 − T1) lm = −satMz

(
λzωz − ρ

∂H

∂qe0
qe3

)
(16)

where λi, ρ > 0;Mi > 3ργ; i ∈ {x, y, z}
This theorem is proved in appendix A.
Table 2 presents some functions H(q0) with their asymp-
totic stable equilibrium points (a.s.e.p) and unstable equi-
librium points (u.e.p) (Fjellstad et al [1994]).

Table 2. Examples of function H(q0)

H(q0) a.s.e.p u.e.p

1− q0 q0 = 1 q0 = −1
1 + q0 q0 = −1 q0 = 1
1− |q0| q0 = ±1

1− |q0|n+1 q0 = ±1

cos
(
πq0
2

)
q0 = ±1

cosn
(
πq0
2

)
q0 = ±1

Since |q0| 6 1 and for simplicity in the embedded control,
the function H(q0) = 1− |q0| was chosen. Its derivative is
∂H
∂q0

= −sign (q0). Note that this function does not have

unstable equilibrium points, and the control law of the
attitude is given by (as in Guerrero et al [2007]):

Γx = −satMx (λxωx + ρsign (qe0) qe1) (17)

Γy = −satMy (λyωy + ρsign (qe0) qe2) (18)

Γz = −satMz (λzωz + ρsign (qe0) qe3) (19)

In order to optimize and improve the performance of
the control law, the positive parameters λi and ρi were
calculated according to the pole placement method of
bounded control in Johnson et al [2003]. The function
sign (qe0) ensures that between the two rotations of error
angle βe and (2π − βe), the smallest angle will be chosen.

4.2 Trapezoidal Trajectory of Velocity - Servo Control

In the case when the convertible plane autonomously takes
off, lands and makes a transition, the controller requires
the next desired position of the altitude or the attitude
(pitch angle in our case). Then a trajectory generation
algorithm must be used for optimum motion control. The



Fig. 6. Trapezoidal Trajectory of Velocity

trajectory generation may not be used by simply forcing
the final desired position. However when the final desired
position is reached, the required deceleration to stop the
vehicle will be very high. Since the vehicle can not achieve
such a high deceleration because it flies in the very low
friction environment (air), it will certainly overpass the
final position. Therefore the vehicle oscillates around the
final position before reaching it. The overshooting and
oscillation will slow the final objective and have danger-
ous consequences in the case of autonomous transition
and landing. In order to produce a smooth motion, we
need a motion profile algorithm that controls the speed
and acceleration. A linear piecewise velocity trajectory is
implemented: the velocity is incremented by a constant
acceleration value until a specified maximum velocity is
reached. The maximum velocity is maintained for a re-
quired amount of time and then decreased by the same
acceleration (deceleration) value until zero velocity is at-
tained (see Figure 6). A movement distance, velocity limit,
and acceleration value are required to execute the profile.
From these data, the trajectory generator will produce
trapezoidal shaped velocity curves for a long movement
and triangular curves for a short movement where maxi-
mum velocity was not reached. The trapezoidal profile of
velocity must be within the velocity profile of νmax (maxi-
mum physical velocity) and ν̇max (maximum acceleration).
The control law of altitude and attitude above will force
the vehicle to track the new controlled positions created
by the trajectory generator in order to realize the process
of take off, landing and transition.

5. RESULTS

5.1 Simulation Results

In this section, some simulation results from Matlab-
Simulink simulator are presented to demonstrate the per-
formance of the control strategy. Initially, the plane takes
off automatically up to 2m (figure 7), the altitude velocity
has a trapezoidal form, it accelerates and reduces the speed
when the vehicle reaches 2m (figure 8, period (1)). Then
the plane makes the transition (period (2)) at second 3.5,
the pitch angle varies from −90◦ to −2◦. After the tran-
sition, the plane accelerates to reach a certain speed. Its
velocity vx increases rapidly and converges to a constant
value due to the friction drag. That means at this time,
the longitudinal acceleration of the plane is zero. In figure
11, we can notice that the angle of attack also converges to
a constant value. Despite this small value (approximately
1.5◦), it is enough to create the lift force thanks to the
high speed of the plane (note that nominal airspeed is
about 13m/s). It flies horizontally about 5s (period (3))
and then makes the transition to the vertical at second 11
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(period (4)). After the transition, it descends and lands at
second 21 (period (5) and (6)).

Note that the control law of the altitude is inactivated
during the horizontal flight and during the transition
phase. The profile of the altitude velocity vz is trapezoidal
in the periods of take off (1) and landing (6) as much as the
profile of the pitch rotational velocity ωy has a form of a
triangle (figure 8). There is no overshooting in both cases.
On the longitudinal flight path (figure 7), the plane loses
the altitude in two cases: the first after the transition to the
horizontal because its slow speed does not allow to create
the needed lift force; the second before the transition to
the vertical due to the deceleration of the plane.

5.2 Experimental Results

Platform - Embedded Control System. The convertible
airplane has been completely designed and constructed at
Heudiasyc laboratory (see Figure 1). It has a total weight
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of about 900g and uses one 2200mAh LiPo battery. Flight
endurance is satisfactory for the chosen configuration since
we achieve approximately 7 minutes in vertical flight.
An Inertial Measurement Unit (Microstrain, 3DM-GX3-
25 ) is used for obtaining the attitude. The gyro range
is 300◦/s, which is enough to handle the transition from
vertical to horizontal flight and vice versa. A Digital Sig-
nal Controller (Microchip, dsPIC33FJ256GP710 ) was se-
lected to implement the Embedded Control System, which
includes acquiring attitude data from the IMU, reading
the control inputs from the R/C receiver, implementing
the control algorithm, generating the corresponding pulse
width modulated (PWM) servo signals to control the
amount of aileron and rudder deflection and transmitting
flight parameters to a ground station via the serial wireless
transmission (XBee-Pro). The measurement used for the
altitude is obtained from the low cost ultrasonic sensor
(SRF10 ) which has a range of 10cm to 3m. Figure 12 shows
the prototype during a vertical flight when the attitude
and the altitude are controlled autonomously.

Vertical Flight Mode Test. In this test, the inputs of the
system are roll, pitch and yaw angles given by the opera-
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tors R/C transmitter. The desired altitude in take off and
landing phases is given by the trajectory generator and the
global thrust is generated by the altitude control. Figure 13
represents the results of the attitude and altitude control
algorithm during a vertical flight. The presented attitude
is recalculated from the current quaternion vector. The
pitch angle varies around 87.5◦ because of the mechanical
calibration error of the plane. However, the vehicle remains
stable and follows the desired attitude. The altitude varies
respect to the desired one, automatic take off and landing
have been tested with success. Note that 19cm is the initial
altitude of the ultrasonic sensor with respect to the ground
since the ultrasonic sensor is placed at this distance from
the bottom of the plane. One complete video of vertical
take off and landing and vertical flight (including ”hands-
off”, torque perturbation, 360◦ yaw rotation tests) was
uploaded on the site: http://www.youtube.com/watch?
v=7D0qSMTFqWc

Transition and Horizontal Flight Mode Test. The tests
for transition and horizontal flights are in progress. The
results will be obtained soon.

6. CONCLUSIONS AND FUTURE WORKS

In this work, we have presented the dynamic model of a
convertible plane and a simple control strategy to achieve
a longitudinal flight path. The obtained simulation results
demonstrate that the proposed control strategy could be
implemented in real experiments. The control law is simple
and suitable for embedded applications, it does not require
a high computational cost for control loop. The proposed
approach is currently implemented on the platform to
verify the practical applicability of the control strategy.
The vertical flight mode has been validated and the other
experimental phases are in progress.
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Appendix A. PROOF OF THEOREM 1

Proof. Let us define the Lyapunov function:

V =
1

2
ωTJω + 2κH(qe0) > 0 (A.1)

where κ > 0. Differentiating V with respect to time yields:

V̇ = ωTJω̇ + 2κ
∂H

∂qe0
q̇e0 (A.2)

V̇ = ωT [−ω × Jω + Γ] + 2κ
∂H

∂qe0

(
−1

2
qT
e ω

)
(A.3)

V̇ = ωTΓ− κ
∂H

∂qe0
qT
e ω (A.4)

V̇ = ωxΓx − κ
∂H

∂qe0
qe1ωx︸ ︷︷ ︸

V̇1

+ωyΓy − κ
∂H

∂qe0
qe2ωy︸ ︷︷ ︸

V̇2

+ ωzΓz − κ
∂H

∂qe0
qe3ωz︸ ︷︷ ︸

V̇3

(A.5)

Because V̇ is the sum of three terms
(
V̇1, V̇2, V̇3

)
, then we

first analyse the term:

V̇1 = ωxΓx − κ
∂H

∂qe0
qe1ωx (A.6)

Applying the bounded control law (14), we have:

V̇1 = −ωxsatMx

[
λxωx − ρ

∂H

∂qe0
qe1

]
− κ

∂H

∂qe0
qe1ωx (A.7)

We assume that:

|λxωx| > 2ργ > 2ρ

∥∥∥∥ ∂H

∂qe0

∥∥∥∥
∞

⇔ |ωx| >
2ργ

λx
(A.8)

then we have
∣∣∣λxωx − ρ ∂H

∂qe0
qe1

∣∣∣ > ργ+ ε (with ε > 0) and(
λxωx − ρ ∂H

∂qe0
qe1

)
has the same sign as ωx. Then:

V̇1 = −ωxsatMx

[
λxωx − ρ

∂H

∂qe0
qe1

]
− κ

∂H

∂qe0
qe1ωx

6 − |ωx| satMx [ργ + ε] + κγ |ωx|
(A.9)

By choosing:

κγ < min (Mx, ργ + ε) ⇔ κ <
min (Mx, ργ + ε)

γ
(A.10)

we can assure the decrease of V1 because V̇1 < 0. Conse-

quently, ωx enters in the set Φx =
{
ωx : |ωx| 6 2ργ

λx

}
in

finite time t1 and remains in it thereafter. In this case,(
λxωx − ρ ∂H

∂qe0
qe1

)
∈ [−3ργ, 3ργ]. Let’s choose Mx which

satisfies the following condition: Mx > 3ργ. Then for
time t2 > t1, the argument satMx will be bounded as

follows:
∣∣∣λxωx − ρ ∂H

∂qe0
qe1

∣∣∣ 6 3ργ 6 Mx and then we have

a condition for κ from A.10:

κ <
ργ + ε

γ
= ρ+

ε

γ
(A.11)

Consequently, satMx operates in a linear region:

Γx = −λxωx − ρ
∂H

∂qe0
qe1 (A.12)

and:

V̇1 = −ωx

(
λxωx − ρ

∂H

∂qe0
qe1

)
− κ

∂H

∂qe0
qe1ωx (A.13)

V̇1 = −λxω
2
x + ρ

∂H

∂qe0
qe1ωx − κ

∂H

∂qe0
qe1ωx (A.14)

By choosing κ = ρ satisfying condition A.11, we have:
V̇1 = −λxω

2
x 6 0 The same argument is applied to V̇2 and

V̇3, and V̇ becomes:

V̇ = V̇1+ V̇2+ V̇3 = −
(
λxω

2
x + λyω

2
y + λzω

2
z

)
6 0 (A.15)

In order to complete the proof, LaSalle Invariance Prin-
ciple is invoked. All the trajectories converge to the

largest invariant set Ω̄ in Ω =
{
(qe,ω) : V̇ = 0

}
=

{(qe,ω) : ω = 0}. In the invariant set, Jω̇ = −ω × Jω +
Γ = ρ ∂H

∂qe0
[ qe1 qe2 qe3 ] = 0. That is, Ω̄ is reduced to the

origin: qe = ω = 0. This ends the demonstration of the
asymptotic stability of the closed-loop system.


