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High order fluid structure interaction in 2D and 3D Application to blood flow in arteries

Accuracy is critical if we are to trust the simulation's predictions. In settings such as fluidstructure interaction it is all the more important to obtain reliable results to understand, for example, the impact of pathologies on blood flows in the cardiovascular system.

. In the first part of the presentation, we propose a new high order ALE construction which allows for any type -not only vertical as in [2] -of not too large displacements that applies to 2D as well as 3D. This construction relies on a first order approximation and a correction step that recovers the high order accuracy. In the second part of the talk we present an update of our fluid-structure interaction framework. Along the presentation, we shall display results to illustrate our work.

Introduction

Over the last few years, we have been working on building a mathematical and computational framework for high order fluid-structure interaction, see [START_REF] Gonc | Construction of a high order fluid-structure interaction solver[END_REF][START_REF] Prud'homme | High order methods for the approximation of the incompressible Navier-Stokes equations in a moving domain[END_REF][START_REF] Prud | Life: Overview of a unified C++ implementation of the finite and spectral element methods in 1d[END_REF][START_REF] Prud | A domain specific embedded language in C++ for automatic differentiation, projection, integration and variational formulations[END_REF][START_REF] Pena | Spectral element approximation of the incompressible Navier-Stokes equations evolving in a moving domain and applications[END_REF][START_REF] Prud'homme | Feel++: Finite Element Embedded Language in C++[END_REF], in 2D and 3D, on simplices and hypercubes, with a wide range of applications and in particular, bio-mechanics (e.g. blood flows in arteries). In this paper we present the progress made since our last publications [START_REF] Prud'homme | High order methods for the approximation of the incompressible Navier-Stokes equations in a moving domain[END_REF][START_REF] Gonc | Construction of a high order fluid-structure interaction solver[END_REF] as well as a brief overview of the framework we have built so far.

The paper is organized in the following way: first, we introduce some notations and present a brief overview of the status of [START_REF] Prud'homme | Feel++: Finite Element Embedded Language in C++[END_REF] in section 1.2 (which will be described in another publication). In section 2 we state our latest advances in one of our central ingredients to achieve high order fluid-structure interaction, namely the Arbitrary Lagrangian-Eulerian framework. Next, the fluid and structure models are presented, associated with their respective discretisation and solution methods. These methods are validated based on the benchmark [START_REF] Turek | Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow[END_REF]. In the last section, we propose a fluid-structure interaction solver, combination of the tools presented throughout the paper. The solver is validated by the benchmark [START_REF] Turek | Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow[END_REF] and some 3D preliminary results are presented.

Notations

Given an elementary simplex domain K * ⊂ R d , d = 1, 2, 3, and a positive integer N , let us denote by P N (K * ) the space of polynomials of total degree less of equal than N , defined in K * . We fix a reference element, K, and consider a transformation ϕ K * : K -→ K * , called the geometrical transformation.

We consider now two domains, Ω * and Ω ⊂ R d , d = 1, 2, 3, which we later refer as the reference and the computational domains, respectively. We further assume that the reference domain has a straight edge/face mesh associated with it, T * , ie, ϕ K * ∈ P 1 ( K), ∀K * ∈ T * . Furthermore we admit that the mesh T * covers exactly the domain Ω * , i.e., Ω * = K * ∈T * K * .

We denote P N c,h (Ω * ), P N c,h (Ω * ) the spaces of piecewise scalar, respectively vectorial, polynomial of total degree N , continuous functions in Ω * , and P N td,h (Ω * ) the space of piecewise polynomial of total degree N , totally discontinuous functions in Ω * .

Finally let us denote by η : ∂Ω * -→ ∂Ω a displacement function. Through η, we classify three subsets of the boundary: (i) Γ * M , the portion of the boundary that moves according to the displacement η, (ii) Γ * F , the portion of the boundary that stays fixed (ie, η(s) = s, ∀s ∈ Γ * F ) and (iii) Γ * N , the part of the boundary on which we do not prescribe a displacement. The image of each subset, Γ * M , Γ * F and Γ * N by η is denoted by Γ M , Γ F and Γ N , respectively. These three sets do not overlap and they verify

∂Ω * = Γ * M ∪ Γ * F ∪ Γ * N . Denote T * ,b = {K * ∈ T * : ∂K * ∩ Γ * M =
∅} the set of elements K * sharing a face with the boundary of Ω * .

Computational framework for Galerkin methods

Our computational framework builds upon Feel++ [START_REF] Prud'homme | Feel++: Finite Element Embedded Language in C++[END_REF] which allows for arbitrary order cG and dG Galerkin methods (finite element, spectral elements, ...) in 1D, 2D and 3D on simplices and hypercubes. The computational domain can also be high order, that is to say, the geometrical transformation of each element K of the mesh is a polynomial of degree greater than one. These high order meshes can be generated by Gmsh [START_REF] Geuzaine | Gmsh: a three-dimensional finite element mesh generator with built-in pre-and post-processing facilities[END_REF] -up to order five in 2D and order four in 3D. -High order approximations come at a cost both in terms of implementation and computational points of view. The former is addressed by a very generic framework based on modern C++ programming (meta-programming, expression templates, ...) and a language mimicing the mathematical language. The latter is addressed by a careful implementation and optimisation. One of the optimisations that allows to have a huge gain in computational effort is to straighten all the high order elements except for the boundary faces of the computational mesh. This is achieved by moving all the nodes associated to the high order transformation to the position these nodes would have if a first order geometrical transformation were applied. This procedure can be formalized in the following operator

η straightening K (ϕ N K (x * )) = ϕ 1 K (x * ) -ϕ N K (x * ) -ϕ 1 K∩Γ (x * ) -ϕ N K∩Γ (x * ) (1) 
where x * is any point in K * and ϕ 1 K (x * ) and ϕ N K (x * ) its images by the geometrical transformation of order one and order N , respectively. On one hand, the first two terms ensure that for all K not intersecting Γ, the order one and N transformations produce the same image. On the other hand, the last two terms are 0 unless the image of x * in on Γ and, in this case, we don't move the high order image of x * . This allows to have straight internal elements and elements touching the boundary to remain high order. When applying numerical integration, specific quadratures are considered when dealing with internal elements or elements sharing a face with the boundary. The performances, thanks to this transformation, are similar to the ones obtained with first order meshes. However, it needs to be used with care as it can generate folded meshes.

High order ALE

We now turn to our high order Arbitrary Lagrangian-Eulerian (ALE) framework. A fundamental piece in performing simulations in the ALE framework is the transformation that maps the reference configuration onto the computational domain, at each timestep. This is called ALE map. In Pena and Prud'homme [START_REF] Gonc | Construction of a high order fluid-structure interaction solver[END_REF], the authors propose a high order ALE map that allows for an accurate description of the boundary of the computational domain, while inducing a straight edges in the interior elements of the computational domain's mesh. However, this construction has the disadvantage of relying upon the Gordon-Hall transformations, see [START_REF] Gordon | Transfinite element methods: blending-function interpolation over arbitrary curved element domains[END_REF], which makes it (implementation-wise) intrincate to extend to three dimensional domains.

To overcome this difficulty, we replace the stage based on Gordon-Hall transformations, by the solution of a local differential problem in each element in contact with the curved boundary. We review here the construction from [START_REF] Gonc | Construction of a high order fluid-structure interaction solver[END_REF][START_REF] Prud'homme | High order methods for the approximation of the incompressible Navier-Stokes equations in a moving domain[END_REF]. The first step is to perform a modified harmonic extension (according to Masud and Kanchi [START_REF] Kanchi | A 3D adaptive mesh moving scheme[END_REF]) of the displacement η to the interior of the reference domain using piecewise linear polynomial functions. The corresponding ALE transformation, A 1 , satisfies a discrete elementweighted Laplace equation.

The second step is a correction performed in each element that touches the curved boundary in order to build a high order approximation. In each element K * ∈ T * ,b we look for

A N K * ∈ [P N (K * )] d such that          K * (1 + τ )∇A N K * : ∇z dx = 0, ∀z ∈ [P N (K * )] d A N K * (x * ) = η(x * ) + x * -A 1 (x * ), ∀x * ∈ ∂K * ∩ Γ * M A N K * = 0, elsewhere on ∂K * .
where Γ * M is the portion of boundary in the reference domain that is curved in the computational domain. The final ALE map, A N is obtained by adding to A 1 the correction

A N K * on each element of T * ,b A N (x * ) = A 1 (x * ) + K * ∈T * ,b A N K * (x * ) + x * Proposition 1 (Properties of A N ).
Under the previous assumptions and by construction,

A N ∈ P N c,h (T * ,b ) -enjoys optimal approximation properties i.e. the boundary approximation is O h N +1 in the L 2 - norm -and A N ∈ P 1 c,h (T * \T * ,b ).

The Harmonic extension and Winslow smoother

In both papers [START_REF] Prud'homme | High order methods for the approximation of the incompressible Navier-Stokes equations in a moving domain[END_REF][START_REF] Gonc | Construction of a high order fluid-structure interaction solver[END_REF], the piecewise linear map created in the first step is calculated by performing a harmonic extension (or modified harmonic extension) of the boundary data. However, if the displacement is too large, these operators can induce meshes that are not valid due to, for instance, mesh folding. A way to circumvent this problem, that steams from the structure of the proposed ALE map construction, is to replace the harmonic extension by a more suitable and flexible operator that avoids these issues or improves the mesh quality. An example of such an operator is the Winslow smoother [START_REF] Winslow | Numerical solution of the quasilinear poisson equations in a nonuniform triangle mesh[END_REF]. From a continuous point of view, the Winslow smoother enforces that the inverse of the ALE map is harmonic, not the map itself. This accounts for solving a quasi-linear system of PDE's, which can be done using fixed point iterations. In Figure 1 we show the effect of the modified harmonic extension and the Winslow smoother for the same testcase.

Numerical verification of Proposition 1

We present now some numerical experiments to verify Proposition 1. In order to conduct these experiments we use (i) Gmsh [START_REF] Geuzaine | Gmsh: a three-dimensional finite element mesh generator with built-in pre-and post-processing facilities[END_REF] to build the initial high order meshes in 2D and 3D and visualize the meshes computed by our methods and (ii) Feel++ [START_REF] Prud'homme | Feel++: Finite Element Embedded Language in C++[END_REF][START_REF] Prud | Life: Overview of a unified C++ implementation of the finite and spectral element methods in 1d[END_REF] which provides the framework for arbitrary order Galerkin methods to solve the partial differential equations and handle the computational meshes. Note that the mesh T * used to solve equation ( 1) is built automatically from the initial high order mesh through the straightening process. We consider the reference domain depicted in Figure 2(a) defined by

Ω * ,cy = (x * , y * , z * ) ∈ R 3 : x * ∈ [0, 5] , y * 2 + z * 2 ≤ 0.5 2 (2) 
and the associated displacement of its boundary η cy (x * ) = 0.2 exp(

x * 5 ) sin πx * 2.5 n * . Figure 2(b)
displays the computational domains colored by the corresponding ALE map. 

Models and their discretizations methods

We now turn to the structure and fluid models, their associated discretization and solution methods. In each case, we display some of the results of our strategy applyed to the benchmark [START_REF] Turek | Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow[END_REF]. Note that our fluid solver has also been benchmarked for bi-fluid simulations [START_REF] Doyeux | Simulation of two phase flow using a level set method. application to vesicle dynamics[END_REF] following the proposal [START_REF] Hysing | Quantitative benchmark computations of two-dimensional bubble dynamics[END_REF]. Two benchmarks presented in [START_REF] Turek | Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow[END_REF] are performed to verify our code. The first one corresponds to the oscillation of an elastic beam only subjected to gravity. We monitor the coordinates of the tip of the beam. The second is the simulation of a flow in rectangular domain with a rigid obstacle: a flag clamped to a cylinder. We monitor the lift and drag.

The algebraic systems arising from the discretization proposed in the next sections are solved using a Newton or quasi-Newton algorithm with a cubic line search method. At each step, the linear solver applies the GMRES method with a LU preconditioner. The preconditioner is typically built only once throughout the nonlinear iterations unless the nonlinearity is stiff and the preconditioner needs to be recalculated. In the quasi-newton instance, the Jacobian can be rebuilt once in a while during the nonlinear iterations or just once, which is often preferred when simulating time-dependent problems. The underlying framework for the linear and nonlinear solvers is PETSc [START_REF] Balay | Efficient management of parallelism in object oriented numerical software libraries[END_REF].

Structure

Models and discretizations

We first introduce the deformation gradient tensor, which allows to measure the solid deformation from the displacement η s , F s = I + ∇η s . Other useful tensors are the right Cauchy-Green tensor C s and the Green-Lagrange tensor E s which can be expressed by

C s = F T s F s , E s = 1 2 (C s -I)
where E s has the property to be divided in two terms, ǫ s (linear) and γ s (quadratic)

E s = 1 2 ∇η s + (∇η s ) T ǫs + 1 2 (∇η s ) T ∇η s γs . (3) 
The simplest model of this type is the elastic linear model, which is valid for small displacements and deformations. It reads as

ρ s ∂ 2 η s ∂t 2 -∇ • (Σ s ) = f s , Σ s = λ s (trǫ s ) I + 2µ s ǫ s (4) 
with λ s and µ s being the Lamé coefficients.

The next model is the hyper-elastic and compressible model which is valid for large deformations.

The generic balance equation of hyper-elasticity in Lagrangian description is given by

ρ s ∂ 2 η s ∂t 2 -∇ • (F s Σ s ) = f s , Σ s = λ s (trE s ) I + 2µ s E s . ( 5 
)
where Σ s represents the second Piola-Kirchhoff stress tensor.

To take into account the material incompressibility, we use the Hyper-elastic and incompressible model. The pressure p s acts as a lagrange multiplier to enforce incompressibility. The model reads as

ρ s ∂ 2 η s ∂t 2 -∇ • (F s Σ s ) = f s , detF s = 1, Σ s = -p s (detF s )C -1 s + λ s (trE s ) I + 2µ s E s . ( 6 
)
Finally we also make use of a 1D reduced model for thin structures like shells, also known as generalized strings, see [START_REF] Nobile | Numerical approximation of fluid-structure interaction problems with application to haemodynamics[END_REF][START_REF] Pena | Spectral element approximation of the incompressible Navier-Stokes equations evolving in a moving domain and applications[END_REF].

For the numerical results presented in the next section we considered a hyper-elastic model for the structure. We discretized the equations using [P N ] d elements and a continuous approximation in space while we used the Newmark method to get an order 2 discretization in time.

Benchmark

The results of the CSM3 benchmark from [START_REF] Turek | Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow[END_REF] are displayed in Table 1 and the x, y coordinates of the tip of the beam on the Figure 4. The results are in accordance with the reference values REF. 
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Models and discretization

We mainly use a Newtonian fluid model which neglects shear-thining and viscoelastic effects. The govern equations are the classical Navier-Stokes equations which read as

ρ f ∂u f ∂t + ρ f (u f • ∇) u f -∇ • σ f = f f (7) 
∇ • u f = 0 (8) 
where u f is the fluid velocity and ρ f its density and

σ f = -p f I + τ f , τ f = 2µ f D f , D f = 1 2 ∇u f + (∇u f ) T (9) 
where p f is the pressure and µ f the fluid viscosity.

The previous equations are discretized using the standard Taylor-Hood element [P N ] d × P N -1 in space and the BDF of order 2 or 3 discretizations in time. In 2D the geometry is discretized using order 1 to 5 geometric transformations while in 3D from order 1 to 4, see [START_REF] Geuzaine | Gmsh: a three-dimensional finite element mesh generator with built-in pre-and post-processing facilities[END_REF].

Benchmark

The results of the CFD3 benchmark from [START_REF] Turek | Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow[END_REF] are displayed in Table 3.2.2 for various geometrical (N geo ) and velocity/pressure N/N -1 approximations. The results in Table 3.2.2 for a BDF2 scheme and time step 5×10 -3 are in accordance with the REF results. However, we made some extra computations using a smaller time step ∆t = 0.002 and BDF2/BDF3 schemes and we observe a significant shift in the Drag and Lift coefficients. This shift is already present with BDF3 and ∆t = 0.005. Several computations were made using various meshes and discretization for the velocity, pressure and geometry. BDF2 and BDF3 for ∆t = 0.002 are very much in accordance with the reference results except perhaps for the mean of the Lift which tells us that we are probably resolving properly the time and spatial scales while ∆t = 0.005 using BDF2 or BDF3 is not sufficient. 4 Fluid structure interaction

N geo N element N dof (N,
In the fluid-structure interaction context, we chose to write the fluid dynamics equations in the Arbitrary Lagrangian Eulerian (ALE) framework. It allows to take into account the deformation of the fluid domain. We need also to introduce into our model the domain's velocity of deformation w f , see e.g. [START_REF] Gonc | Construction of a high order fluid-structure interaction solver[END_REF][START_REF] Prud'homme | High order methods for the approximation of the incompressible Navier-Stokes equations in a moving domain[END_REF], the fluid equation set now reads in the moving domain Ω t over the time interval I:

ρ f ∂u f ∂t x * -div x (2µ f D x (u f )) + ρ f ((u f -w f ) • ∇ x )u f + ∇ x p f = f , in Ω t × I (10) div x (u f ) = 0, in Ω t × I (11)
where all differential operators are defined w.r.t. the Eulerian coordinate system, except the ALE time derivative.

The fluid and the structure are coupled through a partitioned method with an implicit or semi-implicit scheme, see [START_REF] Gonc | Construction of a high order fluid-structure interaction solver[END_REF][START_REF] Pena | Spectral element approximation of the incompressible Navier-Stokes equations evolving in a moving domain and applications[END_REF] for more details.

2D Benchmark

This final benchmark is a mix of the two previous tests. We remove the gravity and the flag part (not the cylinder) is now allowed to move. The results are in accordance with the reference values even though we used a really coarse mesh except for the drag. A complete study using high order approximation like for the fluid shall be available at the time of Acomen'11.

x ×10 -3 y ×10 

3D Benchmark

Finally we present a blood flow application in large arteries that has been proposed in [START_REF] Nobile | Numerical approximation of fluid-structure interaction problems with application to haemodynamics[END_REF]. The geometry is a straight pipe and a pressure pulse of 1.3332 × 10 4 g/ cm s 2 has been imposed at the inlet boundary during 0.003s. The thin elastic vessel (0.1cm) is clamped at the inlet and outlet. Figure 6 shows the pressure wave propagation for different time steps. We have used a (P 2 /P 1 ) space for the fluid and P 1 for the structure. The geometry for the fluid and structure is order one. The time scheme for the fluid is also order 1. 

Conclusion

Some of the results in this paper are very recent, not fully exploited or complete. In particular we do not yet display results for high order fluid structure interaction in 3D including geometry although the main components of the FSI framework namely the structure and flow solver as well as ALE framework enjoy optimal properties when using high order approximations separately. Complete results will be available at the time of Acomen'11.
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 12 Figure 1: Comparison of first order meshes generated by the harmonic extension (left) and Winslow smoother (right) operators respectively
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 33 Figure 3: Convergence rate plots of A N,cy with respect to h (left) and convergence rate plots of A N,cy with respect to N (right).
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 4 Figure 4: Results for CSM3 with ∆t = 0.005. x and y displacement of the point A depending on time
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 5 Figure 5: Results for FSI3 with ∆t = 0.01.
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 6 Figure 6: Pressure wave in a straight pipe. We show the fluid pressure and the fluid displacement of the pipe is magnified 15 times.

Table 1 :

 1 Results for CSM3 with ∆t = 0.02,0.01,0.005. Line REF displays the reference values for[START_REF] Turek | Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow[END_REF] 

	REF	-14.305 ± 14.305 [1.0995] -63.607 ± 65.160 [1.0995]
	4199 17536(P 2 )	-14.585 ± 14.59 [1.0953]	-63.981 ± 65.521 [1.093]
	4199 38900(P 3 ) -14.589 ± 14.594 [1.0953]	-63.998 ± 65.522 [1.093]
	1043 17422(P 4 ) -14.591 ± 14.596 [1.0953]	-64.009 ± 65.521 [1.093]
	4199 68662(P 4 )	-14.59 ± 14.595 [1.0953]	-64.003 ± 65.522 [1.093]
	4199 17536(P 2 )	-14.636 ± 14.64 [1.0969] -63.937 ± 65.761 [1.0945]
	4199 38900(P 3 ) -14.642 ± 14.646 [1.0969] -63.949 ± 65.771 [1.0945]
	1043 17422(P 4 ) -14.645 ± 14.649 [1.0961] -63.955 ± 65.778 [1.0945]
	4199 68662(P 4 ) -14.627 ± 14.629 [1.0947] -63.916 ± 65.739 [1.0947]
	4199 17536(P 2 ) -14.645 ± 14.645 [1.0966] -64.083 ± 65.623 [1.0951]
	4199 38900(P 3 )	-14.649 ± 14.65 [1.0966] -64.092 ± 65.637 [1.0951]
	1043 17422(P 4 ) -14.652 ± 14.653 [1.0966] -64.099 ± 65.645 [1.0943]

Table 2 :

 2 Results for CFD3 with ∆t = 0.01,0.005,0.002. Line REF displays the reference values for[START_REF] Turek | Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow[END_REF] 

			N -1) N bdf	Drag	Lift
	REF				439.45 ± 5.6183 [4.3956] -11.893 ± 437.81 [4.3956]
	P 1	8042	37514(P 2 /P 1 )	2 437.47 ± 5.3750 [4.3457] -9.7865 ± 437.54 [4.3457]
	P 2	2334	26706(P 3 /P 2 )	2 439.27 ± 5.1620 [4.3457]	-8.887 ± 429.06 [4.3457]
	P 2	7970	89790(P 3 /P 2 )	2 439.56 ± 5.2335 [4.3457] -11.719 ± 425.81 [4.3457]
	P 1	3509	39843(P 3 /P 2 )	2 438.24 ± 5.5375 [4.3945] -11.024 ± 433.90 [4.3945]
	P 1	8042	90582(P 3 /P 2 )	2 439.25 ± 5.6130 [4.3945] -10.988 ± 437.70 [4.3945]
	P 2	2334	26706(P 3 /P 2 )	2 439.49 ± 5.5985 [4.3945] -10.534 ± 441.02 [4.3945]
	P 2	7970	89790(P 3 /P 2 )	2 439.71 ± 5.6410 [4.3945] -11.375 ± 438.37 [4.3945]
	P 3	3499	73440(P 4 /P 3 )	3 439.93 ± 5.8072 [4.4921] -14.511 ± 440.96 [4.3945]
	P 4	2314	78168(P 5 /P 4 )	2 439.66 ± 5.6412 [4.3945] -11.329 ± 438.93 [4.3945]
	P 3	2340	49389(P 4 /P 3 )	2 440.03 ± 5.7321 [4.3945]	-13.25 ± 439.64 [4.3945]
	P 3	2334	49266(P 4 /P 3 )	3 440.06 ± 5.7773 [4.3945] -14.092 ± 440.07 [4.3945]

Table 3 :

 3 Results for FSI3 with ∆t = 0.01. There are 4414 elements in Ω f and 20653 dofs associated (P 2 /P 1 ), 396 elements in Ω s and 1794 dofs associated (P 2 ). The geometry is first order and the BDF scheme for the fluid is order 2. REF values are found in[START_REF] Turek | Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow[END_REF] 

	-3	Drag	Lift

-2.85 ± 2.73 [10.7] 1.68 ± 33.93

[5.4] 

435.5 ± 28.93 [10.7] -13.45 ± 178.73

[5.4] 
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