Guillaume Blin
email: gblin@univ-mlv.fr

Romeo Rizzi
email: rrizzi@dimi.uniud.it

Stéphane Vialette
email: vialette@univ-mlv.fr

A faster algorithm for finding minimum Tucker submatrices

Keywords:

A binary matrix has the Consecutive Ones Property (C1P) if its columns can be ordered in such a way that all 1s on each row are consecutive. Algorithmic issues of the C1P are central in computational molecular biology, in particular for physical mapping and ancestral genome reconstruction. In 1972, Tucker gave a characterization of matrices that have the C1P by a set of forbidden submatrices, and a substantial amount of research has been devoted to the problem of efficiently finding such a minimum size forbidden submatrix. This paper presents a new O(∆ 3 m 2 (m∆ + n 3)) time algorithm for this particular task for a m×n binary matrix with at most ∆ 1-entries per row, thereby improving the O(∆ 3 m 2 (mn + n 3)) time algorithm of [M. Dom, J. Guo and R. Niedermeier, Approximation and fixed-parameter algorithms for consecutive ones submatrix problems, Journal of Computer and System Sciences, 76(3-4): [204][205][206][207][208][209][210][211][212][213][214][215][216][217][218][219][220][221] 2010]. Moreover, this approach can be used -with a much heavier machinery -to address harder problems related to Minimal

Introduction

A binary matrix has the Consecutive Ones Property (C1P) if its columns can be ordered in such a way that all 1s on each row are consecutive. Both deciding if a given binary matrix has the C1P and finding the corresponding columns permutation can be done in linear time [9, 17, 18, 22-24, 27, 30]. The C1P of matrices has a long history and it plays an important role in combinatorial optimization, including application fields such as scheduling [START_REF] Bartholdi | Cyclic scheduling via integer programs with circular ones[END_REF][START_REF] Hassin | Approximation algorithms for hitting objects with straight lines[END_REF][START_REF] Hochbaum | Cyclical scheduling and multi-shift scheduling: Complexity and approximation algorithms[END_REF][START_REF] Veinott | Optimal capacity scheduling[END_REF], information retrieval [START_REF] Kou | Polynomial complete consecutive information retrieval problems[END_REF], and railway optimization [START_REF] Mecke | Station location complexity and approximation[END_REF][START_REF] Mecke | Solving geometric covering problems by data reduction[END_REF][START_REF] Ruf | Set covering with almost consecutive ones property[END_REF] (see [START_REF] Dom | Algorithmic aspects of the consecutive-ones property[END_REF] for a recent survey). Furthermore, algorithmic aspects of the C1P turn out to be of particular importance for physical mapping [START_REF] Alizadeh | Physical mapping of chromosomes using unique probes[END_REF][START_REF] Christof | A branch-and-cut approach to physical mapping of chromosome by unique end-probes[END_REF][START_REF] Lu | A test for the consecutive ones property on noisy dataapplication to physical mapping and sequence assembly[END_REF] and ancestral genome reconstruction [START_REF] Adam | Common intervals and symmetric difference in a model-free phylogenomics, with an application to streptophyte evolution[END_REF][START_REF] Chauve | A methodological framework for the reconstruction of contiguous regions of ancestral genomes and its application to mammalian genome[END_REF]. (see also [10, 3-5, 13, 31] for other applications in computational molecular biology). Actually, our main motivation for studying algorithmic aspects of the C1P comes from minimal conflicting sets in binary matrices in the context of ancestral genome reconstruction [?]. A minimal conflicting set of rows in a binary matrix is a set of rows R that does not have the C1P but such that any proper subset of R has the C1P (a similar definition applies for columns). Tucker [START_REF] Tucker | A structure theorem for the consecutive 1s property[END_REF] has characterized the binary matrices that have the C1P by a set of forbidden submatrices, and the aim of this paper is to lay the foundations for efficiently computing minimal conflicting sets by presenting a new efficient algorithm for finding such minimum size forbidden Tucker submatrices [START_REF] Blin | General framework for minimal conflicting set[END_REF].

Recently, Dom et al. [START_REF] Dom | Approximation and fixed-parameter algorithms for consecutive ones submatrix problems[END_REF] investigated some natural problems arising when a matrix M does not have the C1P property (the C1P is indeed a desirable property than often leads to efficient algorithms): find a minimum-cardinality set of columns to delete such that the resulting matrix has the C1P, find a minimum-cardinality set of rows to delete such that the resulting matrix has the C1P, and find a minimum-cardinality set of 1-entries in the matrix that shall be flipped (that is, replaced by 0-entries) such that the resulting matrix has the C1P. All these problems are NP-hard even for simple instances [START_REF] Hajiaghayi | A note on the consecutive ones submatrix problem[END_REF][START_REF] Tan | The consecutive ones submatrix problem for sparse matrices[END_REF], and hence Dom et al. have focused on approximation and parameterized complexity issues. To this end, they have provided a technical solution based on efficiently detecting forbidden Tucker submatrices [START_REF] Tucker | A structure theorem for the consecutive 1s property[END_REF].

In this paper, we presents a new O(∆ 3 m 2 (m∆ + n 3)) time algorithm for finding a a minimum size forbidden Tucker submatrix in m × n binary matrices with at most ∆ 1-entries per row, thereby improving the O(∆ 3 m 2 (mn + n 3)) time algorithm of Dom et al. [START_REF] Dom | Approximation and fixed-parameter algorithms for consecutive ones submatrix problems[END_REF][START_REF] Dom | Algorithmic aspects of the consecutive-ones property[END_REF]. This paper is organized as follows: we first recall basic definitions in Section 2, and we then formally introduce the considered problem. In Section 3, we briefly recall the algorithm of Dom et a. Section 4 is devoted to presenting out technical improvement and we consider in Section 5 matrices with unbounded ∆.

Preliminaries

All graphs are considered as undirected. Given a graph G = (V, E), let N (v) = {u|(u, v) ∈ E} denote the neighborhood of vertex v in G. The neighborhood described above does not include v itself, and is more specifically the open neighborhood of v; it is also possible to define a neighborhood in which v itself is included, called the closed neighborhood. For any subset V ⊆ V of vertices, let G[V] denote the subgraph of G in-duced by the vertices of V (i.e., G = (V , {(u, v) ∈ E|u, v ∈ V })). An induced cycle is a cycle that is an induced subgraph of G; induced cycles are also called chordless cycles. An asteroidal triple is an independent set of three vertices such that each pair is joined by a path that avoids the neighborhood of the third.

A binary matrix has the Consecutive Ones Property (C1P) if its columns can be ordered in such a way that all 1s on each rows are consecutive. For a matrix M , we let r i and c j stand for the i th row and the j th column of M , respectively. Let M be a m × n binary matrix. Its corresponding bipartite graph G(M) = (V M , E M) is defined as follows:

V M = R ∪ C, where R = {r i : 1 ≤ i ≤ m} is the set of rows of M and C = {c i : 1 ≤ i ≤ n}
is the set of columns of M , and two vertices r i ∈ R and c j ∈ C are connected by an edge if and only if M [i, j] = 1. Equivalently, M is the reduced adjacency matrix of G(M) (i.e. the nonredundant portion of the full adjacency matrix for the bipartite graph). Actually, it will be convenient to define G(M) as a vertex-colored bipartite graph: each r i ∈ R (row vertex) is colored black and each c j ∈ c (column vertex) is colored white. See Figure 1 for an illustration (we use capital letters for black vertices and uncapitalized letters for white vertices).

M =     c1 c2 c3 c4 c5 c6 r1 0 1 0 1 1 0 r2 0 0 0 1 1 0 r3 0 1 1 0 1 0 r4 1 0 1 0 1 1     c2 GM R1 R3 c4 c5 c3 R2 R4 c1 c6
Fig. 1. A binary matrix and its corresponding vertex-colored bipartite graph.

The following result of Tucker links the C1P for binary matrices to asteroidal triples.

Theorem 1 ([34], Theorem 6).

A binary matrix has the C1P if and only if its corresponding vertex-colored bipartite graph does not contain a white asteroidal triple, i.e. an asteroidal triple on column vertices.

Moreover, Tucker has characterized the binary matrices that have the C1P by a set of forbidden submatrices (the number of vertices in the forbidden graph defines the size of the Tucker configuration). 3 The algorithm of Dom et al.

Theorem 2 ([34], Theorem 9). A binary matrix has the C1P if and only if it contains none of the matrices

M I k , M II k , M III k (k ≥ 1), M IV and M V depicted in Figure 2.
In [START_REF] Dom | Approximation and fixed-parameter algorithms for consecutive ones submatrix problems[END_REF], Dom et al. provided an algorithm for finding a forbidden Tucker submatrix (i.e., one of

T = {M I k , M II k , M III k , M IV , M V })
in a given binary matrix. The general algorithm is as follows. For each white asteroidal triple u, v, w of G(M), compute the sum of the lengths of three shortest paths connecting two by two u, v and w (each path has to avoid the closed neighborhood of the third vertex). Select an asteroidal triple u, v, w of G(M) with minimum total length of the paths connecting each

O(∆mn 2 + n 3) O(∆ 3 m 2 (n + ∆m)) MIII k O(∆ 3 m 3 n + ∆ 2 m 2 n 2) O(∆mn 2 (n + ∆m)) MIV O(∆ 3 m 2 n 3) Algorithm of Dom et al. used verbatim MV O(∆ 4 m 2 n) Algorithm of Dom et al. used verbatim Overall O(∆ 3 m 2 (mn + n 3)) O(∆ 3 m 2 (∆m + n 3))
Table 1. Comparing our results with Dom et al. [START_REF] Dom | Approximation and fixed-parameter algorithms for consecutive ones submatrix problems[END_REF][START_REF] Dom | Algorithmic aspects of the consecutive-ones property[END_REF].

pair of vertices and return the rows and columns of M that correspond to the vertices that occur along the three shortest paths. The authors proved that the returned submatrix does contain a forbidden Tucker submatrix of T but which is not necessarily of minimum size (for M III k , M IV and M V). Indeed, since the three shortest paths may share some vertices, the sum of the lengths of the three paths is not necessarily the number of vertices in the union of the three paths. However, 1.

The main contribution of this paper is a simple O(∆ 3 m 2 (m∆ + n 3)) time algorithm for finding a minimum size forbidden Tucker submatrix. Our technical improvement on Dom et al. [START_REF] Dom | Approximation and fixed-parameter algorithms for consecutive ones submatrix problems[END_REF][START_REF] Dom | Algorithmic aspects of the consecutive-ones property[END_REF] is based on shortest paths and two graph pruning techniques: clean and complement clean (to be defined in the next section). Graph pruning techniques were introduced by Conforti and Rao [START_REF] Conforti | Structural properties and decomposition of linear balanced matrices[END_REF]. One has to note that graph pruning technique does not always succeed in the detection of induced configurations. Indeed, in [START_REF] Bienstock | On the complexity of testing for odd holes and induced odd paths[END_REF] Bienstock gave negative results among which one can find an NP-completeness proof for the problem of deciding whether a graph contains an odd chordless cycle containing a given vertex. This negative result, which in attacking the perfect graph conjecture was useful in posing limits in what could have been a reasonable approach, also demonstrates that not everything can be done with the detection of induced configurations.

Fast detection of minimum size forbidden Tucker submatrices

In this section, we design a general algorithm that reports in polynomialtime the smallest Tucker configuration of a given matrix M if it exists. To do so, we seek for any subgraph of G(M) that corresponds to a submatrix of T .

Let us introduce the clean and cpl clean cleaning operations. Let M be a binary matrix and

G(M) = (V M , E M) be the corresponding vertex- colored bipartite graph. Let v be a vertex of G(M), then clean G(M) (v) is the graph obtained by removing from G(M) all neighbors of v, i.e., G(M)[V M \ N (v)]. Let v be a vertex of G(M), then cpl clean G(M) (v) (read complement clean))
is the graph obtained by removing from G(M) all vertices that do not belong to the same partition nor the neighborhood of v, i.e., G(M

)[N (v) ∪ {u : color(u) = color(v)}].
For the sake of simplicity, we shall write clean G(M) (u 1 , u 2 , . . . , u k) for the sequence

G 1 ← clean G(M) (u 1), G 2 ← clean G 1 (u 2), . . . G k ← clean G k-1 (u k), Return G k ,
and cpl clean G(M) (u 1 , u 2 , . . . , u k) for the sequence

G 1 ← cpl clean G(M) (u 1), G 2 ← cpl clean G 1 (u 2), . . . , G k ← cpl clean G k-1 (u k), Return G k .
We now focus on the bipartite graphs that represent Tucker configurations (see Figure 2) and define our guessing functions. Define the function guess I (G(M)) (reps. guess II (G(M))) that returns all possible sets of vertices {x, y, z, A, B} ⊆ V M as defined for the Tucker configuration M I k (resp. M II k) in Figure 2. Furthermore, Define the function guess III (G(M)) that returns all possible sets of vertices {x, y, z, A} ⊆ V M as defined for the Tucker configuration M III k in Figure 2. Of particular importance, in the presented algorithms, guessed vertices will never be affected (i.e., deleted) by the clean and cpl clean functions. Proof. We apply Algorithm 1 to G(M). Let us first prove that if G(M I k) occurs in G(M), then Algorithm 1 finds it. Suppose G = G(M I k) occurs in G(M). Then among all the guessed 5-plets x, y, z, A, B (Line 1), there should be at least one guess such that x, y, z, A, B are part of the vertices of G . By definition, G is a chordless cycle. Therefore, clean(x, A, B) preserves G since in G , [START_REF] Adam | Common intervals and symmetric difference in a model-free phylogenomics, with an application to streptophyte evolution[END_REF] x is only connected to vertices A and B, (2) A is only connected to vertices x and y, and (3) B is only connected to x and z. Therefore, looking for a shortest path p in the pruned graph between y and z after having removed A and B ensures the minimality of the returned solution.

The guessing can be done in O(m 2 ∆ 3) time. Indeed, once A has been identified, one can (i) select x and y among the at most ∆ neighbors of A, and (ii) identify B and one of its at most ∆ neighbors as z such that x ∈ N (B) and z / ∈ {x, y}. For each such guessing, the cleaning of x, A, B

Algorithm 1 Finding G(M I k) in G(M)
1: for all {x, y, z, A, B} ← guess I (G(M)) do 2:

G1 ← clean G(M) (x,A,B) 3:
Remove the vertices A and B from G1. In the resulting graph, find a shortest path p from y to z 4:

if p exists then 5:

S ← {x, y, z, A, B} ∪ {u : u ∈ p} 6:

return the induced subgraph G(M)[S] 7:

end if 8: end for 9: return None can be done in O(∆ + m) time. Finally, a shortest path between y and z can be computed in O(n+∆m) time (the pruned graph has at most m+n vertices and ∆m edges). On the whole, Algorithm 1 is O(m 2 ∆ 3 (n + ∆m)) time.

Proof. We apply Algorithm 2 to G(M). Let us first prove that if G(M II

k) occurs in G(M), then Algorithm 2 finds it. Suppose G = G(M II k) occurs in G(M).
Then among all the guessed 5-plets x, y, z, A, B in Line 1, there must be at least one guess such that x, y, z, A, B are part of the vertices of G . By definition, in G any unguessed white node is in the neighborhood of both A and B. Thus, cpl clean(A, B) preserves G since (1) y (the only white node not in the neighborhood of B) has been guessed, and (2) z (the only white node not in the neighborhood of A) has been guessed. Moreover, in G x should be only connected to A and B. Thus, clean(x) preserves G . Finally, looking for a shortest path p in the pruned graph between y and z after having removed A and B ensures the minimality of the returned solution.

Algorithm 2 Finding G(M II k) in G(M) 1: for all {x, y, z, A, B} ← guess II (G(M)) do 2: G1 ← cpl clean G(M) (A, B) 3: G2 ← cleanG 1 (x) 4:
Remove the vertices A and B from G2. In the resulting graph, find a shortest path p from y to z 5:

if p exists then 6:

S ← {x, y, z, A, B} ∪ {u : u ∈ p} 7:

return the induced subgraph G(M)[S] 8:

end if 9: end for 10: return None

The guessing can be done in O(m 2 ∆ 3) time. For each guessing, the cleaning/complement-cleaning of x, A, and B can be done in O(n + m) time. Finally, a shortest path between y and z can be computed in O(n + ∆m) time (the pruned graph has at most ∆ + n vertices and ∆m edges). On the whole, Algorithm 2 is O(m 2 ∆ 3 (n + ∆m)) time.

(M III k) in G(M) in O(m∆n 2 (n + ∆m)) time (if such a submatrix exists). Algorithm 3 Finding G(M III k) in G(M) Proof. 1: for all {x, y, z, A} ← guess III (G(M)) do 2: G1 ← cpl clean G(M) (A) 3: G2 ← cleanG 1 (x) 4:
Remove the vertex A from G2. In the resulting graph, find a shortest path p from y to z.

5:

if p exists then 6:

S ← {x, y, z, A} ∪ {u : u ∈ p} 7:

return the induced subgraph G(M)[S] 8:

end if 9: end for 10: return None

We apply Algorithm 3 to G(M). Let us first prove that if G(M III k) occurs in G(M), then Algorithm 3 finds it. Suppose G = G(M III k) occurs in G(M). Then among all the guessed 4-plets x, y, z, A in Line 1, there must be at least one guess such that x, y, z, A are part of the vertices of G . By definition, in G any unguessed white node is in the neighborhood of A. Thus, cpl clean(A) preserves G since in G y and z (the only white nodes not in the neighborhood of A) have been guessed. Moreover, in G x is only connected to A. Therefore, clean(x) preserves G . Finally, looking for a shortest path p in the pruned graph between y and z after having removed A ensures the minimality of the returned solution.

The guessing can be done in O(m∆n 2) time. Indeed, once A has been identified, one can (i) select x among the at most ∆ neighbors of A and (ii) then identify y and z. For each such guessing, the cleaning/complementcleaning of x and A can be done in O(n+m) time. Finally, a shortest path between y and z can be computed in O(n + ∆m) time (the pruned graph has at most ∆ + n vertices and ∆m edges). On the whole, Algorithm 3 is O(m∆n 2 (n + ∆m)) time.

As for G(M IV) and G(M V), a simple brute-force search yields the time complexity detailed in Lemma 4.

Lemma 4 ([16], Proposition 5.3). Let M be a m × n binary matrix with at most ∆ 1-entries per row. The smallest

G(M IV) (resp. G(M V)) in G(M) can be computed in O(∆ 3 m 2 n 3) (resp. O(∆ 4 m 2 n) time) if it exists.
We are now ready to state the main result of this paper (Table 1 compares our results with Dom et al. [START_REF] Dom | Approximation and fixed-parameter algorithms for consecutive ones submatrix problems[END_REF].). Notice that our results do not improve on the ones of Dom et al. [START_REF] Dom | Approximation and fixed-parameter algorithms for consecutive ones submatrix problems[END_REF] for large ∆. Furthermore, our results also do not improve on the ones of Dom et al.

Matrices with unbounded ∆

As mentioned in [START_REF] Dom | Approximation and fixed-parameter algorithms for consecutive ones submatrix problems[END_REF], a natural question is concerned with the complexity of the problem when the number of 1s per row is unbounded. One can distinguish two subcases: the maximum number of 1s per column is bounded (say by C) or not. In the following, we prove that using a similar approach to the one used in the preceding section, one can achieve an O(C 2 n 3 (m + C 2 n)) (resp. O(n 4 m 4)) time complexity for the bounded (resp. unbounded) case. For Algorithm 1, the guessing can be done in O(n 3 C 2) time. Indeed, once x has been identified, one can select A and B among the at most C neighbors of x and then identify y and z such that y ∈ N (A), y ∈ N (B), z ∈ N (B), z ∈ N (A) and x = y = z. For each such guessing, the cleaning of x, A, and B can be done in O(C + n) time. Finally, a shortest path between y and z can be computed in O(m + Cn) time (the pruned graph has at most m + n vertices and Cn edges). We conclude that Algorithm 1 is O(C 2 n 3 (m + Cn)) time.

For Algorithm 2, the guessing can also be done in O(n 3 C 2). For each such guessing, the cleaning/complement-cleaning of x, A and B can be done in O(C + n) time. Finally, a shortest path between y and z can be computed in O(m + Cn) time (the pruned graphs has at most m + n vertices and Cn edges). We conclude that Algorithm 2 is O(C 2 n 3 (m + Cn)) time.

As for Algorithm 3, the guessing can be done in O(n 3 C) time. Indeed, once x has been identified, one can select A among the at most C neighbors of x and then identify y and z such that y ∈ N (A), z ∈ N (A) and x = y = z. For each such guessing, the cleaning/complement-cleaning of x and A can be done in O(C + n) time. Finally, a shortest path between y and z can be computed in O(m + Cn) time (the pruned graph has at most m + n vertices and Cn edges). We conclude that Algorithm 3 is O(Cn 3 (m + Cn)) time.

M IV and M V forbidden submatrices deserve careful consideration. Indeed, a direct application of Proposition 5.3 [START_REF] Dom | Approximation and fixed-parameter algorithms for consecutive ones submatrix problems[END_REF] for finding M IV and M V forbidden submatrices results in a O(n 6) time algorithm. We use the following strategy: (i) Select the central three white nodes u, v, and w (distinct from x, y and z) among the O(n 3) such triples, (ii) select four black nodes that are neighbors of at least one of u, v, or w among the O(C 4) such 4-plets, and (iii) for each such combination check in O(n) time whether every columns of the matrix M IV appears at least once in the submatrix induced by the selected rows.

A submatrix of the type M V can be found analogously: (i) select the two central white nodes (distinct from x, y, and z) among the O(n 2) such triples, (ii) select four black nodes that are neighbors of at least one of u and v among the O(C 4) such 4-plets, and (iii) for each such combination check in O(n) time whether every columns of the matrix M V appears at least once in the submatrix induced by the selected rows.

Replacing C by m in the above yields the following result. Theorem 5. Let M be m × n binary matrix. A minimum size forbidden Tucker submatrix that occurs in M can be found in O(n 4 m 4) time.

Fig. 2 .

 2 Fig.2. Forbidden Tucker submatrices represented as vertex-colored bipartite graphs[START_REF] Tucker | A structure theorem for the consecutive 1s property[END_REF]. Black and white vertices correspond to rows and columns, respectively.

Fig. 3 .

 3 Fig. 3. MI k Tucker configuration.

Fig. 4 .

 4 Fig. 4. MII k Tucker configuration.

Fig. 5 .

 5 Fig. 5. MIII k Tucker configuration.

Fig. 6 .

 6 Fig. 6. MIV and MV Tucker configurations.

 [START_REF] Dom | Approximation and fixed-parameter algorithms for consecutive ones submatrix problems[END_REF] for each Tucker configuration. For example, if m = n, our algorithm has time complexity O(∆ 4 m 3) for M I k and M II k Tucker configurations, whereas Dom et al.'s algorithm has time complexity O(∆ m 3).

Theorem 4 .

 4 Let M be a m × n binary matrix with at most C 1-entries per column. A minimum size forbidden Tucker submatrix that occurs inM can be found in O(C 2 n 3 (m + C 2 n)) time.Proof. We apply Algorithms 1, Algorithms 2, and Algorithms 3 to find any forbidden submatrix of type M I k , M II k or M III k . Let us now analyze the time complexity.