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Abstract—Flexible querying of information systems dedicated
to multimodal transport networks aims to help user organizing
his/her trips by promoting public transport networks (bus,
subway, train, boat, plane, etc.). In this context, it is necessary
to provide an integrated environment in which it is possible for
the user to express queries with complex preferences so as to
meet his/her expectations. Complex preferences are modeled by
fuzzy bipolar conditions which associate negative and positive
conditions. Queries involving such conditions are called bipolar
queries. In our case, such queries are addressed to multimodal
transport information systems, which are often made of several
distributed and heterogeneous databases. Therefore, semantic
aspects have to be taken into consideration in the querying
process so that only the most relevant data is targeted to
evaluate queries. We introduce then in this paper a new approach
for flexible querying of information systems that combines a
reasoning mechanism (fuzzy bipolar DLR-Lite) with a relational
language of a high expressiveness (bipolar SQLf language).

Index Terms—Flexible querying, complex preferences, fuzzy
bipolar conditions, bipolar SQLf, fuzzy sets theory, fuzzy de-
scription logics, multimodal transportation.

I. INTRODUCTION AND MOTIVATION

Multimodal transport information system is intended to
provide information called multimodal transport information
(denoted MTI) which is about various modes and available
transport networks and services to help travelers to plan and to
organize their trips [17]. It covers information about transport
modes, timetables, pricing, traffic analysis, etc.

User oriented services are developed to promote public
transport networks for the planning of user’s daily journeys.
To fulfill user requirements, multimodal transport information
systems must be endowed with powerful and complex func-
tionalities. The issues of the heterogeneity and distribution
of data in the transport field have also to be taken into
consideration. Ontologies could be used to manage these
aspects because they not only unify the domain vocabulary
but they also provide reasoning mechanisms capable to extract
implicit data from explicit one. Several ontologies have been
developed for the multimodal transport domain (see [7], [11],
[15], [16], [18]). The more complete one is Ontology Trans-
portation Network (OTN) [14], which allows the modeling of

multimodal transport networks from different points of view
such as spatial, temporal, services, etc.

Flexible querying systems allow users expressing prefer-
ences in their queries. These queries are addressed to regular
relational databases and deliver a set of discriminated answers,
which are ranked from the most to the least preferred element.
Within the scope of flexible querying, the fuzzy set theory
provides a general model for the interpretation of queries
involving fuzzy predicates. It is also possible to consider fuzzy
bipolar conditions to model preferences. Several interpreta-
tions are introduced for the evaluation of queries involving
fuzzy bipolar conditions (see [10], [9], [21], [23], [24]), and in
this paper, we rely on the interpretation introduced by Dubois
and Prade [10], [9], in which a bipolar condition is made of
two components: a constraint that is a mandatory condition
and a wish that is an optional condition. More precisely, for
the expression of user preferences, we rely on fuzzy bipolar
conditions in which the constraint and the wish are defined
by fuzzy sets. We define then a bipolar query as a query that
involves bipolar conditions. A bipolar relational algebra is also
proposed in [13], [3] and the algebraic operators (selection,
projection, join, union, intersection) have been extended to
fuzzy bipolar conditions.

We introduce in this paper a flexible querying approach
of distributed and heterogeneous information systems, such
as those developed for multimodal trip planning systems,
which allows users to express complex preferences in their
queries. In this context, the system has to deal with a large
amount of data while taking into account efficiency in terms
of quality of answers. Two aspects have been considered: (i)
the expressivity in terms of complex preferences and query
language and (ii) the efficiency of the data management. Our
approach is then based on the combination of the Bipolar SQLf
language (which is an extension of the SQLf language [2],
[1] to fuzzy bipolar conditions, suitable to express complex
preferences) with a reasoning system, built on a fuzzy bipolar
DLR-Lite knowledge base (which is also an extension of the
fuzzy DLR-Lite [8], [19] to fuzzy bipolar conditions, used to
target the most relevant subset of data to answer user queries).



The remainder of the paper is organized as follows. Section
II reminds both fuzzy sets theory (which is the main model
for fuzzy conditions) and the SQLf language (which is an
extension of the SQL language to fuzzy conditions). In section
III, fuzzy bipolar conditions and Bipolar SQLf language are
respectively described. Section IV recalls the fuzzy DLR-Lite
and introduces our contribution which consists in the extension
of the fuzzy DLR-Lite to fuzzy bipolar conditions and Bipolar
SQLf language. In section V, the fuzzy bipolar DLR-Lite is
used to develop a sample application in the field of multimodal
transportation, in order to show the improvement that could
be gained from integrating fuzzy bipolar conditions into both
fuzzy DLR-Lite and SQLf language. Section VI summarizes
our contribution and draws some lines for future works.

II. FLEXIBLE QUERYING WITHIN THE SQLF LANGUAGE

In this section, we briefly introduce fuzzy sets theory, used
to define fuzzy predicates such as fast, high, large, expensive,
..., and the SQLf language which is an extension of the SQL
language to fuzzy conditions.

A. Fuzzy Sets Theory

The fuzzy sets theory is introduced by Zadeh [22] to express
the gradual membership of an element to a set. Formally, a
fuzzy set F is defined on a referential U by a membership
function µF : U 7→ [0, 1] such that µF (x) denotes the
membership grade of x in F .

In particular, µF (x) = 1 denotes the full membership of x
in F , µF (x) = 0 expresses the absolute non-membership and
when 0 < µF (x) < 1, it reflects a partial membership (the
closer to 1 µF (x), the more x belongs to F ).

A fuzzy set generalizes a crisp set in which membership
grades are in {0, 1}. If a fuzzy set is a discrete set then
it is denoted F = {µF (x1)/x1 + ... + µF (xn)/xn}, else
it is characterized by its membership function, generally a
trapezoidal function.

The union ∪ and the intersection ∩ operators are defined
with a couple of (t-norm, t-conorm) such as (min, max). Let
F , G be two fuzzy sets, µF∪G(x) = max(µF (x), µG(x)),
µF∩G(x) = min(µF (x), µG(x)), and the complement of F ,
noted F c, is defined by µF c(x) = 1− µF (x).

The logical counterparts of ∩, ∪ and the complement are
resp. ∧,∨ and ¬. Other operators have also been defined
such as fuzzy implications [4]. We consider particularly R-
implications, which are based on the residual principle:

IR(a, b) = sup{z ∈ [0, 1] : T (a, z) ≤ b}, (1)

where IR(a, b) means a→R b and T is a triangular norm.
R-implications satisfy properties of monotonicity, neutrality,

exchange, identity and of ordering [4]. For example, the Gödel
fuzzy implication is an R-implication which is defined by the
formula (2), in which the used t-norm is min:

IGö(a, b) = sup{z ∈ [0, 1] : min(a, z) ≤ b}, (2)

The Gödel fuzzy implication is also defined as follows:
IGö(a, b) = 1 if a ≤ b, b otherwise.
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Fig. 1: The membership function of the fuzzy predicate fast.

TABLE I: Extension of the fuzzy relation fastJourney.

#Journey cost ($) duration (h) ... µFastJourney

12 80 2 ... 1
13 75 3 ... 0.66
10 65 4 ... 0.33

B. The SQLf Language

The SQLf language [2], [1] is an extension of the SQL
language to flexible querying by extending its statements to
fuzzy conditions. When querying a regular relation R with
such conditions, a fuzzy relation r (fuzzy set) is delivered.
Each tuple t from r is attached with a degree of membership
that expresses its level of satisfaction. The closer to 1 µr(t),
the more t is preferred.

Example 1: Let fast be a fuzzy predicate as defined in
Fig. 1. A fuzzy relation fastJourney can be defined from the
relation Journey (#Journey, source, destination, cost, duration)
s.t. for each tuple t: µFastJourney(t) = µFast(t.duration).
Table I is an example of extension of fastJourney. p

The SQLf language is based on the extension of the rela-
tional algebra operators to fuzzy conditions, defined as follows
[2]: let r, s be two fuzzy relations such that the schema of r
(resp. s) is X (resp. Y ):
• Fuzzy projection: µπ(r,V )(v) = maxwµr(vw), where
V ⊆ X , v ∈ V and w ∈ (X − V ).

• Fuzzy restriction: µσ(r,p)(x) = min(µr(x), µp(x)),
where p is a fuzzy predicate.

• Fuzzy join: µ./(r, s, θ, A,B) =
min(µr(x), µs(y), µθ(x.A, y.B)), where A and
B are compatible sets of attributes such that A
(resp. B) is a subset of X (resp. Y ) and x.A
(resp. y.B) is the value of A in x (resp. B in y),
and θ is either a crisp or a fuzzy binary operator
(θ ∈ {=,≈, <,>,much larger than, ...}).

Syntactic elements of the SQLf language:

The main form of an SQLf query (fuzzy restriction) is:
Select [distinct] [n|t|n,t] attributes From relations

Where fuzzy_cond;
The above query returns a set of ranked tuples with their

degree of satisfaction, where n is a limitation of the size of the
returned set and t ∈]0, 1] is a minimal threshold of satisfaction.

Example 2: We consider a sample database which is
consistent with the Transmodel standard [6]. It contains the
following relations: Network, Line, Station, Link and LinkLine.
We define Journey relation as Journey (#journey, #link, de-



parture, arrival, source, destination, cost, duration, DepLink,
ArrLink, modeLink, waitLink, durLink, costLink, comfLink).

For example, the query ”find the 2 fastest journeys from
Lannion to Paris” could be expressed in SQLf by:

Select 2 #journey From Journey Where source=’Lannion’
and destination=’Paris’ and fast (duration);

The fuzzy condition fast(duration) delivers the fuzzy rela-
tion FastJourney (see table I) and the query returns the 2 best
answers : journeys #12 and #13, attached respectively with
the satisfaction degrees 1 and 0.66. p

The SQLf language allows more complex statements such
as partitioning, nesting and division involving fuzzy relations.

III. FLEXIBLE QUERYING WITHIN BIPOLAR SQLF
LANGUAGE

In this section, we briefly introduce fuzzy bipolar conditions
and Bipolar SQLf language which is an extension of the SQLf
language to fuzzy bipolar conditions.

A. Fuzzy Bipolar Conditions

A bipolar condition is an association of both negative
condition (pole) and positive condition (pole). In this paper,
a bipolar condition is made of two conditions defined on the
same universe: i) a constraint c, which describes the set of
acceptable elements, and ii) a wish w which defines the set
of desired or wished elements. The negation of c is the set
of rejected elements (non-acceptable elements). Since it is not
coherent to wish a rejected element, the following property of
coherence holds: w ⊆ c.

In addition, condition c is mandatory since an element
which does not satisfy c is rejected (¬c is the negative
condition), whereas w is optional because its non-satisfaction
by an element does not mean its rejection (w is the positive
condition). In this paper, a bipolar condition is noted (c, w)
and means: "satisfy c and if possible satisfy w" [10], [9].

If c and w are boolean conditions, the satisfaction with
respect to (c, w) is a couple from {0, 1}2. When querying a
database with such a condition, tuples satisfying the constraint
and the wish are returned in priority. If such answers do not
exist, the tuples satisfying only the constraint are delivered.

If c and w are fuzzy conditions (defined on the universe U ),
the property of coherence becomes: ∀u ∈ U, µw(u) ≤ µc(u)
and the satisfaction with respect to (c, w) is a couple of degrees
from [0, 1]2. Each element u from U is then attached with a
couple of grades (µc(u), µw(u)) that expresses the degree of
its satisfaction respectively to the constraint c and the wish w.

When querying a relation R with a fuzzy bipolar condition,
each tuple t from R is then attached with a couple of grades
(µc(t), µw(t)) that expresses the degree of its satisfaction
respectively to the constraint c and the wish w; and a so-called
fuzzy bipolar relation is obtained. A tuple t is then denoted
(µc, µw)/t. We assume that any tuple u such that µc(u) = 0
does not belong to the fuzzy bipolar relation. In such a context,
tuples cannot be ranked using an aggregation of µc and µw
because the constraint and the wish are not commensurable.
However, they can be ranked using the lexicographical order:

t1 is preferred to t2, denoted t1 � t2, if and only if µc(t1) >
µc(t2) or (µc(t1) = µc(t2) ∧ µw(t1) > µw(t2)).

In this case, the satisfaction with respect to the constraint is
firstly used to discriminate among answers (the constraint be-
ing mandatory). The satisfaction with respect to the wish being
optional, it can only be used to discriminate among answers
having the same evaluation with respect to the constraint. A
total order is then obtained on µc and µw (with (1, 1) as the
greatest element and (0, 0) as the least element).

Based on the lexicographical order, the lmin and lmax
operators [12], [3] are introduced in order to define the con-
junction (resp. intersection) and the disjunction (resp. union)
of bipolar conditions (resp. relations). They are defined as
follows:

([0, 1]× [0, 1])2 → [0, 1]× [0, 1]

((µ, η), (µ′, η′)) 7→ lmin((µ, η), (µ′, η′)) ={
(µ, η) ifµ < µ′ ∨ (µ = µ′ ∧ η < η′),

(µ′, η′) else.

([0, 1]× [0, 1])2 → [0, 1]× [0, 1]

((µ, η), (µ′, η′)) 7→ lmax((µ, η), (µ′, η′)) ={
(µ, η) ifµ > µ′ ∨ (µ = µ′ ∧ η > η′),

(µ′, η′) else.

The lmin (resp. lmax) operator is commutative, associa-
tive, idempotent and monotonic. The couple of grades (1, 1)
is the neutral (resp. absorbing) element of the operator lmin
(resp. lmax) and the couple (0, 0) is the absorbing (resp.
neutral) element of the operator lmin (resp. lmax).

Remark 1: Fuzzy bipolar conditions generalize fuzzy
conditions since a fuzzy condition c can be rewritten (c, c)
to express " satisfy c and if possible satisfy c". So, a fuzzy
relation R is a particular case of a fuzzy bipolar relation such
that ∀t ∈ R,µR(t) = µc(t) = µw(t). It has been proven [12],
[3] that the lmin (resp. lmax) extends the t-norm min (resp.
the t-co-norm max) to bipolarity.

B. Basis of Bipolar SQLf Language

Bipolar SQLf language is an extension to fuzzy bipolar
conditions of the SQLf language. We introduce in this sub-
section the fuzzy bipolar extension proposed in [12], [3] of the
relational algebraic operators (the union, the intersection, the
cartesian product, the projection, the selection and the join) of
fuzzy bipolar relations. This extension is based on the couple
of the extended t-norm and t-co-norm (lmin, lmax).

Let r and s be two fuzzy bipolar relations defined respec-
tively by fuzzy bipolar conditions (c1, w1) and (c2, w2).

1) The intersection operator: The intersection of r and s is
a fuzzy bipolar relation, in which each tuple t is attached with
a couple of degrees (µc(t), µw(t)). It is defined as follows:
r ∩ s = {(µc, µw)/t|(µc1 , µw1

)/t ∈ r ∧ (µc2 , µw2
)/t ∈ s∧

(µc, µw) = lmin((µc1(t), µw1
(t)), (µc2(t), µw2

(t)))}.



2) The union operator: The union of r and s is a fuzzy
bipolar relation, in which each tuple t is attached with a couple
of degrees (µc(t), µw(t)). It is defined as follows:

r ∪ s = {(µc, µw)/t|(µc1 , µw1
)/t ∈ r ∧ (µc2 , µw2

)/t ∈ s∧
(µc, µw) = lmax((µc1(t), µw1

(t)), (µc2(t), µw2
(t)))}.

3) The cartesian product operator: The cartesian product
of r and s is a fuzzy bipolar relation, in which each tuple t is
attached with a couple (µc(t), µw(t)). It is defined as follows:

r⊗s = {(µc, µw)/t⊕t′|(µc1 , µw1)/t ∈ r∧(µc2 , µw2)/t
′ ∈ s

∧ (µc, µw) = lmin((µc1(t), µw1(t)), (µc2(t
′), µw2(t

′)))},

where ⊕ is the operator of concatenation of tuples.
4) The projection operator: The projection of distinct tu-

ples on attributes a1, ..., ak from r is a fuzzy bipolar relation
of elements 〈a1, ..., ak〉, defined as follows:

πa1,...,ak(r) = {(µ′c1 , µ
′
w1

)/ 〈a1, ..., ak〉 |
(µ′c1 , µ

′
w1

) = lmaxt∈r∧t[a1,...,ak]=〈a1,...,ak〉((µc1(t), µw1
(t))),

where t[a1, ..., ak] is the value of the tuple t on a1, ..., ak.
5) The selection operator: The selection of tuples from r,

based on the fuzzy bipolar condition (c′, w′) is defined as:

σ(r, (c′, w′)) = {(µc, µw)/t|(µc1 , µw1
)/t ∈ r∧

(µc, µw) = lmin((µc′(t), µw′(t)), (µc1(t), µw1
(t)))},

where µc′(t) (resp. µw′(t)) is the degree of satisfaction of t
with respect to the constraint c′ (resp. the wish w′).

6) The join operator: As in both boolean and fuzzy cases,
the join operator is defined in the context of bipolarity by the
combination of a cartesian product with a selection operator.

Bipolar SQLf basic statements:

A Bipolar SQLf basic statement is a fuzzy bipolar selection
(restriction) of the following main format:

Select [distinct] [n|(t1, t2)|n, (t1, t2)] attributes From
relations [as alias] Where fcond1 and if possible fcond2;
The above statement is a simple selection of attributes from

fuzzy bipolar relations based on the fuzzy bipolar condition
(fcond1, fcond2). It is also possible to express an n-top query
by positioning the optional integer value n, which delivers the
n best tuples. (t1, t2) ∈ [0, 1]2, such that t2 ≤ t1, is a minimal
threshold of satisfaction.

Example 3: We reuse the database defined in the example
2. The query "Find journeys which are fast and if possible not
expensive", can be expressed in Bipolar SQLf as:

Select #Journey From Journey as J Where
fast(J.duration) and if possible not expensive(J.cost);

Due to the coherence property of fuzzy bipolar conditions,
the above bipolar query is interpreted as "Find journeys which
are fast and if possible (fast and not expensive)".

We define, for example, the fuzzy predicate expensive as
depicted in Fig. 2. Its negation is defined as follows:
∀x ∈ R+, µnotExpensive(x) = 1− µExpensive(x).
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Fig. 2: The membership function of the fuzzy predicate
expensive.

TABLE II: Fuzzy bipolar relation Journey(Fast, notExpensive).

#Journey cost ($) duration (h) µFast µFastJourney ∧
µnotExpensive

12 80 2 1 0.40
13 75 3 0.66 0.50
10 65 4 0.33 0.33

Based on the definition of fuzzy predicates fast and not ex-
pensive, the query is evaluated over the relational table Journey
and delivers the fuzzy bipolar relation Journey(Fast, notExpensive).
Table II is an example of extension of Journey(Fast, notExpensive),
and the delivered tuples are ranked, using the lexicographical
order, from the best journey to the worst one, depending on
their satisfactions to both the constraint fast and the wish not
expensive: (1, 0.40)/12, (0.66, 0.50)/13, (0.33, 0.33)/10. p

IV. FUZZY BIPOLAR DLR-LITE

In this section, we introduce the fuzzy DLR-Lite and our
contribution which consists in its extension to bipolarity called
fuzzy bipolar DLR-Lite.

A. The Fuzzy DLR-Lite

The flexible querying system developed in [8], [19] is based
on a Description Logic extended to m-ary Relations, noted
DLR-lite [5]. The knowledge base K of the fuzzy DLR-Lite
consists of three components (O,F ,A) defined as follows:

1) The facts component F: It contains extensions of re-
lations of the form R(c1, ..., cm)[s], where R is an m-ary
relation, ci,i=1,...,m are constants and s ∈]0, 1] is a degree
of membership of tuple 〈c1, ..., cm〉 in the relation R.

2) The ontology component O: the ontology defines the
relevant abstract concepts of the application domaine by means
of projection and inclusion axioms:

a) The inclusion axiom: The inclusion axiom has the
form (R1 u R2 u ... u Rl v Rr)[s], where l ≥ 1, Ri,i=1,...,l

are relations of the same arity and s ∈]0, 1] is the truth value
of the axiom. This axiom states that if c is an instance of
Ri,i=1,...,l to degree si,i=1,...,l then c is an instance of Rr to
degree at least s⊗ s1 ⊗ ...⊗ sl, where ⊗ is a t-norm.

b) The projection axioms: They allow defining new con-
cepts by extracting columns from other relations. Two kinds
of projection axioms are defined: the simple projection and the
restricted projection. The former is of the form ∃[i1, ..., ik]R
that expresses the projection of the relation R on the columns
i1, ..., ik and the latter is of the form ∃[i1, ..., ik]R.(Cond1 u
... u Condh) which restricts the projection of ∃[i1, ..., ik]R



according to conditions Condi,i=1...h of the form ([i]θv),
where θ ∈ {<,≤,=, 6=, >,≥} and v is a value.

3) The abstraction component A: It forms the set of
statements which connect concepts and relations, defined in
the ontology component, to physical relational tables from
a database. Simple and complex abstraction statements are
defined as follows:

a) Simple abstraction statement: It has the form
R1 7−→ R2(c1[t1], ..., ck[tk])[cs] which states that the k-ary
relation R1 of the ontology component is mapped into the
projection on columns c1 of type t1, c2 of type t2, ..., and on
ck of type tk of the m-ary table R2. The score of these tuples
is provided by the column cs.

b) Complex abstraction statement: It has the form
R1 7−→ (t1, ..., tk)[cs].sql, where R1 is a k-ary relation of
the ontology component and sql is an SQL query which
returns the k-ary tuples 〈t1, ..., tk〉 ranked in decreasing order
of scores provided by column cs.

4) The query language: A query in a fuzzy DLR-Lite
knowledge base querying system consists of a conjunctive
query with a scoring function to rank between answers. The
query has the following form:

q(x)[s]︸ ︷︷ ︸
head

← ∃yR1(z1)[s1], ..., Rl(zl)[sl],︸ ︷︷ ︸
body

OrderBy(s = f(s1, ..., sl))︸ ︷︷ ︸
scoring function

, (3)

where q is an m-ary relation, every Ri is either an mi-ary
relation or a concrete predicate of the form of (zθv), where
θ ∈ {<,≤,=, 6=, >,≥} and v is a value of a datatype, x
(resp. y) is a vector of distinguished (resp. non distinguished)
variables, zi is a tuple of constants or variables in x or y, f is
a scoring function which combines scores s1, ..., sl and s is a
degree of satisfaction of a tuple x to the query q.

B. Extension of the Fuzzy DLR-Lite to Bipolarity

The bipolarity is integrated into the fuzzy DLR-Lite knowl-
edge base in order to provide means to define and to handle
fuzzy bipolar concepts and relations. For that purpose, we
propose the extension of the fuzzy DLR-Lite to fuzzy bipolar
conditions as described in what follows.

1) Extension of the facts component F: Facts in our case
are delivered from fuzzy bipolar relations. A fact has the
following form: R(c1, ..., cn)[sc, sw], where ci,i=1,...,n are
constants which form the tuple u = 〈c1, ..., cn〉, R is a fuzzy
bipolar relation defined by the fuzzy bipolar condition (c, w)
and sc (resp. sw) is the grade of satisfaction of the tuple
u = 〈c1, ..., cn〉 with respect to the constraint c (resp. to the
wish w). The consistency condition holds for each element u
(sw ≤ sc) and every tuple u s.t. sc(u) = 0 is discarded.

2) Extension of the abstraction component A: Simple and
complex abstraction rules are both extended to fuzzy bipolar
conditions as follows:

a) The simple abstraction rule: It has the form
R1 7−→ R2(c1, ..., cn)[sc, sw], where R1 is a relation or
concept (in the sense of the fuzzy DLR-Lite); R2 is an m-ary
fuzzy bipolar relation from a database, c1, ..., cn, with n ≤ m,
are columns from R2 and (sc, sw) is the couple of grades of
satisfaction attached to the tuple 〈c1, ..., cn〉 with respect to
the fuzzy bipolar condition (c, w) which is used to define R2.

b) The complex abstraction rule: It has the form
R1 7−→ (c1, ..., cn)[sc, sw].sqlfb, where sqlfb is a Bipolar
SQLf query which delivers n-ary tuples 〈c1, ..., cn〉 with their
corresponding couples of grades (sc, sw).

3) Extension of the ontology component O: The ontology
component defines intersection axioms (u), simple and condi-
tional projection axioms and subsumption (inclusion) axioms
(v). They are extended to bipolarity as follows:

a) The intersection axiom: It is denoted R1 uR2, where
R1 and R2 are fuzzy bipolar relations defined resp. by fuzzy
bipolar conditions (c1, w1) and (c2, w2). It is interpreted as
a fuzzy bipolar relation R in which each tuple u is attached
with a couple of degrees (sc(u), sw(u)), defined as follows:

(R1 uR2)
I ⇔ ∀u, (sc(u), sw(u)) =
lmin((µc1(u), µw1

(u)), (µc2(u), µw2
(u))) (4)

b) The simple projection axiom: It is denoted
∃[i1, ..., ik]R. It corresponds to the projection of columns
i1, ..., ik from the fuzzy bipolar relation R of arity n such
that n ≥ k. This projection extracts new facts from a database
or from facts already defined in F .

This rule is interpreted as a bipolar projection of distinct
elements of fields i1, ..., ik from the fuzzy bipolar relation
R defined by the fuzzy bipolar condition (c, w). This axiom
delivers a fuzzy bipolar relation made of the projected columns
and its interpretation attaches a couple of grades for each
retrieved tuples u = 〈i1, ..., ik〉 as follows:

∀u, (∃[i1, ..., ik]R)(u)I = (sc(u), sw(u)) =

lmax
t∈R∧t[i1,...,ik]=u

((µc(t), µw(t))) (5)

c) The restricted projection axiom: It is denoted
∃[i1, ..., ik]R.(Cond1 u ... u Condh), where Condi,i=1...h =
([i]θv) are conditions of selection of fields with θ ∈ {<,≤
,=, 6=, >,≥}, [i] is a column number corresponding to a field
from the fuzzy bipolar relation R, defined by the fuzzy bipolar
condition (c, w), v is a value and u is the operator and. This
rule corresponds to a combination of a bipolar projection and
a bipolar selection of distinct tuples from R. It delivers a fuzzy
bipolar relation formed by the retrieved tuples u = 〈i1, ..., ik〉.
The attached couples of grades are defined by the formula (5)
applied on the retrieved tuples limited to those satisfying the
boolean condition Cond = (Cond1 u ... u Condh).

∀u, (∃[i1, ..., ik]R.(Cond1u ...uCondh))(u)I = (sc(u), sw(u))

= lmax
t∈R∧t[i1,...,ik]=u

((µc(t), µw(t))), if CondI(u) = 1 (6)



d) The subsumption (inclusion) axiom: This axiom is
denoted (Rl v Rr)[n1, n2], where Rl and Rr are fuzzy bipolar
concepts (relations) of the same arity defined respectively by
fuzzy bipolar conditions (cl, wl) and (cr, wr).

The interpretation of this axiom is based on the strengthened
membership-based interpretation of fuzzy bipolar conditions.
Let R be a fuzzy bipolar relation defined by a fuzzy bipolar
condition (c, w). R is seen as a particular fuzzy set of desired
elements such that each element u holds two grades:
• µc(u) is a basic grade of membership to the fuzzy set,
• µw(u) is a strengthening grade of membership that make

distinguishable tuples having the same basic grade. In
other terms, for tuples having the same basic grade, more
a tuple satisfies the wish more it belongs to the fuzzy set.

In this context, it becomes possible to extend the interpre-
tation of the inclusion axiom to bipolarity as follows:

((Rl v Rr)[n1, n2])I = ∀x ∈ Rl,
lmin((µcl(x), µwl

(x)), (n1, n2)) ≤lex (µcr (x), µwr
(x)) (7)

where ≤lex is the operator s.t. (a, b) ≤lex (a′, b′) ⇔
lmin((a, b), (a′, b′)) = (a, b). The couple of degrees (n1, n2)
is interpreted as the minimal threshold of inclusion of Rl in
Rr, and it processed by the following formula:

((Rl v Rr)[n1, n2])I ⇔
lminx∈Rl

((ifx ∈ Rl thenx ∈ Rr)I) = (n1, n2) (8)

The formula (8) is the extension to fuzzy bipolar conditions
of the formula (9), which is introduced in [20] to compute the
truth value of inclusion axioms in the case of fuzzy DLR-Lite.

((Rl v Rr)[n])I ⇔ minx(Rl(x)→Gö Rr(x)) = n, (9)

where →Gö is the Gödel fuzzy implication.
The formula (if x ∈ Rl thenx ∈ Rr)

I defines a kind of
implication for bipolar elements. We propose the extension
of the formula (2) to bipolarity to define an extended bipolar
R-implication operator. The formula (10) is, then, proposed:

IR((ac, aw), (bc′ , bw′)) = lmax{(z, z′) ∈ [0, 1]2 : z′ ≤ z∧
lmin((ac, aw), (z, z

′)) ≤lex (bc′ , bw′)}. (10)

Finally, we obtain the following interpretation for (if (x ∈
Rl) then (x ∈ Rr)) in the bipolar context:

(if (x ∈ Rl) then (x ∈ Rr))I ={
(1, 1) if (µcl(x), µwl

(x)) ≤lex (µcr (x), µwr (x)),

(µcr (x), µwr (x)), else.
(11)

It is easy to prove that formula (11) verifies properties of R-
implications extended to bipolarity (monotonicity, neutrality,
exchange, identity and ordering).

It is also easy to show that formula (11) is compatible
with formula (10) and it defines an extension of the Gödel
fuzzy implication to fuzzy bipolar conditions. Indeed, in the
formula (10), when (ac, aw) ≤ (bc′ , bw′), any valid couple of
degrees (z, z′) from [0, 1]2 satisfies lmin((ac, aw), (z, z′)) ≤

(bc′ , bw′) and the greatest couple of degrees is (1, 1). When
(ac, aw) > (bc′ , bw′), couples of degrees which satisfy
lmin((ac, aw), (z, z

′)) ≤ (bc′ , bw′) are (z, z′) such that
(z, z′) ≤ (bc′ , bw′); then, the greatest couple of degrees (z, z′)
corresponds to (bc′ , bw′).

4) Extension of the query language to bipolarity: A query
addressed to a fuzzy bipolar DLR-Lite knowledge base con-
sists in a conjunctive query which is extended to bipolarity.
The main form of such queries is:

q(x)[sc, sw]︸ ︷︷ ︸
head

← ∃yR1(z1)[sc1 , sw1
], ..., Rl(zl)[scl , swl

],︸ ︷︷ ︸
body

OrderBy((sc, sw) = f((sc1 , sw1
), ..., (scl , swl

)))︸ ︷︷ ︸
scoring function

.
(12)

Symbols q, x, y,Ri and zi are the same as those used in
the fuzzy case (formula (3)). The main form of conjunctive
queries are extended to bipolarity to handle couples of degrees
expressed at each atom of the body. These couples of degrees
are finally aggregated by the bipolar scoring function f , which
can be simplified to the lmin operator, due to the conjunctive
nature of the query. [sc, sw] corresponds to couples of degrees
(sc, sw) returned by f and attached to the resulting tuples.
Syntactically, couples of the form [1, 1] could be omitted.

V. FUZZY BIPOLAR DLR-LITE APPROACH FOR FLEXIBLE
QUERYING: A SAMPLE APPLICATION

We show the relevance of the fuzzy bipolar DLR-Lite based
approach through the design and the querying of a sample
application in the field of multimodal transportation networks.

The relational database previously introduced in the exam-
ple 2 is reused. For each table from the database, a relation
is defined in the ontology component and an abstraction
statement is associated to it in the abstraction component. In
addition, we define the following relations in the ontology:
Step ≡ ∃[2, 3, 4, 5, 6]Journey is a simple projection of

Journey relation on columns #link, source, destination, depar-
ture and arrival.
AreaStation ≡ ∃[1, 2, 3, 4]Station defines stations such as

railway station and airport. It is a simple projection of Station
relation on columns #station, designation, city and type.

Let RailwayStation, noted RailStation, and Airport be two
concepts, extracted from the AreaStation by the following
restricted projection axioms:
• RailStation ≡ ∃[1]AreaStation.(([3] = ”Railway”))
• Airport ≡ ∃[1]AreaStation.(([3] = ”Airport”))

Let PreferredRailStation be a fuzzy bipolar concept defined
by the fuzzy bipolar condition (Large, NearCenter) that cor-
responds to railway stations which are large and if possible
(large ∧ located near to the town center). This concept could
be expressed by the following abstraction rule:

PreferredRailStation 7→ (#station).Select #station From
RailStation Where LargeRail(#station) and if possible
NearCenter(#station);
where LargeRail (resp. NearCenter) is the membership
function of the fuzzy predicate LargeStation (resp. near



TABLE III: Examples of relations from the facts component.

(a) PreferredRailStation relation.

#station designation µLarge µLarge∧µNearCenter
1 RailStation1 0.5 0.4
2 RailStation2 1 0.7
3 RailStation3 0.6 0.5

(b) PreferredAirport relation.

#airport designation µLarge µLarge∧ µNearCenter
10 Airport1 1 0.8
11 Airport2 0.5 0.3
12 Airport3 0.4 0.4

TABLE IV: hasPreferredRestaurant relation.

#place designation µGood µGood ∧ µCheap
100 RailStation1 0.6 0.6
102 RailStation2 0.8 0.7
103 RailStation3 0.8 0.3
104 Airport1 0.7 0.6
105 Airport2 0.5 0.4
106 Airport3 0.5 0.3
107 ShoppingCentre1 0.6 0.25
108 Hotel1 0.4 0.3

to the town center). Similarly, let PreferredAirport be a
fuzzy bipolar concept defined by the fuzzy bipolar condition
(Large, NearCenter) that corresponds to airports which are
large and if possible (large ∧ not located far from the
town center). Tables IIIa and IIIb displays examples of facts
attached respectively to these concepts.

We can enrich the system with data from web services
or other information systems. For example, we query a web
service about restaurants, from which we define the fuzzy
bipolar relation hasPreferredRestaurant, which corresponds to
places which have good and if possible cheap restaurants as
railway stations, hotels, airports, shopping centers (see table
IV). Instead of saving the table IV on the facts component,
we focus only on data related to our transport system. For
efficiency reason, we represent them as data summary using
the two following bipolar inclusion axioms:
(PreferredRailStation v ∃[1]hasPreferredRestaurant)[n1, n2]
(PreferredAirport v ∃[1]hasPreferredRestaurant)[n3, n4]
where (n1, n2) (resp. (n3, n4)) is the minimal couple of de-
grees of inclusion of PreferredRailStation (resp. PreferredAir-
port) in the set of hasPreferredRestaurant. These couples of
degrees are processed based on formulas (7), (8) and (11):
(n1, n2) = lmin((0.5, 0.4)→ (0.6, 0.6),

(1, 0.7)→ (0.8, 0.7), (0.6, 0.5)→ (0.8, 0.3))
= lmin((1, 1), (0.8, 0.7), (1, 1)) = (0.8, 0.7).

(n3, n4) = lmin((1, 0.8)→ (0.7, 0.6),
(0.5, 0.3)→ (0.5, 0.4), (0.4, 0.4)→ (0.5, 0.3))

= lmin((0.7, 0.6), (1, 1), (1, 1)) = (0.7, 0.6).

Even if we have no restaurant relation in the facts compo-
nent and without querying any external database, the system
can answer queries about journeys which involve preferred
restaurants, such as "go from Lannion to Paris in 2 steps with
a preferred restaurant at the midway", which is expressed by:

q(x1, x2)[sc, sw]← ∃a, b, c, d, e, f, g, h, i.
AreaStation(a, e, ”Lannion”), Step(x1, a, c, d, g),

Step(x2, c, b, d, h), AreaStation(b, f, ”Paris”),

hasPreferredRestaurant(c, i)[sc1 , sw1 ],

OrderBy((sc, sw) = (sc1 , sw1)).

To evaluate this query, the atom hasPreferredRestaurant
is substituted by the left-hand side of each inclusion axiom
in which it appears in its right-hand side. Each substitution
generates a new query. Two subqueries are, then, obtained:

q1(x1, x2)[sc, sw]← ∃a, b, c, d, e, f, g, h.
AreaStation(a, e, ”Lannion”), Step(x1, a, c, d, g),

Step(x2, c, b, d, h), AreaStation(b, f, ”Paris”),

PreferredRailStation(c)[s1, s2],

OrderBy((sc, sw) = lmin((s1, s2), (0.8, 0.7))).

q2(x1, x2)[sc, sw]← ∃a, b, c, d, e, f, g, h.
AreaStation(a, e, ”Lannion”), Step(x1, a, c, d, g)

Step(x2, c, b, d, h), AreaStation(b, f, ”Paris”),

PreferredAirport(c)[s3, s4],

OrderBy((sc, sw) = lmin((s3, s4), (0.7, 0.6))).

The scoring function in both q1 and q2 takes into consid-
eration the inclusion axiom used in the substitution process.
Both q1 and q2 are to be translated into Bipolar SQLf queries,
in order to be evaluated over the facts component.

For example, query q1(x1, x2) is expressed as follows:
Select R1.#step, R2.#step From Step as R1, Step as R2 Where
R1.destination = R2.source and R1.source in (Select #station
From Station Where city = ’Lannion’) and R2.destination
in (Select #station From Station Where city = ’Paris’) and
R2.Source in (Select #station From PreferredRailStation);

The answers are ranked depending on couples of degrees
delivered by lmin((s1, s2), (0.8, 0.7)), where (s1, s2) is the
couple of degrees attached to each R2.Station corresponding
to a preferred rail station. The query q2(x1, x2) is similarly
processed and the obtained sets of answers are merged, while
respecting the lexicographical order.

The Main Architecture of the System:

For implementation purpose, we propose a software ar-
chitecture which consists of a combination of a reasoning
system (based on the fuzzy bipolar DLR-Lite) and a flexible
information system (based on Bipolar SQLf).

As depicted in Fig. 3, the system is of two parts. The left
side consists of the following modules:

a) Query interpreter: It provides the user with interface
that receives queries and returns answers.
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Fig. 3: Software architecture of the flexible querying system.

b) Bipolar SQLf generator: It performs user queries
transformation (relevant substitutions based on the inclusion
axioms) using the fuzzy bipolar DLR-Lite knowledge base and
generates equivalents bipolar SQLf queries to be evaluated by
the right side of the system.

c) Fuzzy bipolar DLR-Lite knowledge base: it defines
the knowledge base of the system (relations, facts, axioms).

The right side deals with the mediation issues for the
combination of data fetched from remote databases, and pro-
cesses bipolar SQLf queries received from the bipolar SQLf
generator. It is composed by the following modules:

d) Mediation: It evaluates the received bipolar SQLf
queries by retrieving the needed data from relevant remote
databases, and by translating queries using the right vocabulary
in compliance with a domain ontology (taxonomy).

e) Taxonomy: It is based on the Ontology Transportation
Networks (OTN). Depending on the remote information sys-
tem to query, this module provides the Mediation module with
the right vocabulary to use in the query translation process.

VI. CONCLUSION AND FUTURE WORKS

To be able to express complex preferences in user queries,
addressed to distributed and heterogeneous information sys-
tems, we have proposed a new flexible querying approach in
which the fuzzy DLR-Lite is extended to both fuzzy bipolar
conditions and Bipolar SQLf language.

We showed through an application the relevance of this
approach in the field of the multimodal transportation net-
works.The bipolar fuzzy DLR-Lite can go beyond relational
tables by inferring implicit knowledge and by summarizing
data, while improving widely the expressiveness of the system.
So, it becomes possible to express complex preferences of
the form "c and if possible w" and to handle them within a
reasoning system to answer user queries.

A software architecture for such a querying system has
also been proposed. The common formal framework (fuzzy
sets theory) of both Bipolar SQLf language and fuzzy bipolar
DLR-Lite allows their combination in a consistent way.

An implementation of the system is in progress. It is based
on algorithms for query evaluation which are introduced in
[19]. As future works, we plan the study of performances of
our approach in terms of response time and quality of answers,
i.e. in which extent answers meet user expectations.
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