Author manuscript, published in "ECCM 2010, IV European paraConterence on Computational Mechanics, Caristi Frances (2010) te ements and splines for contact problems with large slidings

. Magnain^a, A. Batailly^b, N. Chevaugeaon^c, M. Legrand^b, C. Pierre^b

(a) Institut PRISME ENSI Bourges (b) Structural dynamics and vibration laboratory McGill University (c) GéM, UMR CNRS 6183 Pôle calculs et structures École Centrale de Nantes

Introduce •୦୦୦	tion C^1- continuous methods:Hermite and B-splines 00000000	Large slidings cases	Conclusion
	oblem description		
2012			
(U)	act problems are highly nonlinear and may le lations	ead to complex and ineffic	ient
· ·	rticular, high sensitivity of contact simulatic ed contact interfaces	ons when large slidings oc	cur on
hal-00657382, ve	discontinuity of the orientation of the norm (<i>facetization</i>)	nal to the contact surface	
0657	non smooth approximation of the gap fund	ction	
hal-(mesh refinement may not be a solution w	hen large models are invol	ved

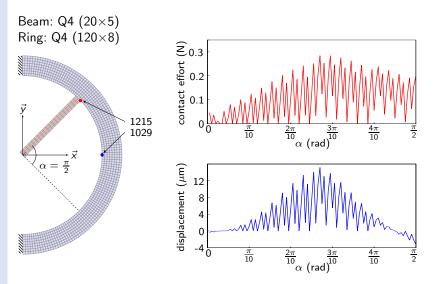
s Conclusion
anent contact
$-\frac{1}{\pi}\vec{x}$

Contact detection results from discretization errors

hal-00657382,

C

 $\forall \alpha, \ g = 0$


Introduc	tion
0000	

*C*¹—continuous methods:Hermite and B-splines 000000000 Large slidings cases

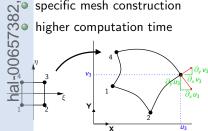
Conclusion

Practical manifestation

hal-00657382, version 1 - 6 Jan 2012

May 19th 2010

Introduc 000	tion C ¹ —continuous methods:Hermite and B-splines 00000000	Large slidings cases	Conclusion
La	/out		
01			
Jan 2012	troduction		
	Problem description		
ີ			
6	Practical manifestation		
	-continuous methods:Hermite and B-splines		
	Description		
S O	Gap inaccuracy		
\rightarrow \bigcirc	Contact normal orientation approximation		
_ ∩` [●]	Contact detection		
8			
- 💽 La	rge slidings cases		
hal-00657382,	validation case:cube and rings		
8.	blade tip/casing		
<u>–</u>			
Co	onclusion		
-			

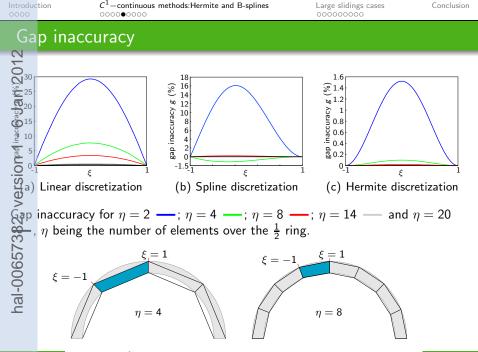

Introduc 0000	tion C^1 -continuous methods:Hermite and B-splines $\bullet \circ \circ$	Large slidings cases	Conclusion
C^1	-continuous methods		
Jag 2012	ective: better representation of a curved contact	surface	
Mea	ns:		
sion 1	mortar elements		
verg	superposition of linear elements and smoothing r	methods (B-splineS)	
657382,	mortar elements superposition of linear elements and smoothing r integration of smoothing methods within the ele is of our study: compare B-spline and Hermite r	ment (Hermite eleme	nt)
0059etth	is of our study: compare B-spline and Hermite r our solution algorithm.	nethods that are com	ıpatible

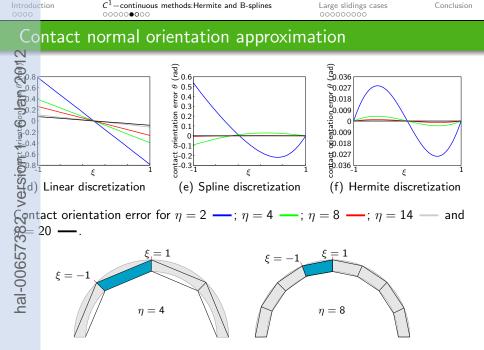
_

Introduo 0000	tion C^1 —continuous methods:Hermite and B-splines 00000000	Large slidings cases 00000000	Conclusion
	splines		
C Desc	ription:		
un of the second	third degree polynomial basis		
6_0	ription: third degree polynomial basis interpolation splines: control points chosen in	agreement with mesh	
A ' sse	ts:		
ЦO	Independent on the element type of the mesh		
ersi	can be easily extended to 3D cases		
Requ	irements:		
• 387 387	specific detection procedure with Newton-Rap	hson method	
657	higher computation time		
00-	spline/contact line \vec{n}_{n+1}	$\vec{n}_{s} \vec{n}_{n}$	
hal	Independent on the element type of the mesh can be easily extended to 3D cases irements: specific detection procedure with Newton-Rap higher computation time \vec{n}_{n+1}	n+1	

Hermite finite element

- 24 dof isoparametric element with cubic edge
- Sescription : 24 dof i 0 dof incl dof include coordinates of tangent vector to the edges Assets :
- continuity o automatic quirements : continuity of normal vector orientation from an element to another automatic update of the contact surface with mesh deformation
 - specific mesh construction
 - higher computation time




$$\mathbf{u}_{\mathbf{i}} = \{u_i, \frac{\partial u_i}{\partial x}, \frac{\partial u_i}{\partial y}, v_i, \frac{\partial v_i}{\partial x}, \frac{\partial v_i}{\partial y}\}$$

$$i = (1, 2, 3, 4).$$

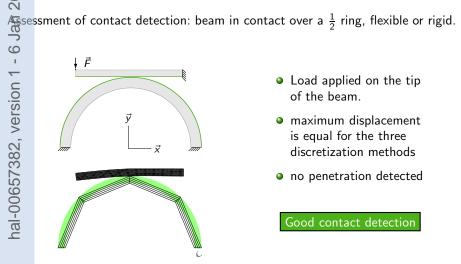
-continuous methods: validation

- contact normal orientation approximation

 continuous methods: validation
pertinence of each strategy is assessed by:
checking geometrical errors
gap inaccuracy
contact normal orientation approximation
validating contact detection
simulating large sliding contact cases
Let simulations presented are quasi-static simulations presented are quasi-s the simulations presented are quasi-static simulations without friction using bi-potential method for contact management in total Lagrangian framework.

Contact normal orientation approximation

Beth the addition of B-spline over linear elements and the use of Hermite ments allow for significant improvements of the gap inaccuracy and the contact normal orientation error.

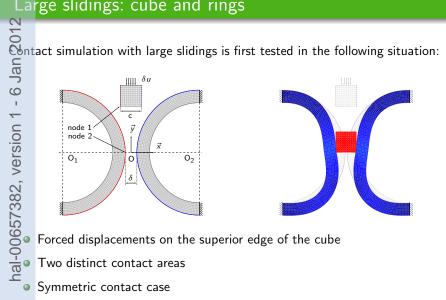

The choice of the mesh parameters for our study is driven by the following enoice conversion struc struc

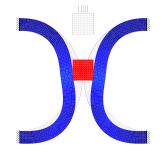
maximum gap error must be $g_{max} < 1\%$ of the outer radius of the ring

convergence must be observed for static simulations (sensitive bending of structures modeled with Q4 elements)

Mesh parameters: 10×8

Introduc 0000	tion C ¹ −continuous methods:Hermite and B-splines	Large slidings cases	Conclusion
	ntact detection		
2012		_	

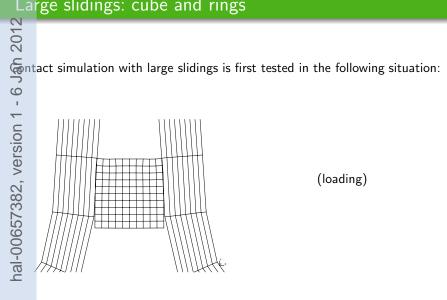



Introduc 0000	tion C^1 -continuous methods:Hermite and B-splines $\circ\circ\circ\circ\circ\circ\circ\circ\bullet$	Large slidings cases	Conclusion
Со	ntact detection		
Jar 2012	ssment of contact detection: beam in conta	act over a $\frac{1}{2}$ ring, flexible o	r rigid.
ion 1 - 6	Ē		
382, vers		(loading)	
hal-006573	ntact detection ssment of contact detection: beam in contact \vec{F} \vec{y} \vec{x} \vec{y} \vec{y} \vec{x} \vec{y} \vec{x} \vec{y} \vec{x} \vec{y} \vec{x} \vec{y} \vec{x} \vec{y} \vec{x} \vec{y} \vec{y} \vec{x} \vec{y}		

-continuous methods:Hermite and B-splines

Large slidings cases eooooooo

Conclusion

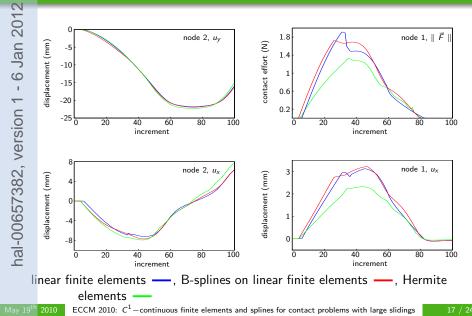


- Symmetric contact case

C¹-continuous methods:Hermite and B-splines

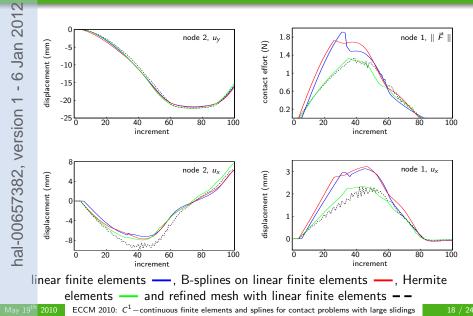
Large slidings cases 00000000

Conclusion



 C^1 -continuous methods:Hermite and B-splines

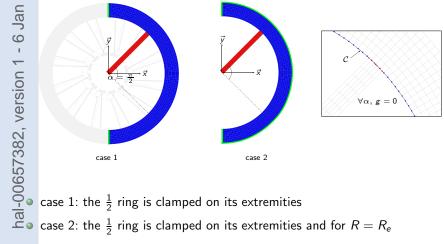
Large slidings cases


Conclusion

 C^1 -continuous methods:Hermite and B-splines

Large slidings cases

Conclusion

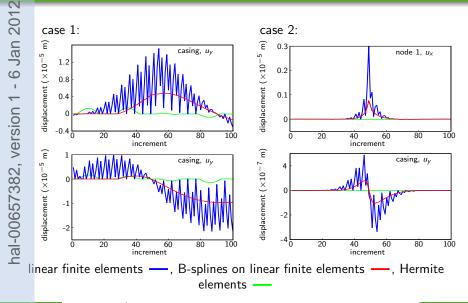

 C^1 -continuous methods:Hermite and B-splines

Large slidings cases

Conclusion

Large slidings: blade/casing

mentionned in the introduction, the contact cases are:

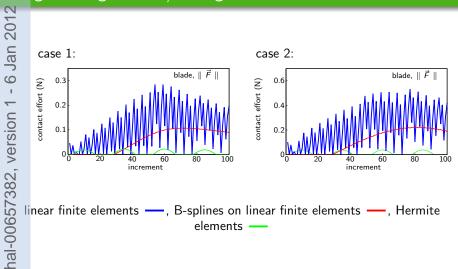

Mesh of the ring is 120×8 for linear elements and 10×8 for Hermite elements. May 19th 2010 ECCM 2010: C^1 -continuous finite elements and splines for contact problems with large slidings

 C^1 -continuous methods:Hermite and B-splines

Large slidings cases

Conclusion

Large slidings: blade/casing, results



C¹-continuous methods:Hermite and B-splines

Large slidings cases

Conclusion

Large slidings: blade/casing, results

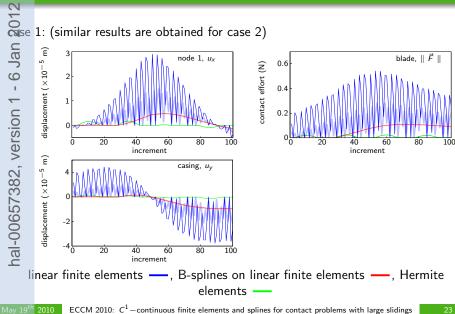
Large slidings: blade/casing, mesh size influence

Previous results show the smoothing obtained with the use of a B-spline over linear finite elements

Facetization and discretization errors phenomenon obviously depends on mesh size

Smoothing methods' sensitivity to mesh size (?)

mesh 120×8 \Rightarrow mesh 60×4


C¹-continuous methods:Hermite and B-splines

Large slidings cases 000000000

Conclusion

Large slidings: blade/casing, mesh size influence

Introduction 0000	<i>C</i> ¹ —continuous methods:Hermite and B-splines	Large slidings cases	Conclusion
Conclus	sion		

B-splines and Hermite elements allow for an important reduction of geometrical errors

Both methods ensure contact normal orientation continuity

It has been shown that when large slidings occur, discontinuous displacements and efforts appear due to discretization errors

Using a smoothing method not only allow for the suppression of these discontinuities but may also allow for mesh size reduction

In 2D, Hermite elements allow for a significant diminution of the number of

- B-spline geomet Both m It has b displace Using a disconti In 2D, H dof Using a disconti Dynamic displace Dynamic simulations must be carried out to highlight the consequences of displacements and efforts discontinuities
 - 3D simulations on industrial models