
HAL Id: hal-00657340
https://hal.science/hal-00657340v1

Submitted on 16 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A faster algorithm for finding minimum Tucker
submatrices

Guillaume Blin, Romeo Rizzi, Stéphane Vialette

To cite this version:
Guillaume Blin, Romeo Rizzi, Stéphane Vialette. A faster algorithm for finding minimum Tucker
submatrices. Theory of Computing Systems, 2012, 51 (3), pp.270-281. �10.1007/s00224-012-9388-1�.
�hal-00657340�

https://hal.science/hal-00657340v1
https://hal.archives-ouvertes.fr


A faster algorithm for finding
minimum Tucker submatrices

Guillaume Blin1, Romeo Rizzi2, and Stéphane Vialette1

1 Université Paris-Est, LIGM - UMR CNRS 8049, France.
{gblin,vialette}@univ-mlv.fr

2 Dipartimento di Matematica ed Informatica (DIMI)
Universit degli Studi di Udine, Italy. rrizzi@dimi.uniud.it

Abstract. A binary matrix has the Consecutive Ones Property (C1P)
if its columns can be ordered in such a way that all 1s on each row
are consecutive. Algorithmic issues of the C1P are central in computa-
tional molecular biology, in particular for physical mapping and ances-
tral genome reconstruction. In 1972, Tucker gave a characterization of
matrices that have the C1P by a set of forbidden submatrices, and a sub-
stantial amount of research has been devoted to the problem of efficiently
finding such a minimum size forbidden submatrix. This paper presents
a new O(∆3m2(m∆+ n3)) time algorithm for this particular task for a
m×n binary matrix with at most ∆ 1-entries per row, thereby improving
the O(∆3m2(mn+n3)) time algorithm of [M. Dom, J. Guo and R. Nie-
dermeier, Approximation and fixed-parameter algorithms for consecutive
ones submatrix problems, Journal of Computer and System Sciences,
76(3-4): 204-221, 2010 ]. Moreover, this approach can be used – with a
much heavier machinery – to address harder problems related to Minimal
Conflicting Set [G. Blin, R. Rizzi, and S. Vialette. A Polynomial-Time
Algorithm for Finding Minimal Conflicting Sets, Proc. 6th International
Computer Science Symposium in Russia (CSR), 2011 ].

1 Introduction

A binary matrix has the Consecutive Ones Property (C1P) if its columns
can be ordered in such a way that all 1s on each row are consecutive.
Both deciding if a given binary matrix has the C1P and finding the cor-
responding columns permutation can be done in linear time [9, 17, 18,
22–24, 27, 30]. The C1P of matrices has a long history and it plays an
important role in combinatorial optimization, including application fields
such as scheduling [6, 20, 21, 35], information retrieval [25], and railway
optimization [28, 29, 32] (see [15] for a recent survey). Furthermore, algo-
rithmic aspects of the C1P turn out to be of particular importance for
physical mapping [2, 12, 26] and ancestral genome reconstruction [1, 11].
(see also [10, 3–5, 13, 31] for other applications in computational molecular



biology). Actually, our main motivation for studying algorithmic aspects
of the C1P comes from minimal conflicting sets in binary matrices in the
context of ancestral genome reconstruction [?]. A minimal conflicting set
of rows in a binary matrix is a set of rows R that does not have the C1P
but such that any proper subset of R has the C1P (a similar definition
applies for columns). Tucker [34] has characterized the binary matrices
that have the C1P by a set of forbidden submatrices, and the aim of this
paper is to lay the foundations for efficiently computing minimal conflict-
ing sets by presenting a new efficient algorithm for finding such minimum
size forbidden Tucker submatrices [8].

Recently, Dom et al. [16] investigated some natural problems aris-
ing when a matrix M does not have the C1P property (the C1P is in-
deed a desirable property than often leads to efficient algorithms): find
a minimum-cardinality set of columns to delete such that the resulting
matrix has the C1P, find a minimum-cardinality set of rows to delete such
that the resulting matrix has the C1P, and find a minimum-cardinality
set of 1-entries in the matrix that shall be flipped (that is, replaced by
0-entries) such that the resulting matrix has the C1P. All these problems
are NP-hard even for simple instances [19, 33], and hence Dom et al. have
focused on approximation and parameterized complexity issues. To this
end, they have provided a technical solution based on efficiently detecting
forbidden Tucker submatrices [34].

In this paper, we presents a new O(∆3m2(m∆+ n3)) time algorithm
for finding a a minimum size forbidden Tucker submatrix in m × n bi-
nary matrices with at most ∆ 1-entries per row, thereby improving the
O(∆3m2(mn+ n3)) time algorithm of Dom et al. [16, 15].

This paper is organized as follows: we first recall basic definitions
in Section 2, and we then formally introduce the considered problem. In
Section 3, we briefly recall the algorithm of Dom et a. Section 4 is devoted
to presenting out technical improvement and we consider in Section 5
matrices with unbounded ∆.

2 Preliminaries

All graphs are considered as undirected. Given a graph G = (V,E), let
N(v) = {u|(u, v) ∈ E} denote the neighborhood of vertex v in G. The
neighborhood described above does not include v itself, and is more specif-
ically the open neighborhood of v; it is also possible to define a neigh-
borhood in which v itself is included, called the closed neighborhood. For
any subset V ′ ⊆ V of vertices, let G[V ′] denote the subgraph of G in-



duced by the vertices of V ′ (i.e., G′ = (V ′, {(u, v) ∈ E|u, v ∈ V ′})). An
induced cycle is a cycle that is an induced subgraph of G; induced cycles
are also called chordless cycles. An asteroidal triple is an independent set
of three vertices such that each pair is joined by a path that avoids the
neighborhood of the third.

A binary matrix has the Consecutive Ones Property (C1P) if its
columns can be ordered in such a way that all 1s on each rows are con-
secutive. For a matrix M , we let ri and cj stand for the ith row and
the jth column of M , respectively. Let M be a m× n binary matrix. Its
corresponding bipartite graph G(M) = (VM , EM ) is defined as follows:
VM = R ∪ C, where R = {ri : 1 ≤ i ≤ m} is the set of rows of M
and C = {ci : 1 ≤ i ≤ n} is the set of columns of M , and two vertices
ri ∈ R and cj ∈ C are connected by an edge if and only if M [i, j] = 1.
Equivalently, M is the reduced adjacency matrix of G(M) (i.e. the non-
redundant portion of the full adjacency matrix for the bipartite graph).
Actually, it will be convenient to defineG(M) as a vertex-colored bipartite
graph: each ri ∈ R (row vertex) is colored black and each cj ∈ c (column
vertex) is colored white. See Figure 1 for an illustration (we use capital
letters for black vertices and uncapitalized letters for white vertices).

M =


c1 c2 c3 c4 c5 c6

r1 0 1 0 1 1 0
r2 0 0 0 1 1 0
r3 0 1 1 0 1 0
r4 1 0 1 0 1 1



c2GM

R1

R3

c4

c5

c3

R2

R4

c1

c6

Fig. 1. A binary matrix and its corresponding vertex-colored bipartite graph.

The following result of Tucker links the C1P for binary matrices to
asteroidal triples.



Theorem 1 ([34], Theorem 6). A binary matrix has the C1P if and
only if its corresponding vertex-colored bipartite graph does not contain a
white asteroidal triple, i.e. an asteroidal triple on column vertices.

Moreover, Tucker has characterized the binary matrices that have the
C1P by a set of forbidden submatrices (the number of vertices in the
forbidden graph defines the size of the Tucker configuration).

Theorem 2 ([34], Theorem 9). A binary matrix has the C1P if and
only if it contains none of the matrices MIk , MIIk , MIIIk (k ≥ 1), MIV

and MV depicted in Figure 2.

Fig. 2. Forbidden Tucker submatrices represented as vertex-colored bipartite graphs
[34]. Black and white vertices correspond to rows and columns, respectively.

3 The algorithm of Dom et al.

In [16], Dom et al. provided an algorithm for finding a forbidden Tucker
submatrix (i.e., one of T = {MIk ,MIIk ,MIIIk ,MIV ,MV }) in a given
binary matrix. The general algorithm is as follows. For each white as-
teroidal triple u, v, w of G(M), compute the sum of the lengths of three
shortest paths connecting two by two u, v and w (each path has to avoid
the closed neighborhood of the third vertex). Select an asteroidal triple
u, v, w of G(M) with minimum total length of the paths connecting each



Time complexity

Tucker configuration Dom et al. Our contribution

MIk and MIIk O(∆mn2 + n3) O(∆3m2(n+∆m))

MIIIk O(∆3m3n+∆2m2n2) O(∆mn2(n+∆m))

MIV O(∆3m2n3) Algorithm of Dom et al. used verbatim

MV O(∆4m2n) Algorithm of Dom et al. used verbatim

Overall O(∆3m2(mn+ n3)) O(∆3m2(∆m+ n3))

Table 1. Comparing our results with Dom et al. [16, 15].

pair of vertices and return the rows and columns of M that correspond
to the vertices that occur along the three shortest paths. The authors
proved that the returned submatrix does contain a forbidden Tucker sub-
matrix of T but which is not necessarily of minimum size (for MIIIk , MIV

and MV ). Indeed, since the three shortest paths may share some vertices,
the sum of the lengths of the three paths is not necessarily the number
of vertices in the union of the three paths. However, Dom et al. showed
that the returned submatrix contains at most three extra columns (resp.
five extra rows) compared with a forbidden Tucker submatrix with min-
imum number of columns (resp. rows). To overcome this problem, they
provided another algorithm devoted to MIIIk , MIV and MV submatrices.
More precisely, they used the similarity between MIIIk and MIk to reduce
the problem to a minimum-size chordless cycle search. For MIV and MV ,
they provided an exhaustive search. On the whole, Dom et al. provided
an algorithm for finding a forbidden Tucker submatrix in a given matrix
M (assuming M does not have the C1P) in O(∆3m2n(m + n2)) time,
where m is the number of rows of M , n is the number of columns of
n, and ∆ is the maximum number of 1-entries in a row. More precisely,
the authors provided a O(∆mn2 + n3) time algorithm for finding a MIk

or MIIk submatrix, a O(∆3m3n+∆2m2n2) time algorithm for finding a
MIIIk submatrix, a O(∆3m2n3) time algorithm for finding a MIV sub-
matrix, and a O(∆4m2n) time algorithm for finding a MV submatrix. See
Table 1.

The main contribution of this paper is a simple O(∆3m2 (m∆+ n3))
time algorithm for finding a minimum size forbidden Tucker submatrix.
Our technical improvement on Dom et al. [16, 15] is based on shortest
paths and two graph pruning techniques: clean and complement clean
(to be defined in the next section). Graph pruning techniques were in-
troduced by Conforti and Rao [14]. One has to note that graph pruning
technique does not always succeed in the detection of induced configu-
rations. Indeed, in [7] Bienstock gave negative results among which one



can find an NP-completeness proof for the problem of deciding whether
a graph contains an odd chordless cycle containing a given vertex. This
negative result, which in attacking the perfect graph conjecture was use-
ful in posing limits in what could have been a reasonable approach, also
demonstrates that not everything can be done with the detection of in-
duced configurations.

4 Fast detection of minimum size forbidden Tucker
submatrices

In this section, we design a general algorithm that reports in polynomial-
time the smallest Tucker configuration of a given matrix M if it exists. To
do so, we seek for any subgraph of G(M) that corresponds to a submatrix
of T .

Let us introduce the clean and cpl clean cleaning operations. Let M
be a binary matrix and G(M) = (VM , EM ) be the corresponding vertex-
colored bipartite graph. Let v be a vertex of G(M), then cleanG(M)(v)
is the graph obtained by removing from G(M) all neighbors of v, i.e.,
G(M)[VM \ N(v)]. Let v be a vertex of G(M), then cpl cleanG(M)(v)
(read complement clean)) is the graph obtained by removing from G(M)
all vertices that do not belong to the same partition nor the neighborhood
of v, i.e., G(M)[N(v) ∪ {u : color(u) = color(v)}]. For the sake of
simplicity, we shall write cleanG(M)(u1, u2, . . . , uk) for the sequence

G1 ← cleanG(M)(u1),

G2 ← cleanG1(u2),

...

Gk ← cleanGk−1
(uk),

Return Gk,

and cpl cleanG(M)(u1, u2, . . . , uk) for the sequence

G1 ← cpl cleanG(M)(u1),

G2 ← cpl cleanG1
(u2),

. . . ,

Gk ← cpl cleanGk−1
(uk),

Return Gk.



We now focus on the bipartite graphs that represent Tucker con-
figurations (see Figure 2) and define our guessing functions. Define the
function guessI(G(M)) (reps. guessII(G(M))) that returns all possible
sets of vertices {x, y, z, A,B} ⊆ VM as defined for the Tucker config-
uration MIk (resp. MIIk) in Figure 2. Furthermore, Define the function
guessIII(G(M)) that returns all possible sets of vertices {x, y, z, A} ⊆ VM
as defined for the Tucker configuration MIIIk in Figure 2. Of particular
importance, in the presented algorithms, guessed vertices will never be
affected (i.e., deleted) by the clean and cpl clean functions.

Fig. 3. MIk Tucker configuration.

Lemma 1. Let M be m× n binary matrix with at most ∆ 1-entries per
row. Algorithm 1 computes the smallest submatrix G(MIk) in G(M) in
O(m2∆3(n+∆m)) time (if such a submatrix exists).

Proof. We apply Algorithm 1 to G(M). Let us first prove that if G(MIk)
occurs in G(M), then Algorithm 1 finds it. Suppose G′ = G(MIk) occurs
in G(M). Then among all the guessed 5-plets x, y, z, A,B (Line 1), there
should be at least one guess such that x, y, z, A,B are part of the vertices
of G′. By definition, G′ is a chordless cycle. Therefore, clean(x,A,B)
preserves G′ since in G′, (1) x is only connected to vertices A and B,
(2) A is only connected to vertices x and y, and (3) B is only connected
to x and z. Therefore, looking for a shortest path p in the pruned graph
between y and z after having removed A and B ensures the minimality
of the returned solution.

The guessing can be done in O(m2∆3) time. Indeed, once A has been
identified, one can (i) select x and y among the at most ∆ neighbors of
A, and (ii) identify B and one of its at most ∆ neighbors as z such that
x ∈ N(B) and z /∈ {x, y}. For each such guessing, the cleaning of x,A,B



Algorithm 1 Finding G(MIk) in G(M)

1: for all {x, y, z, A,B} ← guessI(G(M)) do
2: G1 ← cleanG(M)(x,A,B)
3: Remove the vertices A and B from G1. In the resulting graph, find a shortest

path p from y to z
4: if p exists then
5: S ← {x, y, z, A,B} ∪ {u : u ∈ p}
6: return the induced subgraph G(M)[S]
7: end if
8: end for
9: return None

can be done in O(∆+m) time. Finally, a shortest path between y and z
can be computed in O(n+∆m) time (the pruned graph has at most m+n
vertices and ∆m edges). On the whole, Algorithm 1 is O(m2∆3(n+∆m))
time. ut

Fig. 4. MIIk Tucker configuration.

Lemma 2. Let M be a m × n binary matrix with at most ∆ 1-entries
per row. Algorithm 2 computes the smallest submatrix G(MIIk) in G(M)
in O(m2∆3(n+∆m)) time (if such a submatrix exists).

Proof. We apply Algorithm 2 to G(M). Let us first prove that if G(MIIk)
occurs in G(M), then Algorithm 2 finds it. Suppose G′ = G(MIIk) occurs
in G(M). Then among all the guessed 5-plets x, y, z, A,B in Line 1, there
must be at least one guess such that x, y, z, A,B are part of the vertices of
G′. By definition, in G′ any unguessed white node is in the neighborhood
of both A and B. Thus, cpl clean(A,B) preserves G′ since (1) y (the
only white node not in the neighborhood of B) has been guessed, and (2)



z (the only white node not in the neighborhood of A) has been guessed.
Moreover, in G′ x should be only connected to A and B. Thus, clean(x)
preserves G′. Finally, looking for a shortest path p in the pruned graph
between y and z after having removed A and B ensures the minimality
of the returned solution.

Algorithm 2 Finding G(MIIk) in G(M)

1: for all {x, y, z, A,B} ← guessII(G(M)) do
2: G1 ← cpl cleanG(M)(A,B)
3: G2 ← cleanG1(x)
4: Remove the vertices A and B from G2. In the resulting graph, find a shortest

path p from y to z
5: if p exists then
6: S ← {x, y, z, A,B} ∪ {u : u ∈ p}
7: return the induced subgraph G(M)[S]
8: end if
9: end for

10: return None

The guessing can be done in O(m2∆3) time. For each guessing, the
cleaning/complement-cleaning of x,A, and B can be done in O(n + m)
time. Finally, a shortest path between y and z can be computed in O(n+
∆m) time (the pruned graph has at most ∆+n vertices and ∆m edges).
On the whole, Algorithm 2 is O(m2∆3(n+∆m)) time. ut

Fig. 5. MIIIk Tucker configuration.

Lemma 3. Let M be a m × n binary matrix with at most ∆ 1-entries
in each row. Algorithm 3 computes the smallest G(MIIIk) in G(M) in
O(m∆n2(n+∆m)) time (if such a submatrix exists).



Algorithm 3 Finding G(MIIIk) in G(M)

Proof. 1: for all {x, y, z, A} ← guessIII(G(M)) do
2: G1 ← cpl cleanG(M)(A)
3: G2 ← cleanG1(x)
4: Remove the vertex A from G2. In the resulting graph, find a shortest path p

from y to z.
5: if p exists then
6: S ← {x, y, z, A} ∪ {u : u ∈ p}
7: return the induced subgraph G(M)[S]
8: end if
9: end for

10: return None

We apply Algorithm 3 to G(M). Let us first prove that if G(MIIIk)
occurs in G(M), then Algorithm 3 finds it. Suppose G′ = G(MIIIk) occurs
in G(M). Then among all the guessed 4-plets x, y, z, A in Line 1, there
must be at least one guess such that x, y, z, A are part of the vertices of
G′. By definition, in G′ any unguessed white node is in the neighborhood
of A. Thus, cpl clean(A) preserves G′ since in G′ y and z (the only
white nodes not in the neighborhood of A) have been guessed. Moreover,
in G′ x is only connected to A. Therefore, clean(x) preserves G′. Finally,
looking for a shortest path p in the pruned graph between y and z after
having removed A ensures the minimality of the returned solution.

The guessing can be done in O(m∆n2) time. Indeed, once A has been
identified, one can (i) select x among the at most ∆ neighbors of A and (ii)
then identify y and z. For each such guessing, the cleaning/complement-
cleaning of x and A can be done in O(n+m) time. Finally, a shortest path
between y and z can be computed in O(n+∆m) time (the pruned graph
has at most ∆ + n vertices and ∆m edges). On the whole, Algorithm 3
is O(m∆n2(n+∆m)) time. ut

As for G(MIV ) and G(MV ), a simple brute-force search yields the
time complexity detailed in Lemma 4.

Lemma 4 ([16], Proposition 5.3). Let M be a m × n binary matrix
with at most ∆ 1-entries per row. The smallest G(MIV ) (resp. G(MV ))
in G(M) can be computed in O(∆3m2n3) (resp. O(∆4m2n) time) if it
exists.

We are now ready to state the main result of this paper (Table 1
compares our results with Dom et al. [16].).



Fig. 6. MIV and MV Tucker configurations.

Theorem 3. Let M be a m × n binary matrix that does not have the
C1P with at most ∆ 1-entries per row. A minimum size forbidden Tucker
submatrix that occurs in M can be found in O(∆3m2(∆m+ n3)) time.

Notice that our results do not improve on the ones of Dom et al. [16]
for large ∆. Furthermore, our results also do not improve on the ones of
Dom et al. [16] for each Tucker configuration. For example, if m = n, our
algorithm has time complexity O(∆4m3) for MIk and MIIk Tucker config-
urations, whereas Dom et al.’s algorithm has time complexity O(∆m3).

5 Matrices with unbounded ∆

As mentioned in [16], a natural question is concerned with the complex-
ity of the problem when the number of 1s per row is unbounded. One
can distinguish two subcases: the maximum number of 1s per column is
bounded (say by C) or not. In the following, we prove that using a sim-
ilar approach to the one used in the preceding section, one can achieve
an O(C2n3(m+C2n)) (resp. O(n4m4)) time complexity for the bounded
(resp. unbounded) case.

Theorem 4. Let M be a m× n binary matrix with at most C 1-entries
per column. A minimum size forbidden Tucker submatrix that occurs in
M can be found in O(C2n3(m+ C2n)) time.

Proof. We apply Algorithms 1, Algorithms 2, and Algorithms 3 to find
any forbidden submatrix of type MIk , MIIk or MIIIk . Let us now analyze
the time complexity.

For Algorithm 1, the guessing can be done in O(n3C2) time. Indeed,
once x has been identified, one can select A and B among the at most C



neighbors of x and then identify y and z such that y ∈ N(A), y 6∈ N(B),
z ∈ N(B), z 6∈ N(A) and x 6= y 6= z. For each such guessing, the cleaning
of x, A, and B can be done in O(C + n) time. Finally, a shortest path
between y and z can be computed in O(m+Cn) time (the pruned graph
has at most m+n vertices and Cn edges). We conclude that Algorithm 1
is O(C2n3(m+ Cn)) time.

For Algorithm 2, the guessing can also be done in O(n3C2). For each
such guessing, the cleaning/complement-cleaning of x,A and B can be
done in O(C + n) time. Finally, a shortest path between y and z can be
computed in O(m + Cn) time (the pruned graphs has at most m + n
vertices and Cn edges). We conclude that Algorithm 2 is O(C2n3(m +
Cn)) time.

As for Algorithm 3, the guessing can be done in O(n3C) time. Indeed,
once x has been identified, one can select A among the at most C neigh-
bors of x and then identify y and z such that y 6∈ N(A), z 6∈ N(A) and
x 6= y 6= z. For each such guessing, the cleaning/complement-cleaning of
x and A can be done in O(C + n) time. Finally, a shortest path between
y and z can be computed in O(m + Cn) time (the pruned graph has at
most m + n vertices and Cn edges). We conclude that Algorithm 3 is
O(Cn3(m+ Cn)) time.

MIV and MV forbidden submatrices deserve careful consideration.
Indeed, a direct application of Proposition 5.3 [16] for finding MIV and
MV forbidden submatrices results in a O(n6) time algorithm. We use the
following strategy: (i) Select the central three white nodes u, v, and w
(distinct from x, y and z) among the O(n3) such triples, (ii) select four
black nodes that are neighbors of at least one of u, v, or w among the
O(C4) such 4-plets, and (iii) for each such combination check in O(n)
time whether every columns of the matrix MIV appears at least once in
the submatrix induced by the selected rows.

A submatrix of the type MV can be found analogously: (i) select the
two central white nodes (distinct from x, y, and z) among the O(n2) such
triples, (ii) select four black nodes that are neighbors of at least one of u
and v among the O(C4) such 4-plets, and (iii) for each such combination
check in O(n) time whether every columns of the matrix MV appears at
least once in the submatrix induced by the selected rows. ut

Replacing C by m in the above yields the following result.

Theorem 5. Let M be m×n binary matrix. A minimum size forbidden
Tucker submatrix that occurs in M can be found in O(n4m4) time.



References

1. Z. Adam, M. Turmel, C. Lemieux, and D. Sankoff. Common intervals and symmet-
ric difference in a model-free phylogenomics, with an application to streptophyte
evolution. J. Comput. Biol., 14:436–445, 2007.

2. F. Alizadeh, R. Karp, D. Weisser, and G. Zweig. Physical mapping of chromosomes
using unique probes. J. Comput. Biol., 2:159–184, 1995.

3. E. Althaus, S. Canzar, M.R. Emmett, A. Karrenbauer, A.G. Marshall, A. Meyer-
Baese, and H. Zhang. Computing h/d-exchange speeds of single residues from
data of peptic fragments. In ACM Press, editor, 23rd ACM Symposium on Applied
Computing SAC ’08, page 12731277, 2008.

4. J.E. Atkins, E.G. Boman, and B. Hendrickson. A spectral algorithm for seriation
and the consecutive ones problem. SIAM J. Comput., 28(1):297310, 1998.

5. J.E. Atkins and M. Middendorf. On physical mapping and the consecutive ones
property for sparse matrices. Discrete Appl. Math., 71(13):2340, 1996.

6. J. J. Bartholdi, J. B. Orlin, and H. D. Ratliff. Cyclic scheduling via integer pro-
grams with circular ones. Oper Res, 28(5):1074–1085, 1980.

7. Dan Bienstock. On the complexity of testing for odd holes and induced odd paths.
Discrete Math., 90(1):85–92, 1991.

8. G. Blin, R. Rizzi, and S. Vialette. General framework for minimal conflicting set.
Technical report, Université Paris Est, I.G.M., jan 2010.

9. K.S. Booth and G.S. Lueker. Testing for the consecutive ones property, interval
graphs, and graph planarity using pq-tree algorithms. J. Comput. System Sci.,
13:335379, 1976.

10. C. Chauve, J. Manǔch, and M. Patterson. On the gapped consecutive ones prop-
erty. In Proc. 5th European conference on Combinatorics, Graph Theory and Appli-
cations (EuroComb), Bordeaux, France, volume 34 of Electronic Notes on Discrete
Mathematics, pages 121–125, 2009.

11. C. Chauve and É. Tannier. A methodological framework for the reconstruction of
contiguous regions of ancestral genomes and its application to mammalian genome.
PLoS Comput. Biol., 4:paper e1000234, 2008.

12. T. Christof, M. Jünger, J. Kececioglu, P. Mutzel, and G. Reinelt. A branch-and-cut
approach to physical mapping of chromosome by unique end-probes. J. Comput.
Biol., 4:433–447, 1997.

13. T. Christof, M. Oswald, and G. Reinelt. Consecutive ones and a betweenness prob-
lem in computational biology. In Springer, editor, 6th International Conference on
Integer Programming and Combinatorial Optimization IPCO ’98, volume 1412 of
Lecture Notes in Comput. Sci., page 213228, 1998.

14. Michele Conforti and M. R. Rao. Structural properties and decomposition of linear
balanced matrices. Mathematical Programming, 55:129–168, 1992.

15. M. Dom. Algorithmic aspects of the consecutive-ones property. Bull. Eur. Assoc.
Theor. Comput. Sci. EATCS, 98:2759, 2009.

16. M. Dom, J. Guo, and R. Niedermeier. Approximation and fixed-parameter algo-
rithms for consecutive ones submatrix problems. Journal of Computer and System
Sciences, 76(3-4), 2010.

17. D.R. Fulkerson and O.A. Gross. Incidence matrices and interval graphs. Pacific
J. Math., 15(3):835855, 1965.

18. M. Habib, R.M. McConnell, C. Paul, and L. Viennot. Lex-bfs and partition refine-
ment, with applications to transitive orientation, interval graph recognition and
consecutive ones testing. Theoret. Comput. Sci., 234(12):5984, 2000.



19. M. Hajiaghayi and Y. Ganjali. A note on the consecutive ones submatrix problem.
Information Processing Letters, 83(3):163166, 2002.

20. Refael Hassin and Nimrod Megiddo. Approximation algorithms for hitting objects
with straight lines. Discrete Applied Mathematics, 30(1):29 – 42, 1991.

21. Dorit S. Hochbaum and Asaf Levin. Cyclical scheduling and multi-shift scheduling:
Complexity and approximation algorithms. Discrete Optimization, 3(4):327 – 340,
2006.

22. W.-L. Hsu. A simple test for the consecutive ones property. J. Algorithms,
43(1):116, 2002.

23. W.-L. Hsu and R.M. McConnell. Pc trees and circular-ones arrangements. Theoret.
Comput. Sci., 296(1):99116, 2003.

24. N. Korte and R.H. Mhring. An incremental linear-time algorithm for recognizing
interval graphs. SIAM J. Comput., 18(1):6881, 1989.

25. Lawrence T. Kou. Polynomial complete consecutive information retrieval prob-
lems. SIAM J. Comput., 6(1):67–75, 1977.

26. W.-F. Lu and W.-L. Hsu. A test for the consecutive ones property on noisy data –
application to physical mapping and sequence assembly. J. Comput. Biol., 10:709–
735, 2003.

27. R.M. McConnell. A certifying algorithm for the consecutive-ones property. In
ACM Press, editor, 15th Annual ACMSIAM Symposium on Discrete Algorithms
SODA ’04, page 768777, 2004.

28. S. Mecke, A. Schbel, and D. Wagner. Station location complexity and approxi-
mation. In 5th Workshop on Algorithmic Methods and Models for Optimization of
Railways ATMOS ’05, Dagstuhl, Germany, 2005.

29. S. Mecke and D. Wagner. Solving geometric covering problems by data reduction.
In Springer, editor, 12th Annual European Symposium on Algorithms ESA ’04,
volume 3221 of Lecture Notes in Comput. Sci., page 760771, 2004.

30. J. Meidanis, O. Porto, and G.P. Telles. On the consecutive ones property. Discrete
Appl. Math., 88:325354, 1998.

31. M. Oswald and G. Reinelt. The simultaneous consecutive ones problem. Theoret.
Comput. Sci., 410(2123):19861992, 2009.

32. Nikolaus Ruf and Anita Schbel. Set covering with almost consecutive ones property.
Discrete Optimization, 1(2):215 – 228, 2004.

33. J. Tan and L. Zhang. The consecutive ones submatrix problem for sparse matrices.
Algorithmica, 48(3):287299, 2007.

34. A.C. Tucker. A structure theorem for the consecutive 1s property. Journal of
Combinatorial Theory. Series B, 12:153162, 1972.

35. A.F. Veinott and H.M. Wagner. Optimal capacity scheduling. Oper Res, 10:518–
547, 1962.


