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Abstract— An autonomous robotic platform should be able to 

perform long-range and long-endurance missions, which energy 

limitation is one of the most important challenges. Studies show 

that motion is not the only power consumer. Management of all 

power resources is therefore important for these systems. 

Moreover, many applications for control of autonomous 

platform are being developed and one important aspect is the 

excess of information, frequently redundant, that imposes a 

great computational cost in data processing and consequently 

power consummation. In our previous works, we have proposed 

a visual-perception system based on an automatic image 

discarding method as a simple solution to improve the 

performance of a real-time navigation system. In this paper, we 

propose a new environment observer method based on 

Pearson’s Correlation Coefficient. This monocular-vision 

system permits that some logical components may be shut down 

to save processor energy consumption, and/or to make the CPU 

available for running concurrent processes. Nevertheless, this 

method may be extended to other sensors and components. Our 

real-time perception system has been evaluated from real data 

obtained by our intelligent vehicle. It is not based on previous 

knowledge of the environment neither camera calibration.  

I. INTRODUCTION 

everal applications for control of autonomous and semi-

autonomous platforms are being developed. The 

challenge to construct robust methods, and, in most cases, 

optimized systems, remains an open problem. Some of these 

applications include: aerial robots [1], [2], Grand Challenge 

[3], Urban Challenge [4] and Advanced Driver Assistance 

Systems (ADAS) [5]. 

The aerial robots offer great perspectives in many 

applications: search and rescue, outdoor and indoor building 

inspection, real-time monitoring, high risk aerial missions, 

mapping, fire detection or cinema recording [1], [2]. 

Similarly, the development of Unmanned Aerial Vehicles 

(UAVs) has been of interest for military applications, and the 

focus has been placed on creating small platforms. These 

vehicles are primarily used for surveillance and 

reconnaissance, however, one limitation is their maximum 
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flight time, therefore they cannot carry large fuel payloads 

[6]. Future exploration of Mars, laid out by the Vision for 

Space Exploration, requires long-endurance UAVs that use 

resources that are plentiful on Mars [7], [8]. Including 

reactive intelligence based on an autonomic sense-act 

modality and sensed by optical image processing, the 

purpose of the Energetically Autonomous Tactical Robot 

(EATR) ™ project is to develop an autonomous robotic 

platform able to perform long-range, long-endurance 

missions without the need for manual or conventional re-

fueling [9], [10]. Finally, for military or civil purposes, 

vehicular applications [3], [4], [5] have as objective the 

development of autonomous and semi-autonomous systems 

capable of traversing unrehearsed and off-road terrain, 

driving a car autonomously in an urban environment and also 

to help the driver in its driver task. 

These real-time intelligent platform developments have a 

common issue: providing to the platform the capability of 

perceiving and interacting with its neighbour environment, 

managing power consumption, the CPU usage, etc. These 

problems of time-dependent and dynamic resource allocation 

have manifested themselves under different names in 

application domains such as embedded systems and digital 

circuits, which include energy and memory consumption for 

the embedded systems [11]. It has been a topic of interest in 

the automotive industry [12], [13], [14]. 

In this paper, a real-time perception problem is applied to 

intelligent vehicles (human operated or autonomous 

systems). We propose a new environment observer method 

based on Pearson’s Correlation Coefficient [15]. This 

monocular-vision system observes if there are no significant 

changes in the environment, permitting that some logical 

components may be shut down to save processor energy 

consumption, and/or to make the CPU available for running 

concurrent processes. 

In Section II we present a review of previous works. 

Section III and IV introduce the Pearson’s Correlation 

Coefficient and the Discarding Criteria. The Logical 

Dynamic Optimization methodology and results are 

presented in the Section V and VI. The conclusions are given 

in Section VII. 

II. RELATED WORKS 

Autonomous robots can perform desired tasks in 

unstructured environments without continuous human 

guidance. These systems have some degree of self-
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sufficiency. Self-configuring, self-optimizing and self-

protecting are still an open question. For advances in the 

energy autonomy, robots will need to extract energy from the 

environment. In many ways robots will face the same 

problems as animals [14]. We have added that an important 

variable is the state conditions in combination with 

environment events, because they may determine the system 

behavior. 

In this way, a system must therefore have knowledge of its 

available resources as well as its components, their desired 

performance characteristics and their current status. Dynamic 

Power Management (DPM) is a design methodology for 

dynamically reconfiguring systems to provide the requested 

services and performance levels with a minimum number of 

active components or a minimum load on such components. 

It encompasses a set of techniques that achieves energy-

efficient computation by selectively turning off (or reducing 

the performance of) system components when they are idle 

(or partially unexploited) [16]. An autonomous robot 

planning tasks must be aware of power resources available 

[14]. Furthermore, low-power consumption is required to 

achieve acceptable autonomy in battery-powered systems, as 

well as to reduce the environmental impact (e.g., heat 

dissipation, cooling-induced noise) and operation cost of 

stationary systems [16]. 

Moreover, most electronic circuits and system designs are 

confronted with the problem of delivering high performance 

with a limited consumption of electric power, and achieving 

highly energy-efficient computation is a major challenge in 

electronic design [16]. In this context, a DPM and Real-Time 

Scheduling (RTS) techniques were presented in [17]. They 

were applied to reduce the power consumption of mobile 

robots.  At the same time that scheduling is a key concept in 

computer multitasking and real-time operating system, the 

DPM dynamically adjusts power states of components 

adaptive to the task’s need, reducing the power consumption 

without compromising system performance. 

Mobile robots usually have multiple components, such as 

motors, microcontrollers and embedded computers. Whereas 

sensors collect data from environment, DC motors transform 

direct current into mechanical energy and are often used to 

drive the robots. In this model, the microcontrollers are used 

for low-level controls, whilst embedded computers for high-

level computation, providing an application programming 

interface (API). This high-level computation includes motion 

planning, image processing, and scheduling [17]. 

Finally, a case study of mobile robot’s energy 

consumption and conservation shown that motion accounts 

for less than 50% of the total power consumption [17]. The 

power consumption of the microcontroller was very stable. 

This implies that other power consumers like computation 

have a big impact on power consumption [14]. These values 

were estimated by dividing the battery capacity by the time 

the computer can run with a fully charged battery when 

running different programs [17]. 

A. Sensor Perception  

The perception of the environment is a major issue in 

autonomous vehicles. It uses many types of sensors [3], [4], 

including ultrasonic sensors, laser rangefinders, radar, 

cameras, etc. When incorporating several types of sensors, 

there is an increase of autonomy and “intelligence” degrees, 

especially in relation to navigation in unknown 

environments. In contrast, the type and quantity of sensors 

determine the volume of data for processing that requires, in 

most cases, a high computational cost. For unstructured 

environments, the scenario for study is dynamic, with several 

elements in motion. Thus, running an autonomous or semi-

autonomous system involves carrying out complex, and non-

deterministic operations in real time. 

A real-time system must satisfy explicit response-time 

constraints, including failure. This system is one whose 

logical correctness is based on both the correctness of the 

outputs and their timeliness [18]. Moreover, there is a 

considerable complexity in the sense that correctness not 

only depends on the logical ordering of events of the 

systems, but also on the relative timing between them [11]. 

Aware that in the majority of the autonomous and semi-

autonomous navigation systems, the machine-vision system 

is working together with other sensors, added to its low cost, 

in this work we have decided to use a monocular vision-

based sensor. Because it uses simple techniques and fast 

algorithms, the system is capable to achieve a good 

performance, where the compromise between processing 

time and images acquisition is fundamental. 

Additionally, the vision-based sensors are defined as 

passive sensors and the image scanning is performed fast 

enough for Intelligent Transportation Systems [19]. 

Furthermore, on the safety front, the progressive safety 

systems will be developed through the manufacturing of an 

“intelligent bumper” peripheral to the vehicle in answering 

new features as: blind spot detection, frontal and lateral pre-

crash, etc. The objective in terms of cost to fill ADAS 

functions has to be very lower than the current Adaptive 

Cruise Control (500 Euros) [20]. 

B. Machine Vision  

The machine vision (part of the embedded computers) is 

an important component of the set of sensors. Although 

extremely complex and highly demanding, thanks to the 

great deal of information it can deliver, it is a powerful 

means for sensing the environment and it has been widely 

employed to deal with a large number of tasks in the 

automotive field [19]. However, complex machine vision 

systems can lead to some losses due to the processing time. 

Thinking about the existing relation between a real-time 

decision system and a camera acquisition system that 

operates in a specific acquisition rate, the decision for a more 

complex machine vision system possibly leads to an 

excessively slow system for an independent real time 

application. The great amount of information would not 



  

necessarily lead to better decisions and could also harm the 

performance of the system, overloading it. 

Taking into account that it has been estimated that humans 

perceive visually about 90% of the environment information 

required for driving [19], it is not a bad idea to reduce 

information acquired by a vision system, in order to reduce 

processing time. But the definition of an automatic image 

discarding criteria, which leads to a minimum loss of 

information, may not be a trivial task for computational 

systems, specially real-time ones. Then, based on the idea to 

reduce information acquired and in order to reduce 

processing time, we have proposed an automatic image 

discarding criteria [21], [22], based on Pearson’s Correlation 

Coefficient (PCC) [15], a low complexity and easy 

implemented solution. It improves the performance of a real-

time system by choosing, in an automatic way, which images 

should be discarded and which ones should be treated at the 

visual perception system. The inclusion of an automatic 

image discarding method leads in a reduction of the 

processing time. Although the system spends some 

milliseconds computing the PCC, it gains much more time 

discarding more than 90% of the images [22]. However, it is 

important to notice that this percentage is not dependent on 

the video sequence or image size, but on the obstacles / 

objects influence. 

Furthermore, the fundamental premise for the applicability 

of DPM is that systems experience nonuniform workloads 

during operation time. A second assumption is that it is 

possible to predict, with a certain degree of confidence, the 

fluctuations of workload [16]. In this case, a simple DPM 

method shuts down a component when it is idle and it is 

essentially a prediction problem [17]. Additionally, in most 

real-world systems, there is little knowledge of future input 

events and DPM decisions have to be taken based on 

uncertain predictions. Thus, according to [16], the rationale 

in all predictive techniques is that of exploiting the 

correlation between the past history of the workload and its 

near future in order to make reliable predictions about future 

events. Moreover, workload observation and prediction 

should not consume significant energy. 

Therefore, taking into account the temporal coherence 

between consecutive frames of a video sequence, we propose 

a new DPM methodology applied to a robotic visual machine 

perception. It also includes a cumulative impact data 

management. 

III. PEARSON’S CORRELATION COEFFICIENT (PCC) 

According to [23], an empirical and theoretical 

development that defined regression and correlation as 

statistical topics were presented by Sir Francis Galton in 

1885. In 1895, Karl Pearson published the Pearson’s 

Correlation Coefficient (PCC) [15]. The Pearson's method is 

widely used in statistical analysis, pattern recognition and 

image processing. Applications on the latter include 

comparing two images for image registration purposes, 

disparity measurement, etc [24]. It is described by Eq. (1): 
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where
ix is the intensity of the th

i pixel in image 1,
iy is the 

intensity of the th
i pixel in image 2, 

mx is the mean intensity 

of image 1, and
my is the mean intensity of image 2. The PCC 

threshold,
1r , has value 1 if the two images are identical, 0 if 

they are completely uncorrelated, and –1 if they are 

completely anti-correlated, for example, if one image is the 

negative of the other. 

IV. DISCARDING CRITERIA 

The discarding criteria was presented in [21] as a simple 

solution to improve the performance of a real-time 

navigation system by choosing, in an automatic way, which 

images to discard and which ones to segment, in order to 

identify the navigation area. It was a new approach to the 

Pearson’s Correlation Coefficient (PCC).  

In Fig. 1, basically, if the PCC indicates that there is a 

high correlation between a reference frame and another new 

frame acquired, the new frame is discarded without being 

processed. In this case, some logical components may be 

shut down to save processor energy consumption, and/or to 

make the CPU available for running concurrent processes 

(the system can repeat a last valid command). Otherwise, the 

frame is processed and it is set as the new reference frame 

for the subsequent frame. 

 
Fig. 1. Discarding criteria [21]. 

V. LOGICAL DYNAMIC OPTIMIZATION 

According to [20], the road safety application can be 

important for other sectors such as aeronautics (for example 

guidance on the ground of planes), the railway, the sectors of 

security and defense, the property of equipment, etc. In this 

context, the fusion of sensors will allow to have a higher 

level of information and to get more various functions. 

However, it is important to consider all components to 

achieve better energy efficiency [17]. Moreover, an 

important variable is the state conditions in combination with 

environment events. 

In this section, we introduce a logical dynamic 

optimization methodology. Based on the PCC variation and 



  

by exploiting the temporal coherence between consecutive 

frames, we propose a new environment observer method 

based on Pearson's method. Our monocular-vision system 

observes if there are no significant changes in the 

environment, permitting that some logical components may 

be shut down to save processor energy consumption, and/or 

to make the CPU available for running concurrent processes. 

In this way, the robot can have many periodic tasks, such 

as motor and sensor control, sensing data reading, motion 

planning, and data processing. The robot may also have 

some aperiodic tasks, such as obstacle avoidance and 

communication. Furthermore, for mobile robots, the tasks’ 

deadlines are different at different traveling speeds. At a 

higher speed, the periodic tasks have shorter periods [17]. 

Then, it is important to notice that there is no 

diffeomorphism between the vehicle speed and the PCC 

variation, because if there are no changes between 

consecutive frames, the PCC threshold remains static. In this 

case, the isomorphism cannot be guaranteed and it ensures 

more efficiency for our proposal. 

The Fig. 2 (a) shows an autonomous displacement through 

the Mojave Desert [25], where the robot Stanley has used an 

average speed of 30.7 km/h [26]. In Fig. 2 (b), due to PCC 

nature, taking a reference frame, in this case, the first frame 

of the Fig. 2 (a), a lower value of correlation is achieved 

when it is closer to the vehicle. That is, when the derivative 

approaches its maximum point, there is the obstacle 

detection. The Fig. 3 (a) shows the same case from a 

different representation. From an empirical PCC threshold 

equal to 0.85 (green line), the reference frames (red points) 

are closer when it is near to an obstacle. Above of the green 

line we have all discarded images. In Fig. 4 we also present 

the discarding rate for an off-road context. 

 
Fig. 2. (a): the frames of the desert video [25]; (b) From a 

reference frame, its correlation with all others; Blue line: the 

Pearson’s correlation by Eq. (1). 

 

Whereas the main problem that has to be faced when real-

time imaging is concerned and which is intrinsic to the 

processing of images is the large amount of data [19], the 

Fig. 5 presents the accumulated time of a hypothetical image 

processing time (15ms) versus the gain obtained by using the 

discarding criteria, which could allow significant savings in 

CPU power consumption. As shown in Fig. 3, in desert 

context were discarded 470 of 530 frames, whilst in off-road 

context were discarded 5595 of 6740 frames. For these two 

cases, the discarding rate remains over 80%. 

 

 
Fig. 3. Desert video [25]: (a) Green line: empirical PCC 

threshold equal to 0.85; Above of the green line we have the 

discarded images; Red points: reference frames; (b) Red line: 

discarding rate; Blue line: vehicle speed; Green line: 

hypothetical image processing time (15ms). 

 
Fig. 4. Part of the off-road video [25]: (a) Green line: 

empirical PCC threshold equal to 0.85; Above of the green 

line we have the discarded images; (b) Red line: discarding 

rate; Blue line: vehicle speed; Green line: hypothetical image 

processing time (15ms). 

 
Fig. 5. (a) Desert video [25]; (b) Off-road video [25]; In 

blue: the cumulative impact computations (ms) without the 

discarding criteria; In red: the cumulative computations (ms) 

by using the discarding criteria. 

A. Cumulative Impact Data Management (CIDM) 

Existing studies on energy reduction for robots focus on 

motion planning to reduce motion power. However, other 

components like sensing, control, communication and 

computation also consume significant amounts of power 

[17]. According to the Pearson’s correlation, in a certain 

analysis window (pair of frames), if the obstacle/object 

occupies a big portion of the scene, the PCC threshold tends 

to be low. Conversely, if obstacle/object occupies a small 

portion of the frame, it means that it is away from the vehicle 

and the system will have time enough to react. Nevertheless, 

where are these interest points/pixels? Or, which pixels 

(interest points) of the pair of images contributed most to the 

Pearson’s coefficient computed? Which of them really need 

to be reprocessed (or resent to a server)?  

Right after the Pearson’s correlation in Eq. (1), we have xm 

and ym, respectively: the mean intensities of images 1 and 2. 

From these values, we begin again the process’s correlation 

by applying, 
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where
ix is the intensity of the th

i pixel in image 1, 
iy is the 

intensity of the th
i pixel in image 2, 

Xmr1
and 

Ymr1 were 

obtained in Eq. (1).  

 

For each pair of pixels analyzed in Eq. (2), the only 

possible result is: [-1 or +1]. That is, all pixels with 

intensities below these means will be candidates for interest 

points. Fig. 6 (c) and (f) present the CIDM process, where 

the red pixels (interest points) represent 12 −=r .  

As shown in Fig. 6 (g), by processing only when 12 −=r , 

in desert video were processed about 205 thousand points, 

instead of 3.7 million points. As shown in Fig. 6 (h), in off-

road context were processed about 10 million points, instead 

of 48 million points. In blue, the cumulative impact data 

without the discarding criteria. In red, the cumulative data by 

using the discarding criteria. 

 
Fig. 6. (a) and (b) are frames of the desert video [25]; (d) and 

(e) are frames of the off-road video [25]; (c) and (f) present 

the process’s correlation by Eq. (2), where the red pixels 

(interest points) represent 12 −=r ; (g) and (h) represent the 

cumulative impact data. 

VI. EXPERIMENTAL RESULTS 

As has been shown above in Section V, the Fig. 7, 8 and 9 

show the performance of our proposed method in real, 

dynamic and unknown environments. For all these cases, the 

discarding rate remains over 65%.  

These results were obtained in real conditions using our 

experimental vehicle. As illustrated in Fig. 10, the vehicle 

was equipped with a camera to acquire 320x240 color 

images at 20 ftps, and a CAN-bus gateway provides the 

speed of the rear-wheels (WSS) and the yaw rate of the 

vehicle (from the ESP). It was tested on a 2.5GHz Intel Core 

2 Quad processor, 3.48 GB RAM, Microsoft Windows XP 

Professional SP3, Visual Studio C++ and OpenCV 2.1.0. In 

order to reduce the number of data, it also includes the 

resolution reduction of image (to 96x72). 

Fig. 9 (a) presents the computational mean time of a 

horizon finding algorithm [27] in unknown and urban 

environment. In this way, from an empirical PCC threshold 

equal to 0.85, the red line shows that the computational mean 

time was 196 Hz (5.09 ms), against 64 Hz (15.62 ms) 

without the discarding criteria. In Fig. 9 (b), above the green 

line, we have the discarded images.  

For additional results see [28]. 

 
Fig. 7. Real environment: (a) The CIDM performance; (b) 

Red line: discarding rate; Blue line: vehicle speed; Green 

line: computational time (ms). 

 
Fig. 8. Real environment: (a) The CIDM performance; (b) 

Red line: discarding rate; Blue line: vehicle speed; Green 

line: computational time (ms). 

 
Fig. 9. The computational mean time in urban environment. 

 

 

Fig. 10. The experimental vehicle laboratory with the 

monocular vision system. 



  

VII. CONCLUSION 

We have proposed a new environment observer method 

based on Pearson’s Correlation Coefficient. We are 

implementing this DPM methodology in a real experimental 

test-bank, to evaluate, in real time, the real energy 

consumption economy in terms of electrical current used by 

the visual machine. A remarkable characteristic of 

methodology presented in this work is its independence of 

the image acquiring system and of the robot itself. The same 

implementation works in different mobile robots, with 

different embedded vision systems, without the need of 

adjusting parameters. Moreover, because there is no 

diffeomorphism between the vehicle speed and the PCC 

variation, it ensures more efficiency for our proposal. 

Nevertheless, this visual-observer methodology may be 

extended to other sensors and components. 
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