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In this work, we study the optimal discretization error of stochastic integrals, in the context of the hedging error in a multidimensional Itô model when the discrete rebalancing dates are stopping times. We investigate the convergence, in an almost sure sense, of the renormalized quadratic variation of the hedging error, for which we exhibit an asymptotic lower bound for a large class of stopping time strategies. Moreover, we make explicit a strategy which asymptotically attains this lower bound a.s. . Remarkably, the results hold under great generality on the payoff and the model. Our analysis relies on new results enabling to control a.s. processes, stochastic integrals and related increments.

Introduction.

The problem. We aim at finding a finite sequence of optimal stopping times T n = {τ n 0 = 0 < τ n 1 < ... < τ n i < ... ≤ τ n N n T = T } which minimizes the quadratic variation of the discretization error of the stochastic integral

Z n s = s 0 D x u(t, S t ) • dS t -∑ τ n i-1 ≤s D x u(τ n i-1 , S τ n i-1 ) • (S τ n i ∧s -S τ n i-1 ),
which interpretation is the hedging error [START_REF] Bertsimas | When is time continuous?[END_REF] of the discrete Delta-hedging strategy of an European option with underlying asset S (multidimensional Itô process), maturity T > 0, price function u (for the ease of presentation, here u depends only on S) and payoff g(S T ). The times (τ n i ) 1≤i≤N n T read as rebalancing dates (or trading dates) and their number N n T is a random variable which is finite a.s. . The exponent n refers to a control parameter introduced later on (see Section 2). The a.s. minimization of Z n T is hopeless since after a suitable renormalisation, it is known that it weakly converges to a mixture of Gaussian random variables (see [START_REF] Bertsimas | When is time continuous?[END_REF][START_REF] Gobet | Discrete time hedging errors for options with irregular payoffs[END_REF][START_REF] Hayashi | Evaluating hedging errors: an asymptotic approach[END_REF][START_REF] Geiss | Weak convergence of error processes in discretizations of stochastic integrals and Besov spaces[END_REF] when trading dates are deterministic and under some mild assumptions on the model and payoff; see [START_REF] Fukasawa | Discretization error of stochastic integrals[END_REF] for stopping times under stronger assumptions). Hence, it is more appropriate to investigate the a.s. minimization of the quadratic variation Z n T which, owing to the Lenglart inequality (resp. the Burkholder-Davis-Gundy inequality), allows the control of the distribution (resp. the L p -moments, p > 0) of sup t≤T |Z n t | under martingale measure. To avoid trivial lower bounds by letting N n T → +∞, we reformulate our problem into the a.s. minimization of the product (1.1) N n T Z n T .

Our Theorem 3.1 states that the above renormalized error has a.s. an asymptotic lower bound over the class of admissible strategies which consist (roughly speaking 1 ) of deterministic times and of hitting times of random ellipsoids of the form (1.2) τ n 0 := 0, τ n i := inf{t ≥ τ n i-1 : (S t -S τ n i-1 ) • H n

τ n i-1 (S t -S τ n i-1 ) = 1} ∧ T
where (H n t ) 0≤t≤T is a measurable adapted positive-definite symmetric matrix process. It includes the Karandikar scheme [START_REF] Karandikar | On pathwise stochastic integration[END_REF] for discretization of stochastic integrals. In addition, in Theorems 3.2 and 3.3 we show the existence of a strategy of the hitting time form attaining the a.s. lower bound. The derivation of a Central Limit-type Theorem for Z n is left to further research, in particular because the verification of the criteria in [START_REF] Fukasawa | Discretization error of stochastic integrals[END_REF] is difficult to handle in our general setting.

Literature background. Our work extends the existing literature on discretization errors for stochastic integrals with deterministic time mesh, mainly considered with financial applications. Many works deal with hedging rebalancing at regular intervals of length ∆t i = T /n. In [START_REF] Zhang | Couverture approchée des options européennes[END_REF] and [START_REF] Bertsimas | When is time continuous?[END_REF], the authors show that E[ Z n T ] converges to 0 at rate n for payoffs smooth enough (this convergence rate originates to consider the product (1.1) as a minimization criterion). However, in [START_REF] Gobet | Discrete time hedging errors for options with irregular payoffs[END_REF] it is proved that the irregularity of the payoff may deteriorate the convergence rate: it becomes n 1/2 for digital call option. This phenomenon has been intensely analyzed by Geiss and his co-authors using the concept of fractional smoothness (see [START_REF] Geiss | On approximation of a class of stochastic integrals and interpolation[END_REF][START_REF] Gobet | L 2 -time regularity of BSDEs with irregular terminal functions[END_REF][START_REF] Geiss | Fractional smoothness and applications in finance[END_REF][START_REF] Geiss | Generalized fractional smoothness and L pvariation of BSDEs with non-Lipschitz terminal condition[END_REF] and references therein): by the choice of rebalancing dates suitably concentrated at maturity, we recover the rate n. The first attempt to find optimal strategies with non-deterministic times goes back to [START_REF] Martini | Variance optimal hedging in the Black-Scholes model for a given number of transactions[END_REF]: the authors allow a fixed number n of random rebalancing dates, which actually solve an optimal multiple-stopping problem. Numerical methods is required to compute the solution. In [START_REF] Fukasawa | Stochastic analysis with Financial Applications[END_REF], Fukasawa performs an asymptotic analysis for minimizing the product E(N n T )E( Z n T ) (an extension to jump processes has been recently done in [START_REF] Rosenbaum | Asymptotically optimal discretization of hedging strategies with jumps[END_REF]). Under regularity and integrability assumptions (and for a convex payoff on a single asset), Fukasawa derives an asymptotic lower bound and provides an optimal strategy. His contribution is the closest to our current work. But there are major differences.

1. We focus on a.s. results, which is probably more meaningful for hedging issues. We are not aware of similar works in this direction. 2. We allow a quite general model for the asset. It can be a multidimensional diffusion process (local volatility model), see the discussion in Subsection 5.4. As a comparison, in [START_REF] Fukasawa | Stochastic analysis with Financial Applications[END_REF] the analysis is carried out for a one-dimensional model (mainly Black-Scholes model). 3. We also allow a great generality on the payoff. In particular, the payoff can be discontinuous, the option can be exotic (Asian, lookback . . . ), see Subsection 5. [START_REF] Conze | Path dependent options: the case of lookback options[END_REF] for examples: for mathematical reasons, this is a major difference in comparison with [START_REF] Fukasawa | Stochastic analysis with Financial Applications[END_REF]. Indeed, in the latter reference, the payoff convexity is needed to ensure the positivity of the option Gamma (second derivative of price), which is a crucial property in the analysis. Also, for discontinuous payoff the L p integrability of the sensitivities (Greeks) up to maturity may be not satisfied (see [START_REF] Gobet | The tracking error rate of the Delta-Gamma hedging strategy[END_REF]); thus, some quantities in the analysis (e.g. the integral of the second moment of the Gamma of digital call option) may become infinite. In our setting, we circumvent these issues by only requiring the sensitivities to be finite a.s. up to maturity: actually, this property is systematically satisfied by payoffs for which the discontinuity set has a zeromeasure (see Subsection 5.4), which includes all the usual situations to our knowledge.

To achieve such a level of generality and an a.s. analysis, we design efficient tools to analyze the a.s. control and a.s. convergence of local martingales, of their increments and so forth. All these results represent another important theoretical contribution of this work. Other applications of these techniques are in preparation. At last, although the distribution of hitting time of random ellipsoid of the form (1.2) is not explicit, quite surprisingly we obtain tight estimates on the maximal increments of sup i≤N n T (τ n iτ n i-1 ), which may have applications in other areas (like stochastic simulation).

Outline of the paper. In the following, we present some notations and assumptions that will be used throughout the paper. Section 2 is aimed at defining our class of stopping time strategies and deriving some general theoretical properties in this class. For that, we establish new key results about a.s. convergence, which fit well our framework. All these results are not specifically related to financial applications. The main results about hedging error are stated and proved in Section 3. Numerical experiments are presented in Section 4, with a practical description of the algorithm to build the optimal sequence of stopping times (actually hitting times) and a numerical illustration regarding the exchange binary option (in dimension 2).

Notation used throughout the paper.

• We denote by x • y the scalar product between two vectors x and y, and by |x| = (x • x) 

A ∈ S d + (R) (resp. S d ++ (R)) if and only if x • Ax ≥ 0 (resp. > 0) for any x ∈ R d \{0}. • For A ∈ S d (R), Λ(A) := (λ 1 (A), ..., λ d (A)
) stands for its spectrum (its Rvalued eigenvalues) and we set λ min (A) := min 1≤i≤d λ i (A). • For the partial derivatives of a function f : (t, x, y) → f (t, x, y), we write

D t f (t, x, y) = ∂ f ∂t (t, x, y), D x i f (t, x, y) = ∂ f ∂ x i (t, x, y), D 2 x i x j f (t, x, y) = ∂ 2 f ∂ x i ∂ x j (t, x, y), D 2 x i y j f (t, x, y) = ∂ 2 f ∂ x i ∂ y j (t,
x, y) and so forth. • When convenient, we adopt the short notation f t in place of f (t, S t ,Y t ) where f is a given function and (S t ,Y t ) 0≤t≤T is a continuous time process (introduced below). • For a R d -valued continuous semimartingale M, M t stands for the matrix of cross-variations ( M i , M j t ) 1≤i, j≤d . • The constants of the multidimensional version of the Burkholder-Davis-Gundy inequalities [25, p. 166] are defined as follows: for any p > 0 there exists c p > 1 such that for any vector M = (M 1 , . . . , M d ) of continuous local martingales with M 0 = 0 and any stopping time θ , we have

(1.3) c -1 p E d ∑ j=1 M j θ p ≤ E sup t≤θ |M t | 2p ≤ c p E d ∑ j=1 M j θ p .
• For a given sequence of stopping times T n , the last time before t ≤ T is defined by ϕ(t) = max{τ n j ; τ n j ≤ t}: although dependent on n, we omit to indicate this dependency to alleviate notation. Furthermore, for a process ( f t ) 0≤t≤T , we write ∆ f t := f tf ϕ(t-) (omitting again the index n for simplicity); in particular, we have ∆ f

τ n i = f τ n i -f τ n i-1 . Besides we set ∆ t = t -ϕ(t-) and ∆τ n i := τ n i -τ n i-1 . • We shortly write X n a.s.
-→ if the random variables (X n ) n≥0 converge almost surely as n → ∞. We write X n a.s.

-→ X ∞ to additionally indicate that the almost sure limit is equal to X ∞ . We shall say that the sequence

(X n ) n≥0 is bounded if sup n≥0 |X n | < +∞, a.s..
• C 0 is a a.s. finite non-negative random variable, which may change from line to line.

Model. Let T > 0 be a given terminal time (maturity) and let (Ω, F , (F t ) 0≤t≤T , P) be a filtered probability space, supporting a d-dimensional Brownian motion B = (B i ) 1≤i≤d defined on [0, T ], where (F t ) 0≤t≤T is the P-augmented natural filtration of B and F = F T . This stochastic basis serves as a modeling of the evolution of d tradable risky assets without dividends, which price processes are denoted by S = (S i ) 1≤i≤d . Their dynamics are given by an Itô continuous semimartingale which solves

(1.4) S t = S 0 + t 0 b s ds + t 0 σ s dB s
with measurable and adapted coefficients b and σ . This is the usual framework of complete market, see [START_REF] Musiela | Martingale methods in financial modelling[END_REF]. Assumptions on σ are given below. Furthermore, for the sake of simplicity we directly assume that the return of the money market account (r t ) t is zero and that b ≡ 0. This simplification is not really a restriction (see [START_REF] Musiela | Martingale methods in financial modelling[END_REF] for details): indeed, first we can still re-express prices in the money market account numéraire; second, because we deal with a.s. results, we can consider dynamics under any equivalent probability measure, and we choose the martingale measure. From now on, S is a continuous local martingale and σ satisfies the following assumption.

(A σ ) a.s. for any t ∈ [0, T ] σ t is non zero; moreover σ satisfies the continuity condition : there exist a parameter θ σ ∈ (0, 1] and a non-negative a.s. finite random variable C 0 such that

|σ t -σ s | ≤ C 0 (|S t -S s | θ σ + |t -s| θσ 2 ), ∀0 ≤ s,t ≤ T a.s..
The above continuity condition is satisfied if σ t := σ (t, S t ) for a function σ (.) which is θ σ -Hölder continuous w.r.t. the parabolic distance. For some of our results, the above assumption is strengthened into

(A Ellip. σ ) Assume (A σ ) and that σ t is elliptic in the sense 0 < λ min (σ t σ * t ), ∀ 0 ≤ t ≤ T a.s..

The assumption (A

Ellip. σ

) is undemanding, since we do not suppose any uniform (in ω) lower bound.

We consider an exotic option written on S with payoff g(S T ,Y T ) where Y T is a functional of (S t ) 0≤t≤T . In the subsequent asymptotic analysis, we assume that Y = (Y i ) 1≤i≤d is a vector of adapted continuous non-decreasing processes. Examples of such an option are given below: this illustrates that the current setting covers numerous relevant situations beyond the case of simple vanilla options (with payoff of form g(S T )). EXAMPLE 1.1.

1. Asian options : Y j t := t 0 S j s ds and g(x, y) := (∑ 1≤ j≤d π j y j -K) + , for some weights π j and a given K ∈ R. 2. Lookback options : Y j t := max 0≤s≤t S j s and g(x, y) := ∑ 1≤ j≤d (π j y jπ j x j ).

Furthermore, we assume that the price at time t of such an option is given by u(t, S t ,Y t ) where u is a

C 1,3,1 [0, T [×R d × R d function verifying (1.5) u(T, S T ,Y T ) = g(S T ,Y T ) and u(t, S t ,Y t ) = u(0, S 0 ,Y 0 ) + t 0 D x u(s, S s ,Y s ) • dS s for any t ∈ [0, T ].
The above set of conditions is related to probabilistic and analytical properties. First, although not strictly equivalent, it essentially means that the pair (S,Y ) forms a Markov process and this originates why the randomness of the fair price E(g(S T ,Y T )|F t ) at time t only comes from (S t ,Y t ). Observe that this Markovian assumption about (S,Y ) is satisfied in the above examples. Secondly, the regularity of the price function u is usually obtained by applying PDE results thanks to Feynman-Kac representations: it is known that the expected regularity can be achieved under different assumptions on the smoothness of the coefficients of S and Y , of the payoff g, combined with some appropriate non-degeneracy conditions on (S,Y ). The pictures are multiple and it is not our current aim to list all the known related results; we refer to [START_REF] Wilmott | Option pricing: mathematical models and computation[END_REF] for various Feynman-Kac representations related to exotic options, and to [START_REF] Pascucci | PDE and Martingale Methods in Option Pricing[END_REF] for regularity results and references therein. See Subsection 5.4 for extra regularity results. Besides, we assume

(A u ) Let A ∈ D := D 2 x j x k , D 3 x j x k x l , D 2 tx j , D 2 x j y m : 1 ≤ j, k, l ≤ d, 1 ≤ m ≤ d , P lim δ →0 sup 0≤t<T sup |x-S t |≤δ ,|y-Y t |≤δ A u(t, x, y) < +∞ = 1.
Observe that the above assumption is really weak: this is a pathwise result and we do not require any L p -integrability of the derivatives of u. In Subsection 5.4, we provide an extended list of payoffs (continuous or not) of options (vanilla, Asian, lookback) in log-normal or local volatility models, for which (A u ) holds. Even for the simple option payoff g(S T ) in the simple log-normal model, we have not been able to exhibit a payoff function g for which (A u ) is not satisfied.

2. Class T adm. of strategies and convergence results. In this section, we define the class of strategies under consideration, and establish some preliminary almost sure convergence results in connection with this class.

A strategy is a finite sequence of increasing stopping times {τ 0 = 0 < τ 1 < ... < τ i < ... ≤ τ N T = T } (with N T < +∞ a.s. ) which stand for the rebalancing dates. Furthermore, the number of risky assets held on each interval [τ i , τ i+1 ) follows the usual Delta-neutral rule D x u(τ i , S τ i ,Y τ i ).

2.1. Assumptions. Now to derive asymptotically optimal results, we consider a sequence of strategies indexed by the integers n = 0, 1, . . . , i.e. writing

T n := {τ n 0 = 0 < τ n 1 < ... < τ n i < ... ≤ τ n N n T }, for n = 0, 1, . . . ,
and we define an appropriate asymptotic framework, as the convergence parameter n goes to infinity. Let (ε n ) n≥0 be a sequence of positive deterministic real numbers converging to 0 as n → ∞; assume that it is a square-summable sequence

∑ n≥0 ε 2 n < +∞. (2.1)
On the one hand, the parameter ε

-2ρ N n
(for some ρ N ≥ 1) upper bounds (up to a constant) the number of rebalancing dates of the strategy T n , i.e.

(A N ) The following non-negative random variable is a.s. finite:

sup n≥0 ε 2ρ N n N n T < +∞ for a parameter ρ N satisfying 1 ≤ ρ N < (1 + θ σ 2 ) ∧ 4 3 .
On the other hand, the parameter ε n controls the size of variations of S between two stopping times in T n .

(A S ) The following non-negative random variable is a.s. finite:

sup n≥0 ε -2 n sup 1≤i≤N n T sup t∈(τ n i-1 ,τ n i ] |S t -S τ n i-1 | 2 < +∞.
Observe that assumptions (A N ) and (A S ) play complementary (and not equivalent) roles. We are now ready to define the class of sequence of strategies in which we are seeking the optimal element. DEFINITION 2.1. A sequence of strategies T := {T n : n ≥ 0} is admissible if it fulfills the hypotheses (A N ) and (A S ). The set of admissible sequences T is denoted by T adm. . The above definition depends on the sequence (ε n ) n≥0 , which is fixed from now on. REMARK 2.1.

• The larger ρ N , the wider the class of strategies under consideration. The choice ρ N = 1 is allowed, but seemingly it rules out deterministic strategies; see the next remark.

• If ρ N > 1, a strategy T n consisting of N n T = 1 + ε -2ρ N n deterministic times with mesh size sup 1≤i≤N n T ∆τ n i ≤ Cε 2ρ N n
(this includes the cases of uniform and some non-uniform time grids) forms an admissible sequence of strategies, thanks to the 1 2 --Hölder property of the Dambis-Dubins-Schwarz Brownian motion of S j (1 ≤ j ≤ d) (under the additional assumption that σ is uniformly bounded to safely maintain the time-changes into a fixed compact interval).

• Our setting allows to consider stopping times satisfying the strong predictability condition (i.e. 

τ n i is F τ n i-1 -measurable),
= 4 3 > 4(ρ N -1) (since ρ N < 4 3 ) gives sup n≥0 ε -ρ Y n sup 1≤i≤N n T |∆Y τ n i | ≤ sup 0≤t≤T |S t | sup n≥0 ε ρ-2 n sup 1≤i≤N n T ∆τ n i < +∞ a.s..

Lookback options : clearly, we have

sup n≥0 ε -1 n sup 1≤i≤N n T |∆Y τ n i | ≤ sup n≥0 ε -1 n sup 0≤t≤T |∆S t | < +∞ a.s., thus (A Y ) is satisfied with ρ Y = 1 provided that ρ N < 5/4.
2.2. Fundamental lemmas about almost sure convergence. This subsection is devoted to the main ingredient (Lemmas 2.1 and 2.2) about almost sure convergence, which is involved in the subsequent asymptotic analysis. We first recall some usual approaches to establish that a sequence (U n T ) n≥0 converges to 0 in probability or almost surely, as n → ∞: it serves as a preparation for the comparative discussion we will have regarding our almost sure convergence results.

• Convergence in probability. It can be handled, for instance, by using the Markov inequality and showing that the L p -moment (for some p > 0) of U n T converges to 0: for p = 1 and δ > 0, it writes

P(|U n T | ≥ δ ) ≤ E|U n T |
δ → n→∞ 0. Observe that this approach requires a bit of integrability of the random variable U n T . To achieve the uniform convergence in probability of (U n t ) 0≤t≤T to 0, Lenglart [START_REF] Lenglart | Relation de domination entre deux processus[END_REF] introduced an extra condition: the relation of domination. Namely, assume that (U n t ) 0≤t≤T is a non-negative continuous adapted process and that it is dominated by a non-decreasing continuous adapted process (V n t ) 0≤t≤T (with

V n 0 = 0) in the sense E(U n θ ) ≤ E(V n θ ) for any stopping time θ ∈ [0, T ]. Then, for any c 1 , c 2 > 0 we have P sup t≤T U n t ≥ c 1 ≤ 1 c 1 E(V n T ∧ c 2 ) + P(V n T ≥ c 2 ).
A standard application consists in taking U n as the square of a continuous local martingales M n ; then, the convergence in probability of M n , M n T to 0 implies the uniform convergence in probability of (M n t ) 0≤t≤T to 0. The converse is also true, the relation of domination deriving from BDG inequalities. This kind of result leads to useful tools for establishing the convergence in probability of triangular arrays of random variables: for instance, see [START_REF] Genon-Catalot | On the estimation of the diffusion coefficient for multidimensional diffusion processes[END_REF]Lemma 9] in the context of parametric estimation of stochastic processes.

• Almost sure convergence. We may use a Borel-Cantelli type argument, assuming that ∑ n≥0 E|U n T | < +∞. Fubini-Tonelli's theorem yields that the series ∑ n≥0 |U n T | converges a.s. , and in particular U n T a.s.

-→ 0. Here again, the integrability of U n T is required. Bichteler and Karandikar leveraged this type of series argument to establish the a.s. convergence of stochastic integrals under various assumptions, with in view either approximation issues or pathwise stochastic integration; see [START_REF] Bichteler | Stochastic integration and L p -theory of semimartingales[END_REF], [START_REF] Karandikar | On Métivier-Pellaumail inequality, Emery topology and pathwise formulae in stochastic calculus[END_REF], [START_REF] Karandikar | On pathwise stochastic integration[END_REF], [START_REF] Karandikar | On almost sure convergence results in stochastic calculus[END_REF] and references therein.

Our result below (Lemma 2.1) is inspired by the above references, but its conditions of applicability are less stringent and it allows more flexibility in our framework. We assume a relation of domination, but:

1. not for all stopping times (as in Lenglart domination); 2. the processes (U n t ) 0≤t≤T are not assumed to be continuous (nor (∑ n≥0 U n t ) 0≤t≤T ); 3. the dominating process V n is not assumed to be non-decreasing. Thus, our assumptions are less demanding, but on the other way, we do not obtain any uniform convergence result. Moreover, we emphasize that we do not assume any integrability on U n T . This is crucial, because the typical applications of Lemma 2.1 are related to U n T defined as a (possibly stochastic) integral of the derivatives of u evaluated along the path (S t ,Y t ) 0≤t≤T : since usual payoff functions are irregular, it is known that the L p -moments of related derivatives blow up as time goes to maturity, and it is hopeless to obtain the required integrability on U n T assuming only (A u ).

We are now ready for the statement of our a.s. convergence result.

LEMMA 2.1. Let M + 0 be the set of non-negative measurable processes vanishing at t = 0. Let (U n ) n≥0 and (V n ) n≥0 be two sequences of processes in M + 0 . Assume that i) the series ∑ n≥0 V n t converges for all t ∈ [0, T ], almost surely;

ii) the above limit is upper bounded by a process V ∈ M + 0 and that V is continuous a.s. ; iii) there is a constant c ≥ 0 such that, for every n

∈ N, k ∈ N and t ∈ [0, T ], we have E[U n t∧θ k ] ≤ cE[V n t∧θ k ] with the random time θ k := inf{s ∈ [0, T ] : Vs ≥ k} 2 .
Then for any t ∈ [0, T ], the series ∑ n≥0 U n t converges almost surely. As a consequence, U n t a.s.

-→ 0.

PROOF. First, observe that (θ k ) k≥0 well defines random times since V is continuous. Denote by N V the P-negligible set on which the series (∑ n≥0 V n t ) 0≤t≤T do not converge and on which V and then (θ k ) k≥0 are not defined; observe that for ω /

∈ N V , we have Vt∧θ k (ω) ≤ k for any t ∈ [0, T ] and k ∈ N. Set V p := ∑ p n=0 V n : we have V p ≤ V on N c
V ; thus, the localization of V entails that of V p and we have V p t∧θ k ≤ k for any k, p and t (on N c V ). Moreover, for any n and k, the relation of domination writes

(2.2) E p ∑ n=0 U n t∧θ k ≤ cE p ∑ n=0 V n t∧θ k = cE V p t∧θ k ≤ ck. From Fatou's lemma, we get E ∑ n≥0 U n t∧θ k < +∞: in particular, for any k ∈ N, there is a P-negligible set N k,t , such that ∑ n≥0 U n t∧θ k (ω) converges for all ω / ∈ N k,t . The set N t = k∈N N k,t N V is P-negligible and it follows that for ω / ∈ N t , the series ∑ n≥0 U n t∧θ k (ω) converges for all k ∈ N.
For ω / ∈ N t , we have θ k (ω) = +∞ as soon as k > VT (ω); thus by taking such k, we complete the convergence of ∑ n≥0 U n t on N c t .

Observe that in our argumentation, we do not assume that the non-negative random variables U n t and V n t have a finite expectation (and in some examples, it is false, especially at t = T ). However, note that in (2.2) we prove that U n t∧θ k and V n t∧θ k have a finite expectation: in other words, (θ k ) k≥0 serves as a common localization for U n and V n . In addition, Lemma 2.1 is general and thorough since we do not assume any adaptedness or regularity properties of the processes U n and V n . We provide a simpler version that can be customized for our further applications:

LEMMA 2.2. Let C + 0 be the set of non-negative continuous adapted processes, vanishing at t = 0. Let (U n ) n≥0 and (V n ) n≥0 be two sequences of processes in C + 0 . Replace the two first items of Lemma 2.1 by i') t → V n t is a non-decreasing function on [0, T ], almost surely;

ii') the series ∑ n≥0

V n T converges almost surely;

iii') there is a constant c ≥ 0 such that, for every n ∈ N, k ∈ N and t ∈ [0, T ], we have

(2.3) E[U n t∧θ k ] ≤ cE[V n t∧θ k ]
with the stopping time

θ k := inf{s ∈ [0, T ] : Vs ≥ k} setting Vt = ∑ n≥0 V n t .
Then, the conclusion of Lemma 2.1 still holds.

PROOF. We just have to prove that items i') + ii')

entails items i) + ii) of Lemma 2.1 for U n and V n in C + 0 ⊂ M + 0 . Since V n is non-decreasing, the a.s. convergence of ∑ n≥0 V n T implies that of ∑ n≥0 V n t . Moreover ∑ n≥0 sup 0≤t≤T V n t = ∑ n≥0 V n
T < +∞ a.s.: therefore, a.s. the series associated with V n is normally convergent on [0, T ] and V := ∑ n≥0 V n ∈ C + 0 : items i) + ii) are satisfied. Observe θ k is a stopping time since V is continuous and adapted.

We apply Lemma 2.2 to derive a simple criterion for the convergence of continuous local martingales. COROLLARY 2.1. Let p > 0 and let {(M n t ) 0≤t≤T : n ≥ 0} be a sequence of scalar continuous local martingales vanishing at zero. Then,

∑ n≥0 M n p/2 T a.s. -→ ⇐⇒ ∑ n≥0 sup 0≤t≤T |M n t | p a.s. -→ .
PROOF. We first prove the implication ⇒. Set U n t := sup 0≤s≤t |M n s | p and V n t := M n p/2 t and let us check the conditions of Lemma 2.2 : i') V n is non-decreasing, ii') ∑ n≥0 V n T converges a.s. . The relation of domination (2.3) follows from the BDG inequalities (see the r.h.s. of (1.3)) and we are done. The implication ⇐ is proved similarly, using the l.h.s. of (1.3) regarding the BDG inequalities.

2.3. Controls of ∆τ n and of the martingales increments. Being inspired by the scaling property of Brownian motion, we might intuitively guess that a sequence of strategy (T n ) n≥0 satisfying (A S ) yields stopping times increments of magnitude equal roughly to ε 2 n . Actually, thorough estimates are difficult to derive: for instance the exit times of balls by a Brownian motion define unbounded random variables. To address these issues, we take advantage of Lemma 2.2 to establish estimates on the sequence (∆τ n i := τ n iτ n i-1 ) 1≤i≤N n T , which show that we almost recover the familiar scaling ε 2 n .

PROPOSITION 2.1. Assume (A σ ). Let T be a sequence of strategies satisfying

(A S ) and let p ≥ 0. Then i) the series ∑ n≥0 ε -(p-2) n sup 1≤i≤N n T (∆τ n i ) p a.s. -→ . ii) Assume moreover that T ∈ T adm. : the series ∑ n≥0 ε -2(p-1)+2ρ N n ∑ τ n i-1 <T (∆τ n i ) p a.s. -→ .
PROOF. • Let us prove i), assuming only (A S ). For p = 0, this is trivial. Now consider the case p > 0. Since σ t is non-zero for any t and continuous, C E := inf t∈[0,T ] (∑ d j=1 e j .σ t σ * t e j ) > 0 a.s. , where e j is the j-th element of the canonical basis in R d . Therefore, a.s. for any 0 ≤ s ≤ t ≤ T we have

0 ≤ t -s ≤ C -1 E t s d ∑ j=1 e j .σ r σ * r e j dr = C -1 E d ∑ j=1 [ S j t -S j s ] (2.4) = C -1 E d ∑ j=1 (S j t -S j s ) 2 -2 t s (S j r -S j s )dS j r ,
applying the Itô formula at the last equality. Take s = τ n i-1 , t = τ n i and use (A S ):

∆τ n i ≤ C -1 E C 0 ε 2 n + 2 d ∑ j=1 τ n i τ n i-1 ∆S j r dS j r ≤ C -1 E C 0 ε 2 n + 4 d ∑ j=1 sup 0≤t≤T t 0 ∆S j r dS j r . (2.5) Now for j = 1, . . . d, set M j,n t := ε 2/p-1 n t 0 ∆S j r dS j r (recalling that p > 0). Then ∑ n≥0 M j,n p/2 T = ∑ n≥0 ε 2-p n T 0 |∆S j t | 2 d S j t p/2 ≤ C 0 ∑ n≥0 ε 2 n < +∞ a.s..
Thus owing to Corollary 2.1 the terms sup 0≤t≤T M j,n t p n≥0 define an a.s. convergent series. Combining this with (2.5), we finally derive

∑ n≥0 ε 2/p-1 n sup 1≤i≤N n T |∆τ n i | p ≤ C 0 ∑ n≥0 ε 2/p-1 n ε 2 n p + d ∑ j=1 ∑ n≥0 sup 0≤t≤T
M j,n t p < +∞ a.s..

• It remains to justify ii). For p = 0, the result directly follows from (A N ) and the inequality (2.1) . Now take p > 0 and set

U n t := ε -2(p-1)+2ρ N n ∑ τ n i-1 <t d ∑ j=1 ∆ S j τ n i ∧t p , V n t := ε -2(p-1)+2ρ N n ∑ τ n i-1 <t sup s∈(τ n i-1 ,τ n i ∧t] |∆S s | 2p . If ∑ n≥0 U n T a.s.
-→ , (2.4) immediately yields that

∑ n≥0 ε -2(p-1)+2ρ N n ∑ τ n i-1 <T (∆τ n i ) p a.s. -→
. Thus, it is sufficient to show ∑ n≥0 U n t a.s.

-→ , for any t ∈ [0, T ], and this is achieved by an application of Lemma 2.2. The sequences of processes

(U n ) n≥0 and (V n ) n≥0 are in C + 0 .
Then, V n is non-decreasing and using

(A S )-(A N ) ∑ n≥0 V n T ≤ C 0 ∑ n≥0 ε -2(p-1)+2ρ N n ε 2p n N n T ≤ C 0 ∑ n≥0 ε 2 n < +∞ a.s..
Then, we deduce that items i') and ii') of Lemma 2.2 are fulfilled. It remains to check the relation of domination (item iii')). Let k ∈ N. On the set {τ n i-1 < t ∧ θ k }, from the multidimensional BDG inequality in a conditional version, we have

(2.6) E d ∑ j=1 ∆ S j τ n i ∧t∧θ k p |F τ n i-1 ≤ c p E sup τ n i-1 <s≤τ n i ∧t∧θ k |∆S s | 2p |F τ n i-1
.

Then, it follows

E U n t∧θ k = ε -2(p-1)+2ρ N n +∞ ∑ i=1 E 1 τ n i-1 <t∧θ k E d ∑ j=1 ∆ S τ n i ∧t∧θ k p |F τ n i-1 ≤ c p E[V n t∧θ k ].
The proof is complete.

As a consequence of Proposition 2.1, the mesh size of T n , i.e. sup 1≤i≤N n T ∆τ n i , converges a.s. to 0 as n → ∞, with some explicit rates of convergence: this is the statement below. COROLLARY 2.2. With the same assumptions and notations as Proposition 2.1, we have the following estimates, for any ρ > 0:

i) Under (A S ), sup n≥0 ε ρ-1 n sup 1≤i≤N n T ∆τ n i < +∞ a.s.. ii) Under (A S )-(A N ), sup n≥0 ε ρ-2 n sup 1≤i≤N n T ∆τ n i < +∞ a.s.. PROOF. Item i). Clearly, from Proposition 2.1 -i), we obtain sup n≥0 ε -(p-2) n sup 1≤i≤N n T (∆τ n i ) p < +∞ a.s.
for any p ≥ 0 and the result follows by taking p = 2/ρ. Item ii). We proceed similarly by observing that Proposition 2.1 -ii) gives

sup n≥0 ε -2(p-1-ρ N ) n sup 1≤i≤N n T (∆τ n i ) p ≤ sup n≥0 ε -2(p-1-ρ N ) n ∑ τ n i-1 <T (∆τ n i ) p < +∞ a.s..
We are now in a position to control the a.s. convergence of some stochastic integrals appearing in our further optimality analysis. The following proposition and corollary will play a crucial role in the estimations of the error terms appearing in the main theorems (see Section 3). PROPOSITION 2.2. Assume (A σ ). Let T = (T n ) n≥0 be a sequence of strategies, ((M n t ) 0≤t≤T ) n≥0 be a sequence of R-valued continuous local martingales such that M n t = t 0 α n r dr for a non-negative measurable adapted α n satisfying the following inequality: there exists a non-negative a.s. finite random variable C α and a parameter θ ≥ 0 such that

0 ≤ α n r ≤ C α (|∆S r | 2θ + |∆r| θ ), ∀ 0 ≤ r < T, ∀n ≥ 0, a.s..
Then, the following convergences hold.

i) Assume T satisfies (A S ) and let p ≥ 2:

∑ n≥0 ε 3-1+θ 2 p n ∑ τ n i-1 <T sup τ n i-1 ≤t≤τ n i |∆M n t | p < +∞, a.s..
ii) Assume furthermore that T satisfies (A N ) (i.e. T ∈ T adm. ) and let p > 0:

∑ n≥0 ε 2-(1+θ )p+2ρ N n ∑ τ n i-1 <T sup τ n i-1 ≤t≤τ n i |∆M n t | p < +∞, a.s.. PROOF. Let p > 0.
Let δ be the parameter standing for 1 2 under (A S ) and 1 under (A S )-(A N ). Set

U n t := ε -2δ p(θ +1) 2 -2(1-δ ) +2+2ρ N (2δ -1) n ∑ τ n i-1 <t sup τ n i-1 ≤s≤τ n i ∧t |∆M n t | p , V n t := ε -2δ p(θ +1) 2 -2(1-δ ) +2+2ρ N (2δ -1) n ∑ τ n i-1 <t τ n i ∧t τ n i-1 α n r dr p/2
.

Observe that the announced result reads as ∑ n≥0 U n T a.s.

-→ . To prove this convergence, it is enough to establish that ∑ n≥0 V n T a.s.

-→ . Indeed, following the arguments of the proof of Proposition 2.1-ii), we can apply Lemma 2.2 since (U n ) n≥0 and (V n ) n≥0 are two sequences of continuous adapted processes and i') V n is non-decreasing on [0, T ] a.s. ; iii') the domination is satisfied thanks to the BDG inequalities, similarly to (2.6).

Now to prove

∑ n≥0 V n T a.s. -→ , write ∑ n≥0 V n T ≤ ∑ n≥0 ε -2δ p(θ +1) 2 -2(1-δ ) +2+2ρ N (2δ -1) n ∑ τ n i-1 <T C 0 (ε 2θ n +(∆τ n i ) θ )∆τ n i p/2
a.s..

First, consider the case (A S ) and set D

n := sup 1≤i≤N n T (∆τ n i ) q for q ≥ 0: Proposition 2.1-i) yields D (q) := ∑ n≥0 ε

-(q-2) n D (q)
n < +∞ a.s. . Using p ≥ 2 , it readily follows that

∑ n≥0 V n T ≤ ∑ n≥0 ε -(p(θ +1)/2-3) n C p/2 0 ∑ τ n i-1 <T (ε 2θ n + (∆τ n i ) θ ) p/2 (∆τ n i ) p/2-1 ∆τ n i ≤ ∑ n≥0 ε -(p(θ +1)/2-3) n C p/2 0 2 p/2-1 T ε pθ n D (p/2-1) n + D ((θ +1)p/2-1) n ≤ C p/2 0 2 p/2-1 T (sup n≥0 ε n ) pθ /2 D (p/2-1) + D ((θ +1)p/2-1) < +∞ a.s..

Second for the case

(A S )-(A N ), setting D (q) 
n := ∑ τ n i-1 <T (∆τ n i ) q for q ≥ 0, we have

D (q) := ∑ n≥0 ε -2(q-1)+2ρ N n D (q)
n < +∞ a.s. thanks to Proposition 2.1-ii). Then we easily deduce (for any p > 0)

∑ n≥0 V n T ≤ C p/2 0 2 (p/2-1) + ∑ n≥0 ε -2(p(θ +1)/2-1)+2ρ N n ∑ τ n i-1 <T ε pθ n (∆τ n i ) p/2 + (∆τ n i ) (θ +1)p/2 = C p/2 0 2 (p/2-1) + D (p/2) + D ((θ +1)p/2) < +∞ a.s..
A straightforward consequence of the aforementioned proposition is given by the following corollary, which proof is left to the reader. COROLLARY 2.3. Using the assumptions and notations of Proposition 2.2, we have the following estimates, for any ρ > 0 :

i) Under (A S ), sup n≥0 ε ρ-1+θ 2 n sup 1≤i≤N n T sup τ n i-1 ≤t≤τ n i |∆M t | < +∞, a.s. . ii) Under (A S )-(A N ), sup n≥0 ε ρ-(1+θ ) n sup 1≤i≤N n T sup τ n i-1 ≤t≤τ n i |∆M t | < +∞, a.s. . REMARK 2.2.
Observe that in the proofs of Subsection 2.3, we have not used the knowledge of the upper bound on ρ N (stated in (A N )): it means that all the related results are true for any admissible sequence of strategies assuming only ρ N ≥ 1.

2.4.

Almost sure convergence of weighted discrete quadratic variation. PROPOSITION 2.3. Assume (A σ ) and let T be a sequence of strategies satisfying (A S ). Let (H t ) 0≤t<T be a continuous adapted d × d-matrix process such that sup t∈[0,T ) |H t | < +∞ a.s. and let (M t ) 0≤t≤T be a R d -valued continuous local martingale such that M t = t 0 α r dr with sup 0≤t≤T |α t | < +∞ a.s. . Then

∑ τ n i-1 <T ∆M * τ n i H τ n i-1 ∆M τ n i a.s. -→ T 0 Tr (H t d M t ) . PROOF. From Itô's lemma, ∑ τ n i-1 <T ∆M * τ n i H τ n i-1 ∆M τ n i is equal to d ∑ k,l=1 ∑ τ n i-1 <T ∆M k τ n i H k,l τ n i-1 ∆M l τ n i = d ∑ k,l=1 T 0 H k,l ϕ(t) (∆M k t dM l t + ∆M l t dM k t + d M k , M l t ) = T 0 ∆M * t (H ϕ(t) + H * ϕ(t) )dM t + T 0 Tr(H ϕ(t) d M t ).
The second term in the above r. -→ .

Clearly T 0 |∆M t | 2 dt 3 is bounded by d 3 T 3 sup 1≤ j≤d sup 1≤i≤N n T sup τ n i-1 ≤t≤τ n i |∆M j t | 6 ≤ C 0 ε 2
n owing to Corollary 2.3 (item i)) for θ = 0 and ρ = 1 6 . The convergence (2.7) is proved and we are done.

2.5. Verification of the hypothesis on a special family of hitting times. One of the more appealing result of the paper is that a very large family of hitting times fulfills the assumptions (A N ) and (A S ) with a threshold depending of ε n . PROPOSITION 2.4. Assume (A σ ). Let (H t ) 0≤t<T be a continuous adapted nonnegativedefinite d × d-matrix process, such that a.s.

0 < inf 0≤t<T λ min (H t ) ≤ sup 0≤t<T λ max (H t ) < +∞.
The strategy T n given by

τ n 0 := 0, τ n i := inf t ≥ τ n i-1 : (S t -S τ n i-1 ) * H τ n i-1 (S t -S τ n i-1 ) > ε 2 n ∧ T,
defines a sequence of strategies satisfying assumptions (A N ) (with sup n≥0 (ε 2 n N n T ) < +∞ a.s. ) and (A S ), that is {T n : n ≥ 0} ∈ T adm. . The proof is postponed in Appendix 5.1. Observe that the above sequence of strategies is admissible even in the most constrained case ρ N = 1. As we shall see later on, the optimal stopping times are given by the hitting times by the process S of an ellipsoid (corresponding to the case H symmetric).

Main results.

3.1. Statements. We now go back to the hedging issue: at time s ∈ [0, T ], the fair value of the option is u(s, S s ) and the hedging portfolio with discrete rebalancing dates

T n is u(0, S 0 ) + ∑ τ n i-1 ≤s D x u(τ n i-1 , S τ n i-1 ) • (S τ n i ∧s -S τ n i-1
), which yields an hedging error equal to

Z n s : = u(s, S s ) -u(0, S 0 ) + ∑ τ n i-1 ≤s D x u(τ n i-1 , S τ n i-1 ) • (S τ n i ∧s -S τ n i-1 ) = s 0 D x u t -D x u ϕ(t) • dS t (3.1)
using (1.5), where the integrand appears as the difference of Delta between τ n i-1 and t ∈]τ n i-1 , τ n i ] for each 0 ≤ i ≤ N n T . One main result of the paper is a lower bound of the renormalized quadratic variation of the hedging error Z n : it is partly derived from a smart representation of (3.2)

Z n T = T 0 D x u t -D x u ϕ(t) * d S t D x u t -D x u ϕ(t)
as a sum of squared random variables and an application of the Cauchy-Schwarz inequality. To derive this suitable representation, we apply the Itô formula and identify the bounded variation term; it is straightforward in dimension one, much more intricate in a multidimensional setting, and this is equivalent to solve the following matrix equation.

LEMMA 3.1. Let c ∈ S d (R). Then, the equation

(3.3) 2Tr(x)x + 4x 2 = c 2
admits exactly one solution x(c) ∈ S d + (R). In addition, x(c) is positive-definite if and only if c 2 is positive-definite. Last, the mapping c → x(c) is continuous.

The proof is given in Subsection 5.2. We are now in a position to give an explicit asymptotic lower bound for N n T Z n T : this is the contents of the following theorem. Let us comment a bit on the above lower bound.

• First, it is a.s. finite: indeed, sup t<T |σ * t D 2 xx u t σ t | < +∞ a.s. and the continuity of c → x(c) imply sup t<T |X t | < +∞ a.s. . • Second, observe that a.s.

{ T 0 Tr(X t )dt = 0} = {∀t < T : σ * t D 2 xx u t σ t = 0} under (A Ellip. σ ) = {∀t < T : D 2 xx u t = 0}
using at the first equality that Tr(x(c)) > 0 ⇔ x(c) = 0 ⇔ c = 0. Then we obtain that except in degenerate situations (where the Gamma matrix D 2 xx u t is zero at any time, assuming (A

Ellip. σ

)), the lower bound in Theorem 3.1 is non-zero.

• As a consequence , we immediately obtain a lower bound for the L p -criterion: indeed, using the Fatou lemma and the Cauchy-Schwarz inequality, we derive (for any p > 0)

E( T 0 Tr(X t )dt) p 2 ≤ E lim inf n→+∞ N n T Z n T p/2 2 ≤ lim inf n→+∞ E N n T Z n T p/2 2 ≤ lim inf n→+∞ E((N n T ) p )E( Z n p T ).
For p = 1 we recover the Fukasawa approach [START_REF] Fukasawa | Stochastic analysis with Financial Applications[END_REF].

The next theorem tells us that along a suitable sequence T n (the hitting times of some random ellipsoids) the lower bound of Theorem 3.1 is reached. Let χ(.) be a smooth function such that 1 ]-∞,1/2] ≤ χ(.) ≤ 1 ]-∞,1] and for µ > 0, set χ µ (x) = χ(x/µ).

THEOREM 3.2. Assume the assumptions (A

Ellip. σ

), (A u ), (A S ), (A N ) and (A Y ) are in force. Let µ > 0, for t ≥ 0 set Λ t := (σ -1 t ) * X t σ -1 t and Λ µ t := Λ t + µ χ µ (λ min (Λ t ))I d . For a given n ∈ N, define the strategy T n µ by

(3.4) τ n 0 := 0, τ n i = inf t ≥ τ n i-1 : (S t -S τ n i-1 ) * Λ µ τ n i-1 (S t -S τ n i-1 ) > ε 2 n ∧ T.
Then, the sequence of strategies T µ = {T n µ : n ≥ 0} is admissible and it is µasymptotically optimal in the following sense:

lim sup n→+∞ N n T Z n T -( T 0 Tr(X t )dt) 2 ≤ C µ µ T 0 χ µ (λ min (Λ t ))Tr(σ t σ * t )dt
where the random variable C µ := T 0 4Tr(X t ) + 3µ χ µ (λ min (Λ t ))Tr(σ t σ * t ) dt is a.s. finite (locally uniformly w.r.t. µ ≥ 0). In particular, on the event {∀t ∈ [0, T ] :

λ min (Λ t ) ≥ µ}, N n T Z n T converges a.s. to T 0 Tr(X t )dt 2 .
Observe that we require the ellipticity condition to hold. The proof is given in Subsection 3.3. We can strengthen the above Theorem by allowing µ = 0 under stronger assumptions. THEOREM 3.3. Assume the assumptions of Theorem 3.2 and additionally that

(3.5) P inf t∈[0,T [ λ min (D 2 xx u t ) > 0 = 1.
Then, the sequence of strategies T 0 = {T n (0) : n ≥ 0} defined in (3.4) with µ = 0 is admissible and asymptotically optimal:

lim n→+∞ N n T Z n T = ( T 0
Tr(X t )dt) 2 , a.s..

For the proof, see Subsection 3.4. The extra assumption (3.5) is satisfied in dimension one for call/put option in Black-Scholes model only if the hedging time horizon is strictly smaller than the option maturity. But it is not satisfied in digital call/put option. This discussion can be extented to higher multidimensional situations. REMARK 3.1. In the one dimensional case, we have

X t = 1 √ 6 σ 2 t |D 2 xx u t |, Λ t = 1 √ 6 |D 2 xx u t |
and the µ-optimal stopping times read

τ n i = inf    t ≥ τ n i-1 : |S t -S τ n i-1 | > ε n |D 2 xx u τ n i-1 |/ √ 6 + µ χ µ (|D 2 xx u τ n i-1 |/ √ 6)    ∧ T.
For |D 2 xx u t | bounded from below, we can take µ = 0 and the optimal strategy coincides with that of [START_REF] Fukasawa | Stochastic analysis with Financial Applications[END_REF]Theorem C]. The threshold µ = 0 ensures that the hedging rebalancing occurs often enough, even if Λ t = 0 for some time t: this interpretation is also valid in the multidimensional case.

Proof of Theorem 3.1. It is split into several steps.

Step 1: Quadratic variation decomposition. We start from the hedging error (3.1). A natural idea consists in writing a Taylor expansion (regarding the S variable only) and showing that the residual terms converge to 0 fast enough as we could expect :

(3.6) Z n s = s 0 (D 2 xx u ϕ(t) ∆S t ) • dS t + R n s , where (3.7) R n s := s 0 D x u t -D x u ϕ(t) -D 2 xx u ϕ(t) ∆S t • dS t , s ≤ T.
Then passing to quadratic variation, we obtain 

Z n T = T 0 ∆S * t D 2 xx u ϕ(t) d S t D
+ T 0 ∆S t + σ ϕ(t) ∆B t * D 2 xx u ϕ(t) σ ϕ(t) σ * ϕ(t) D 2 xx u ϕ(t) t ϕ(t)
∆σ r dB r dt.

As mentioned before, we seek a smart representation of the main term of

Z n T in the form ∑ τ n i-1 <T ∆B * τ n i X τ n i-1 ∆B τ n i
2 plus a stochastic integral, where X is a measurable adapted d × d-matrix process which has to be defined. Instead of directly giving the solution, let us discuss a bit on the expected properties of X. Applying Itô's formula on each interval [τ n i-1 , τ n i ], we obtain

∑ τ n i-1 <T ∆B * τ n i X τ n i-1 ∆B τ n i 2 = T 0 ∆B * t 2Tr X ϕ(t) X ϕ(t) + X ϕ(t) + X * ϕ(t) 2 ∆B t dt + 2 T 0 ∆B * t X ϕ(t) ∆B t ∆B * t X ϕ(t) + X * ϕ(t) dB t ,
with the tentative identification

(3.10) 2Tr X ϕ(t) X ϕ(t) + X ϕ(t) + X * ϕ(t) 2 = σ * ϕ(t) D 2 xx u ϕ(t) σ ϕ(t) 2 .
Mainly, two reasons prompt us to impose X ϕ(t) ∈ S d + (R). • Gathering the previous identities and anticipating a little bit on the following, the main contribution in

N n T Z n T is N n T ∑ τ n i-1 <T ∆B * τ n i X τ n i-1 ∆B τ n i 2 ≥ ∑ τ n i-1 <T ∆B * τ n i X τ n i-1 ∆B τ n i 2
using the Cauchy-Schwarz inequality. In general the limit of the above lower bound is not easy to handle because of the absolute values, but if the matrix X ϕ(t) is nonnegative-definite, we can remove them and conclude using a convergence result about discrete quadratic variations (Proposition 2.3). • Once that we have restricted to nonnegative-definite matrices, let us prove that the solution to (3.10) (whenever it exists) is symmetric. If Tr(X ϕ(t) ) = 0 then X ϕ(t) = 0 (thus symmetric): indeed, X ϕ(t) +X * ϕ(t) is symmetric nonnegativedefinite and has a null trace, thus it is the zero-matrix and consequently X ϕ(t) = -X * ϕ(t) = 0 (since both X ϕ(t) and X * ϕ(t) are nonnegative-definite). If Tr(X ϕ(t) ) > 0 then taking the transposition of (3.10) readily gives X ϕ(t) = X * ϕ(t) . From Lemma 3.1, there exists exactly one adapted process X with values in S d + (R), solution of the equation 2Tr(X)X + 4X 2 = (σ * D 2 xx uσ ) 2 . In addition, this solution is continuous a.s. because C := σ * D 2 xx uσ is continuous a.s. and the solution X is continuous as a function of C on S d . Gathering the previous identities, we have established a nice decomposition of the quadratic variation of the hedging error

Z n T = ∑ τ n i-1 <T ∆B * τ n i X τ n i-1 ∆B τ n i 2 + e n 1,T + e n 2,T + e n 3,T , (3.11) e n 3,T := -4 T 0 ∆B * t X ϕ(t) ∆B t ∆B * t X ϕ(t) dB t . (3.12)
Step 2: lower bound for the renormalized quadratic variation. The Cauchy-Schwarz inequality yields that

N n T ∑ τ n i-1 <T ∆B * τ n i X τ n i-1 ∆B τ n i 2 is bounded from be- low by ∑ τ n i-1 <T ∆B * τ n i X τ n i-1 ∆B τ n i 2 = ∑ τ n i-1 <T ∆B * τ n i X τ n i-1 ∆B τ n i 2 a.s. -→ T 0 Tr (X t ) dt 2 ,
using that X is a nonnegative-definite matrix process and applying Proposition 2.3.

Step 3: the renormalized errors ε

-2ρ N n e n 1,T , ε -2ρ N n
e n 2,T and ε

-2ρ N n
e n 3,T converge to 0 a.s. . Observe that once these convergences are established, in view of (3.11) and (A N ) we easily complete the proof of Theorem 3.1.

• Proof of ε -2ρ N n e n 1,T a.s.
-→ 0. We first state an intermediate result which is proved in Appendix (Subsection 5.3). -→ 0 where R n is defined in (3.7).

Then, starting from (3.8), applying the Cauchy-Schwarz inequality to the crossvariation and using (A σ )-(A u )-(A S ), we derive

ε -2ρ N n |e n 1,T | ≤ ε -2ρ N n R n T + 2 ε -2 n T 0 ∆S * t D 2 xx u ϕ(t) d S t D 2 xx u ϕ(t) ∆S t 1/2 ε 2-4ρ N n R n T 1/2 ≤ ε 2(ρ N -1) n ε 2-4ρ N n R n T + 2C 0 ε 2-4ρ N n R n T 1/2 a.s.
-→ 0.

• Proof of ε

-2ρ N n e n
2,T a.s.

-→ 0. We analyze separately the two contributions in (3.9).

1. First, simple computations using (A σ )-(A u )-(A S ) and Corollary 2.2 directly give (for any given ρ > 0)

ε -2ρ N n T 0 ∆S * t D 2 xx u ϕ(t) ∆(σ t σ * t )D 2 xx u ϕ(t) ∆S t dt| ≤ C 0 ε -2ρ N +2 n (ε θ σ n + ε θσ 2 (2-ρ) n ).
Since ρ N < 1 + θ σ /2 and ρ can be taken arbitrary small, we obtain that the above upper bound converges a.s. to 0. 2. Second, we apply twice Corollary 2.3-ii), first taking θ = 0 and second taking θ = θ σ , so that we obtain,for any given ρ > 0, a.s. for any n ≥ 0

sup 1≤i≤N n T sup τ n i-1 ≤t≤τ n i |∆S t + σ ϕ(t) ∆B t | ≤ C 0 ε 1-ρ n , (3.13) sup 1≤i≤N n T sup τ n i-1 ≤t≤τ n i | t ϕ(t) ∆σ r dB r | ≤ C 0 ε 1+θ σ -ρ n , (3.14) ε -2ρ N n T 0 (∆S t + σ ϕ(t) ∆B t ) * D 2 xx u ϕ(t) σ ϕ(t) σ * ϕ(t) D 2 xx u ϕ(t) ( t ϕ(t) ∆σ r dB r )dt ≤ C 0 ε 2+θ σ -2ρ N -2ρ n .
Owing to ρ N < 1 + θ σ /2, taking ρ small enough implies the a.s. convergence of the latter upper bound to 0. As a result, ε

-2ρ N n e n 2,T a.s.
-→ 0. 

= (3-2ρ N )p-2 3p > 0 and θ = 0 gives sup 1≤i≤N n T sup τ n i-1 ≤t≤τ n i |∆B t | < C 0 ε 1-ρ n
and therefore 

M n p/2 T = ε -2pρ N n T 0 |α n t | 2 dt p/2 ≤ C 0 ε -2pρ N n sup 1≤i≤N n T sup τ n i-1 ≤t≤τ n i |∆B t | 3p ≤ C 0 ε 2 n a.
= 1 + ∑ 1≤i≤N n T -1 1, we point out ε 2 n N n T = ε 2 n + ∑ 1≤i≤N n T -1 ∆S * τ n i Λ µ τ n i-1 ∆S τ n i = ε 2 n -∆S * T Λ µ τ n N n T -1 ∆S T + ∑ τ n i-1 <T ∆S * τ n i Λ µ τ n i-1 ∆S τ n i a.s. -→ T 0 Tr Λ µ t σ t σ * t dt (3.15)
using the convergence of Proposition 2.3. On the other hand, starting from the decomposition (3.11) of the hedging error quadratic variation, we write

Z n T = ∑ 1≤i≤N n T -1 ∆S * τ n i Λ µ τ n i-1 ∆S τ n i 2 + e n 1,
T + e n 2,T + e n 3,T + e n 4,T + e n 5,T + e n 6,T ,

e n 4,T := ∑

τ n i-1 <T ∆B * τ n i X τ n i-1 ∆B τ n i 2 -∆S * τ n i Λ τ n i-1 ∆S τ n i 2 , e n 5,T := ∑ τ n i-1 <T ∆S * τ n i Λ τ n i-1 ∆S τ n i 2 -∆S * τ n i Λ µ τ n i-1 ∆S τ n i 2 , e n 6,T := ∆S * T Λ µ τ n N n T -1 ∆S T 2 .
In view of the definition of the strategy T n µ , (3.16) becomes -→ 0 for j = 1, 2, 3 (remind that we can take ρ N = 1); the case j = 6 is also fulfilled because 0 ≤ e n 6,T ≤ ε 4 n . To analyze e n 4,T , set D B,i

ε -2 n Z n T = ∑ 1≤i≤N n T -1 ∆S * τ n i Λ µ τ n i-1 ∆S τ n i + ε -2 n 6 ∑ j=1 e n j,T . (3.17) Similarly to (3.15), we show that ∑ 1≤i≤N n T -1 ∆S * τ n i Λ µ τ n i-1 ∆S τ n i a.s. -→ T 0 Tr Λ µ t σ t σ * t dt.
:= σ τ n i-1 ∆B τ n i and D S,i := ∆S τ n i , write X τ n i-1 = σ * τ n i-1 Λ τ n i-1 σ τ n i-1 and ∆B * τ n i X τ n i-1 ∆B τ n i 2 -∆S * τ n i Λ τ n i-1 ∆S τ n i 2 = D * B,i Λ τ n i-1 D B,i 2 -D * S,i Λ τ n i-1 D S,i 2 = D * B,i Λ τ n i-1 D B,i -D * S,i Λ τ n i-1 D S,i D * B,i Λ τ n i-1 D B,i + D * S,i Λ τ n i-1 D S,i = D B,i + D S,i * Λ τ n i-1 D B,i -D S,i D * B,i Λ τ n i-1 D B,i + D * S,i Λ τ n i-1 D S,i . Then, we deduce that ε -2 n |e n 4,T | is bounded by ε -2 n N n T sup 1≤i≤N n T sup τ n i-1 ≤t≤τ n i ] |Λ ϕ(t) | 2 |∆S t + σ ϕ(t) ∆B t | t ϕ(t) ∆σ s dB s |∆S t | 2 + |σ ϕ(t) ∆B t | 2 ≤ C 0 ε -2 n ε -2 n ε 1-ρ n ε (1+θ σ -ρ) n ε 2(1-ρ) n = C 0 ε θ σ /5 n a.s.
-→ 0 where we have used (A N ) (with ρ N = 1) and the estimates (3.13-3.14) with ρ = θ σ /5 (which are available for any sequence of admissible strategies). This proves

ε -2 n e n 4,T a.s. 
-→ 0. Finally regarding e n 5,T , recalling that the matrix Λ τ n i-1 is nonnegative-definite, we obtain that |ε -2 n e n 5,T | is bounded by

ε -2 n ∑ τ n i-1 <T ∆S * τ n i Λ τ n i-1 ∆S τ n i -∆S * τ n i Λ µ τ n i-1 ∆S τ n i ∆S * τ n i Λ τ n i-1 ∆S τ n i + ∆S * τ n i Λ µ τ n i-1 ∆S τ n i , ≤ ∑ τ n i-1 <T µ χ µ (λ min (Λ τ n i-1 ))|∆S τ n i | 2 2ε -2 n ∆S * τ n i Λ µ τ n i-1 ∆S τ n i ≤ 2µ ∑ τ n i-1 <T χ µ (λ min (Λ τ n i-1 ))|∆S τ n i | 2
where we have used the definition of T µ at the last inequality. Thus Proposition 2.3 yields

lim sup n→+∞ |ε -2 n e n 5,T | ≤ 2µ T 0 χ µ (λ min (Λ t ))Tr(σ t σ * t )dt, a.s..

Let us summarize: setting

L T := T 0 Tr Λ t σ t σ * t dt = T 0 Tr X t dt and L µ T := T 0 χ µ (λ min (Λ t ))Tr(σ t σ * t )dt so that T 0 Tr Λ µ t σ t σ * t dt = L T + µL µ T , we have shown ε 2 n N n T a.s. -→ L T + µL µ T , lim sup n→+∞ ε -2 n Z n T -(L T + µL µ T ) ≤ 2µL µ T , a.s., lim sup n→+∞ |N n T Z n T -(L T ) 2 | ≤ lim sup n→+∞ |ε -2 n Z n T -L T | lim sup n→+∞ ε 2 n N n T + L T lim sup n→+∞ |ε 2 n N n T -L T | ≤ 3µL µ T (L T + µL µ T ) + L T µL µ T = µL µ T (4L T + 3µL µ T ), a.s.. Theorem 3.2 is proved. 3.4. Proof of Theorem 3.3.
Here, arguments are simpler in all steps of the proof of Subsection 3.3, then we shall skip details; the admissibility of the strategy comes readily from the ad hoc assumption (3.5) and Proposition 2.4; the optimality follows as before from

ε 2 n N n T = ε 2 n + ∑ 1≤i≤N n T -1 ∆S * τ n i Λ τ n i-1 ∆S τ n i a.s. -→ T 0 Tr X t dt,
and from (setting ēn 6,T :

= (∆S * T Λ τ n N n T -1 ∆S T ) 2 ) ε -2 n Z n T = ε -2 n ∑ 1≤i≤N n T -1 ∆S * τ n i Λ τ n i-1 ∆S τ n i 2 +ε -2 n 4 ∑ j=1 e n j,T +ε -2 n ēn 6,T a.s. -→ T 0 Tr X t dt
with the help of the convergence results already obtained. Theorem 3.3 is proved.

4. Numerical experiments.

4.1.

Algorithm for the optimal stopping times. From the previous section (Theorem 3.2), the µ-optimal stopping times (µ > 0) are iteratively given by τ n 0 := 0 and

τ n i := inf t ≥ τ n i-1 : (S t -S τ n i-1 ) * Λ µ τ n i-1 (S t -S τ n i-1 ) ≥ ε 2 n ∧ T
where for any t,

Λ µ t := Λ t + µ χ µ (λ min (Λ t ))I d , Λ t := (σ -1 t ) * X t σ -1
t and X t solves (3.3) with c t = σ * t D 2 xx u t σ t . Thus, τ n i is the first hitting time of an ellipsoid centered at S τ n i-1 with principal axes equal to the orthogonal eigenvectors of the symmetric positive-definite matrix Λ µ τ n i-1 (or equivalently those of Λ τ n i-1 ). We briefly recall (see Subsection 5.2) the main steps to compute the matrix X τ n i-1 (i ≥ 1) from which we derive Λ τ n i-1 and Λ

µ τ n i-1 . 1. Diagonalize the symmetric matrix c τ n i-1 = σ * τ n i-1 D 2 xx u τ n i-1 σ τ n i-1 := P τ n i-1 Diag λ j (c τ n i-1 ) : 1 ≤ j ≤ d P * τ n i-1
, where P τ n i-1 is an orthogonal matrix.

Find the zero y τ

n i-1 ∈ R + of the increasing function y → (4 + d)y - d ∑ j=1 y 2 + 4λ 2 j (c τ n i-1
). This root lies in the interval 0, d|λ (c

τ n i-1 )|/ √ 4 + 2d
(see the proof of Lemma 3.1). 3. From (5.4), we obtain

X τ n i-1 = P τ n i-1 Diag -y τ n i-1 + y 2 τ n i-1 + 4λ 2 j (c τ n i-1 ) 4 : 1 ≤ j ≤ d P * τ n i-1 .
Last, we mention that even if

Λ µ τ n i-1
is tractable, the exact simulation of τ n i is in general impossible and approximations are required (see [START_REF] Gobet | Stopped diffusion processes: boundary corrections and overshoot[END_REF] and references therein). 4.2. Numerical tests. This section is dedicated to an application of Theorem 3.2 to the case of an exchange binary option g(S T ) = 1 S 1 T ≥S 2 T . This example is relevant in our study (and improves the setting of [START_REF] Fukasawa | Stochastic analysis with Financial Applications[END_REF]) because this is a simple bi-dimensional non-convex function, for which the value function u and its sensitivities are available in the Black-Scholes model

d S 1 t S 2 t = σ 1 S 1 t 0 ρσ 2 S 2 t 1 -ρ 2 σ 2 S 2 t d B 1 t B 2 t ,
where (B 1 , B 2 ) are two independent Brownian motions. The model parameters are set to S 1 0 = 100, S 2 0 = 100, σ 1 = 0.3, σ 2 = 0.4, ρ = 0.5 and T = 1. We take ε n = 0.05. In our different tests, we have not observed a significant difference by taking µ = 0 or µ small; hence, we only report the values for µ = 0. We generate 1000 experiments ω, independently. To compute the hitting times for each ω, we use a thin uniform time mesh π n = (iT / n) 0≤i≤ n ( n = 50000 in our tests) : we draw S 1 (ω) and S 2 (ω) along π n and compute (with the help of the previous algorithm) the hitting times

τ n i (ω) = inf t ∈ π n∩]τ n i-1 (ω), T ] : [(S t -S τ n i-1 ) * Λ µ τ n i-1 (S t - S τ n i-1 )](ω) ≥ ε 2 n ∧ T ;
at the end of the process, we get the number N n T (ω) of discrete times. The mesh π n is also used to compute subsequent quadratic variations and time integrals. We compare ω by ω the above strategy with that based on the uniform mesh π N n T (ω) and with that based on the so-called fractional mesh3 T 1-(1-i/N n T (ω)) 2 1≤i≤N n T (ω) : in that way, the comparison is done for the same number of times, which looks quite fair. We define β stochastic (ω), β uniform (ω), β fractional (ω) where we compute 2 (ω) according to each of these three strategies: in view of Theorem 3.2, this ratio is asymptotically greater than 1 and adimensional; moreover, the closer to 1 the ratio, the better the strategy. Results. Figure 1 displays, for each ω, the couples (β stochastic (ω), β uniform (ω)) and (β stochastic (ω), β fractional (ω)).

β . (ω) := N n T Z n T ( T 0 Tr(X t )dt)
Most of the times, the points are above the diagonal, showing that the µ-optimal strategy lessens the quadratic variation ω-wise (remind that the strategies have got the same number of discrete times N n T ), compared to the quadratic variation worked out over the deterministic time mesh. In addition, β stochastic is concentrated around 1, which means a convergence of N n T Z n T towards the lower bound ( T 0 Tr(X t )dt) 2 . T for the three strategies and for different ω: here again, we observe that the µ-optimal strategy outperforms deterministic strategies.

Appendix.

5.1. Proof of Proposition 2.4. It is standard to check that T n is a sequence of increasing stopping times, we skip details. Let us justify that the size of T n is a.s. finite, for any n ≥ 0. For a given n ≥ 0, define the event N n := {N n T = +∞}. For ω ∈ N n , the infinite sequence (τ n i (ω)) i≥0 converges, because increasing and bounded by T . Thus, on N n ∩E S with E S = {(S t ) 0≤t≤T continuous and sup 0≤t<T λ max (H t ) < +∞}, we have

0 < ε n = (S τ n i -S τ n i-1 ) * H τ n i-1 (S τ n i -S τ n i-1 ) ≤ sup 0≤t<T λ max (H t )|S τ n i -S τ n i-1 | 2 → i→+∞ 0,
which is impossible. Thus, N n ⊂ E c S and P(N n ) = 0 since S is a.s. continuous and sup 0≤t<T λ max (H t ) is a.s. finite. Besides, we have C H := inf 0≤t<T λ min (H t ) > 0 a.s. and we immediately get

ε -2 n sup 1≤i≤N n T sup t∈(τ n i-1 ,τ n i ] |∆S t | 2 ≤ C -1 H ε -2 n sup 1≤i≤N n T sup t∈(τ n i-1 ,τ n i ] (∆S * t H τ n i-1 ∆S t ) ≤ C -1 H FIG 2
. "×", "+" and " " correspond respectively to " Z n T,uniform ", " Z n T,fractional " and " Z n T,stochastic ".

which validates the assumption (A S ).

Then, writing N n T = 1 + ∑ 1≤i≤N n T -1 1, we point out (for n large enough so that ε n ≤ 1)

ε 2ρ N n N n T ≤ ε 2 n N n T ≤ ε 2 n + ∑ 1≤i≤N n T -1 ∆S * τ n i H τ n i-1 ∆S τ n i ≤ ε 2 n + ∑ τ n i-1 <T ∆S * τ n i H τ n i-1 ∆S τ n i ,
using Moreover from Proposition 2.3, we know that under the assumption (A S ) only,

∑ τ n i-1 <T ∆S * τ n i H τ n i-1 ∆S τ n i a.s. -→ T 0 Tr(H t d S t ) < +∞.
This validates the assumption (A N ).

REMARK 5.1. The structure of hitting times of ellipsoids with size ε n has a specific feature compared to general admissible strategies: the assumption (A S ) entails the assumption (A N ).

5.2.

Proof of Lemma 3.1. We split the proof into several steps. Let h :

     R d × R + → R (λ , y) → (4 + d)y - d ∑ i=1 y 2 + 4λ 2 i
. Assume for a while that The diagonal elements of p * x(c) c 2 p x(c) must be the eigenvalues of c 2 , that is the square of the eigenvalues of c (which is in S d (R)). Identifying the diagonal elements from (5.1) gives a relation between the spectra of c and x(c): The matrix c 2 + 1 4 y 2 λ (c) I d is symmetric nonnegative-definite, thus it has a unique square-root (symmetric nonnegative-definite matrix) [20, Theorem 7.2.6 p.405] and we obtain (5.4) x(c) := -y λ (c) 4

2Tr(x(c))λ i (x(c)) + 4λ i (x(c)) 2 = λ i (c) 2 , 1 ≤ i ≤ d.
I d + 1 2 y 2 λ (c) 4 I d + c 2 1/2 .
The uniqueness is proved. It is now easy to check that x(c) given in (5.4) solves (3.3), using the implicit equation satisfied by Tr(x(c)). Last, λ min (c 2 ) > 0 if and only if λ min (x(c)) > 0 (owing to (5.3)).

Continuity. From Hoffman and Wielandt's theorem [20, p.368], the function c → λ (c) is continuous on S d (R) into R d . Hence, combined with ( c), we obtain the continuity of c → y λ (c) on S d (R) into R.

Then, the continuity of x(.) at c 0 = 0 easily follows since as c → 0, y λ (c) → y 0 = 0 and λ (x(c)) → 0 (using (5.3)): thus x(c) → 0 = x 0 . For c 0 = 0, we invoke the property that c → c 

4 I d + c 2 ∈ S d ++ (R)
for c close enough to c 0 (using y λ (c) > 0 for c = 0). In view of (5.4), the continuity of x(.) at c 0 = 0 follows.

Proof of ( ). h is continuous on

R d × [0, ∞[ into R. Moreover, • h(λ , 0) = -2 ∑ d i=1 |λ i | ≤ 0 and lim y→+∞ h(λ , y) = +∞, • h is continuously differentiable on R d ×]0, ∞[, • D y h(λ , y) = 4+d -∑ 1≤ j≤d y √ y 2 +4λ 2 i ≥ 4, implying that y → y(λ , y) is (strictly) increasing.
Then, there is a unique y λ ∈ R + such that h(λ , y λ ) = 0. We point out at first glance, λ = 0 ⇔ y λ > 0. The continuity of y . is proved on R d * on the one hand, and at 0 on the other hand. 

= T 0 σ * t (D x u t -D x u ϕ(t) -D 2 xx u ϕ(t) ∆S t ) 2 dt:
to prove the result, we aim at performing a Taylor expansion using (A u ), i.e. derivatives of u are a.s. finite in a small tube around (t, S t ,Y t ) 0≤t≤T . Because of this local assumption, a careful treatment is required, which we now detail. In view of (A u ), there exists Ω D such that P(Ω D ) = 1 and for every ω ∈ Ω D there is δ (ω) > 0 such that

|A u| δ (ω) := sup 0≤t<T sup |x-S t (ω)|≤δ (ω),|y-Y t (ω)|≤δ (ω) A u(t, x, y) < +∞ for any A ∈ D := D 2 x j x k , D 3 x j x k x l , D 2 tx j , D 2 x j y m : 1 ≤ j, k, l ≤ d, 1 ≤ m ≤ d . Since sup 1≤i≤N n T ∆τ n i a.s.
-→ 0 and (S t ,Y t ) 0≤t≤T are a.s. continuous on the compact interval [0, T ], there exists Ω C with P(Ω C ) = 1 such that for every ω ∈ Ω C , there is p(ω) ∈ N such that ∀n ≥ p(ω),

sup 0≤s,t≤T,|t-s|≤sup 1≤i≤N n T ∆τ n i |S t -S s | ∨ |Y t -Y s | (ω) ≤ δ (ω). Hence for ω ∈ Ω D ∩ Ω C , let n ≥ p(ω), i ∈ {1, . . . , N n T } and t ∈ [τ n i-1 , τ n i ], and write D x u(t, S t ,Y t ) -D x u(τ n i-1 , S τ n i-1 ,Y τ n i-1 ) -D 2 xx u(τ n i-1 , S τ n i-1 ,Y τ n i-1 )∆S t = [D x u(t, S t ,Y t ) -D x u(τ n i-1 , S t ,Y t )] + [D x u(τ n i-1 , S t ,Y t ) -D x u(τ n i-1 , S t ,Y τ n i-1 )] + D x u(τ n i-1 , S t ,Y τ n i-1 ) -D x u(τ n i-1 , S τ n i-1 ,Y τ n i-1 ) -D 2 xx u(τ n i-1 , S τ n i-1 ,Y τ n i-1
)∆S t . Now apply Taylor theorem to the terms above, by observing that the involved derivatives of u are locally bounded by the (a.s. finite) random variable C u := max A ∈D |A u| δ :

D x u(t, S t ,Y t ) -D x u(τ n i-1 , S τ n i-1 ,Y τ n i-1 ) -D 2 xx u(τ n i-1 , S τ n i-1 ,Y τ n i-1 )∆S t ≤ √ dC u (t -τ n i ) + √ d |Y t -Y τ n i-1 | + d 2 |∆S t | 2 .
Plugging this estimate in R n T and using that Y is non-decreasing, we derive that a.s. , for n large enough,

ε 2-4ρ N n R n T ≤ 3dC 2 u sup 0≤t≤T |σ t | 2 ε 2-4ρ N n ∑ τ n i-1 <T (∆τ n i ) 3 + d |∆Y τ n i | 2 ∆τ n i + d 2 4 ∆τ n i sup τ n i-1 ≤t≤τ n i |∆S t | 4 .
To prove the a.s. convergence of the upper bound to 0, we separately analyze each of the three contributions.

• ε 2-4ρ N n ∑ τ n i-1 <T (∆τ n i ) 3 ≤ ε 2-4ρ N n N n T sup 1≤i≤N n T (∆τ n i ) 3 ≤ C 0 ε 4-3ρ N n a.s. -→ 0 by Corollary 2.2-ii) with ρ = 4 3 -ρ N > 0 (see (A N )). • Combining (A Y ) and Corollary 2.2-ii) with ρ = ρ Y 2 -2(ρ N -1) > 0, we easily obtain ε 2-4ρ N n ∑ τ n i-1 <T |∆Y τ n i | 2 ∆τ n i ≤ d ∑ j=1 (Y j T -Y j 0 )ε 2-4ρ N n sup 1≤i≤N n T |∆Y j τ n i | sup 1≤i≤N n T ∆τ n i ≤ √ d |Y T -Y 0 |C 0 ε 2-4ρ N n ε ρ Y n ε 2-ρ n ≤ C 0 ε ρ Y /2-2(ρ N -1) n a.s. -→ 0. • Using (A S ), ε 2-4ρ N n ∑ τ n i-1 <T ∆τ n i sup τ n i-1 ≤t≤τ n i |∆S t | 4 ≤ C 0 ε 6-4ρ N n T a.s.
-→ 0 since ρ N < 3 2 . All these convergences lead to the results.

Assumption (A u

). We show that the assumption (A u ) is satisfied in most usual situations, even if the payoff g is not smooth. Actually, we have not been able to exhibit an example of g for which (A u ) does not hold. The following discussion should convince the reader that finding a counter-example is far from being straightforward, but we conjecture that it is possible.

Vanilla option in Black-Scholes model. For pedagogic reasons, we start with the one-dimensional log-normal model dS t = σ S t dB t (σ > 0). Consider first the Call option with strike K > 0: for t < T we have D

x u(t, x) = N log(x/K) σ √ T -t + 1 2 σ √ T -t ∈ [0, 1]
where N (.) is the cdf of the standard Gaussian law. The second derivative writes

D 2 xx u(t, x) = 1 σ x 2π(T -t) exp - 1 2 log(x/K) σ √ T -t + 1 2 σ √ T -t 2 ;
thus bounding the exponential term by 1, we have for any given t

0 < T lim δ →0 sup 0≤t≤t 0 sup |x-S t |≤δ |D 2 xx u(t, x)| ≤ 1 σ inf 0≤t≤T S t √ 2π(T -t 0 )
< +∞. It shows that an a.s. finite bound on the second derivative is available provided that the time to maturity does not vanish. For the third derivative, this is similar: indeed using sup y∈R e y 2 /4 |∂ y (e -y 2 /2 )| = sup y∈R |y|e -y 2 /4 = √ 2e -1/2 ≤ 1, we deduce

|D 3 xxx u(t, x)| ≤ 1 + σ √ T x 2 √ 2πσ 2 (T -t) exp - 1 4 log(x/K) σ √ T -t + 1 2 σ √ T -t 2 ,
and as before lim δ →0 sup 0≤t≤t 0 sup |x-S t |≤δ |D 3 xxx u(t, x)| < +∞ for any given t 0 < T . The next step consists in deriving a.s. upper bounds on derivatives for arbitrary small time to maturity. We take advantage of the property P(S T = K) = 1, which implies (by a.s. continuity of S) that for P-a.e. ω there exists t 0 (ω) ∈ [0, T [ such that inf t 0 (ω)≤t≤T |S t (ω) -K| ≥ |S T (ω) -K|/2 := 2δ 0 (ω) > 0. Then, for t ∈ [t 0 (ω), T ] and δ ≤ δ 0 ∧ [2 -1 inf 0≤t≤T S t ], we have inf |x-S t |≤δ | log(x/K)| ≥ inf u>0:|u-1|≥δ 0 /K | log(u)| := c(ω) > 0 and inf |x-S t |≤δ x ≥ S t /2: therefore using the inequality -(α + β ) ) is proved for the call option (and thus for the put option). The same argumentation can be applied for the digital call option which payoff is of the form g(x) = 1 x≥K : indeed, the derivatives of u blow up only at the discontinuity point K which has null probability for the law of S T . (A u ) holds for digital options.

Vanilla option in general local volatility model. The previous arguments are based on the explicit Black-Scholes formula for call and digital call options, but we can generalize them to more general models and payoffs and handle derivatives at any order. Denote by X j = log(S j ) (1 ≤ j ≤ d) the log-asset price in a diffusion model and assume that dX t = b X (t, X t )dt +σ X (t, X t )dB t for coefficients b X and σ X of class C ∞ b [0, T ]×R d (bounded with bounded derivatives). The price function in the logvariables is then v(t, x) := u(t, exp(x 1 ), . . . , exp(x d )) = E(g(S T )|S j t = exp(x j ), 1 ≤ j ≤ d) := E(G(X T )|X t = x). We first consider the simple case of C ∞ -payoff G with exponentially bounded derivatives: for any k ≥ 0, there is a constant

C G k ≥ 0 such that |D k x G(x)| ≤ C G k exp(C G k |x|) for x ∈ R d .
In that case, a direct differentiation of E(G(X T )|X t = x) using the smooth flow x → X t,x T [START_REF] Kunita | Stochastic differential equations and stochastic flows of diffeomorphisms[END_REF] shows the differentiability of v w.r.t. the space variable with derivatives bounded on compact subsets of [0, T ] × R d ; in addition the time smoothness is obtained using Itô's formula; these arguments are standard and we skip details. (A u ) is proved for these smooth payoffs. Now we tackle the case of discontinuous payoffs of the form G(x) = 1 x∈D ϕ(x) for a closed set D ⊂ R d and a C ∞ -function ϕ with exponentially bounded derivatives : observe that by combining the analysis for smooth payoffs and that for discontinuous ones will allow to cover a quite large class of g satisfying (A u ) (such as call/put, digital call/put, exchange call, digital exchange call and so on). We assume that a uniform ellipticity assumption is satisfied: inf 0≤t≤T,x∈R d inf |ξ |=1 ξ .[σ X (σ X ) * ](t, x)ξ > 0. In this setting, v(t, x) = R d 1 z∈D p(t, x, T, z)ϕ(z)dz where p is the transition density function of X, which is smooth and satisfies to Aronson-type estimates [7, Theorem 8 p. 263]: for any i ≥ 0 and any differentiation index α, there exists a constant C i,α = C i,α (T, b X , σ X ) > 0 such that The above upper bound converges to 0 as t → T and the proof of (A u ) is complete. Interestingly, we can weaken the ellipticity assumption into a hypoellipticity assumption: indeed, our analysis essentially relies on transition density estimates in small time and away from the diagonal. These estimates are available in the hypoelliptic homogeneous diffusion case [START_REF] Kusuoka | Applications of the Malliavin calculus II[END_REF]Corollary 3.25] and in the inhomogeneous case [START_REF] Cattiaux | Hypoelliptic non-homogeneous diffusions[END_REF]Assumption (1.10)].

Asian option in general local volatility model. The payoff is of the form g(S T , I T ) where I T = T 0 S t dt and S is a one-dimensional homogeneous diffusion dS t = σ (S t )dB t . The analysis is reduced to the previous case of vanilla option by considering the 2-dimensional diffusion (S t , I t ) 0≤t≤T : it is not elliptic but hypoelliptic [START_REF] Kusuoka | Applications of the Malliavin calculus II[END_REF] provided that σ is smooth and that σ (x) > 0 for x ∈ I where I ⊂ R is given by P(∀t ∈ [0, T ] : X t ∈ I) = 1 (in usual cases, I =]0, +∞[). It includes the Black-Scholes model and any model with local volatility bounded away from 0 and smooth. We skip details.

THEOREM 3 . 1 .) dt 2 ,

 312 Assume the assumptions (A σ ), (A u ), (A S ), (A N ) and (A Y ) are in force. Let X be the solution of (3.3) with c := σ * D 2 xx uσ . Then, a.s..
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 32 Assume the hypotheses (A σ ), (A u ), (A S ), (A N ) and (A Y ) are in force. Then ε

  Furthermore we have already established (see Step 3 of proof of Theorem 3.

FIG 1 .

 1 FIG 1. "×", "+" and the blue line correspond respectively to "(β stochastic , β uniform )", "(β stochastic , β fractional )" and the identity function.

Figure 2

 2 Figure 2 displays Z nT as a function of N n T for the three strategies and for different ω: here again, we observe that the µ-optimal strategy outperforms deterministic strategies.

(

  ) (a) for any λ ∈ R d , there exists a unique non-negative root y λ satisfying h(λ , y λ ) = 0; (b) y 0 = 0; λ = 0 ⇒ y λ > 0; (c) the mapping λ → y λ is continuous. Necessary conditions on the spectrum of x(c). Let Diag denote the set of d × d diagonal matrices. Take c ∈ S d (R) and let x(c) ∈ S d + (R) be a solution (whenever it exists) to (3.3). Then by the spectral theorem, x(c) is diagonalizable: there exists an orthogonal matrix p x(c) such that p * x(c) x(c)p x(c) ∈ Diag. Equation (3.3) is stable by unitary transformation: (5.1) 2Tr p * x(c) x(c)p x(c) p * x(c) x(c)p x(c) + 4 p * x(c) x(c)p x(c) 2 = p * x(c) c 2 p x(c) ∈ Diag.

4 .= 1 4 y 2 λ

 42 Thus, the non-negative eigenvalues of x(c) must satisfyλ i (x(c)) = (-Tr(x(c)) + Tr(x(c)) 2 + 4λ i (c) 2 )/4. By summing over i = 1, . . . , d, we obtain an implicit equation for Tr(x(c)), which is h(λ (c), Tr(x(c))) = 0. By ( ), there is a unique solution and(5.2)Tr(x(c)) = y λ (c) .Thus, we have proved that the eigenvalues of x(c) must be(5.3) λ i (x(c)) = -y λ (c) + y 2 λ (c) + 4λ i (c) 2Existence/uniqueness of solution to (3.3). Take c ∈ S d (R). Starting from (3.3), owing to (5.2) x(c) must solve 2x(c) + 1 2 y λ (c) I d 2 (c) I d + c 2 .

•

  On R d * ×]0, +∞[ : D y h(λ , y) exists and is non zero: then by the implicit function theorem, there exists an open set U ⊂ R d * containing λ and an open set V ⊂]0, +∞[ containing y λ such that y is continuously differentiable from U to V . That proves the continuously differentiability of y . in R d * . • At λ = 0 : h((|λ |) 1≤i≤d , y) ≤ h(λ , y) and y ≥ d|λ | √ 4+2d ⇔ h((|λ |) 1≤i≤d , y) ≥ 0. It implies 0 ≤ y λ ≤ d|λ | √ 4+2d and lim |λ |→0 y λ = 0. That concludes the continuity of λ → y λ on R d and by the previous discussion, the proof of the lemma. 5.3. Proof of Lemma 3.2. We have R n T

√T 0 √T

 0 |D i,α tx p(t, x, T, z)| ≤ C i,α (Tt) -(d+2i+|α|)/2 exp(-|x -z| 2 /[C i,α (Tt)])for any 0 ≤ t < T , x ∈ R d , z ∈ R d . From the integral representation of v, it readily follows that|D i,α tx v(t, x)| ≤ C i,α (Tt) -(2i+|α|)ϕ 0 |z| (Tt) -d/2 e -|x-z| 2 /[C i,α (T -t)] dz, ≤ C i,α (Tt) -(2i+|α|)|w| e -|w| 2 /C i,α dw,which proves locally uniform bounds on derivatives provided that the time to maturity remains bounded away from 0. To handle the case t → T , we additionally assume that the boundary ∂ D of D is Lebesgue-negligible (thus including usual situations but excluding Cantor like sets, see[5, p. 114]): thus for P-a.e. ω, the distance to the boundary (a closed set) is positive, i.e. δ 0 (ω) := 1 4 d(X T (ω), ∂ D) > 0 and there exists t 0 (ω) ∈ [0, T [ such that inf t 0 (ω)≤t≤T d(X t (ω), ∂ D) ≥ 3δ 0 (ω) (we recall that the distance function x → d(x, ∂ D) is Lipschitz continuous). Now, let ω be given as above; by the smooth version of the Urysohn lemma [6, p.90], there exists a smooth function ξ (depending on ω) such that1 x∈D,δ 0 ≤d(x,∂ D) ≤ ξ (x) ≤ 1 x∈D . Decompose the price function into two parts v = v 1 + v 2 with v 1 (t, x) := R d 1 z∈D p(t, x, T, z)ϕ(z)ξ (z)dz, v 2 (t, x) = D p(t, x, T, z)ϕ(z)(1-ξ (z))dz.We easily handle the derivatives of v 1 using the first case of smooth functions since 1 D ϕξ = ϕξ ∈ C ∞ with exponentially bounded derivatives. Regarding v 2 , observe that we integrate over the z such that z ∈ D and d(z, ∂ D) < δ 0 ; for such z, for t ∈[t 0 , T [ and |x -X t | ≤ δ ≤ δ 0 , we have |x -z| ≥ d(X t , ∂ D) -|x -X t |d(z, ∂ D) ≥ δ 0 and thus sup |x-X t |≤δ |D i,α tx v 2 (t, x)| ≤ sup |x-X t |≤δ D α (Tt) -(d+2i+|α|)/2 e -|x-z| 2 /[2C i,α (T -t)] e -δ 2 0 /[2C i,α (T -t)] dz ≤ C i,α (Tt) -(2i+|α|)/2 e -δ 2 0 /[2C i,α (T -t)] |w| e -|w| 2 /[2C i,α ] dw.

  1/2 the Euclidean norm of x; the induced norm of a m × d-matrix A is denoted by |A| := sup x∈R d :|x|=1 |Ax|. • A * stands for the transposition of the matrix A; I d stands for the identity matrix of size d; the trace of a square matrix A is denoted by Tr(A). • S d (R), S d + (R) and S d ++ (R) are respectively the set of symmetric, symmetric nonnegative-definite and symmetric positive-definite d × d-matrices with coefficients in R:

  see[START_REF] Jacod | Discretization of Processes, Stochastic Modelling and Applied Probability[END_REF] Chapter 14].• We show in Proposition 2.4 that the strategy T n of successive hitting times of ellipsoid of size ε n forms a sequence in T adm. .

	• In Subsections 2.3-2.4, we investigate properties of admissible sequences of
	strategies. Among others, we show that the mesh size of T n shrinks a.s. to 0
	and we establish tight a.s. upper bounds (see Corollary 2.2): namely for any
	ρ ∈ (0, 2], there is a a.s. finite random variable C ρ such that sup 1≤i≤N n T ∆τ n i ≤ C ρ ε 2-ρ n for any n ≥ 0.
	We require an extra technical condition on the non-decreasing process Y which
	is fulfilled in practical cases for an admissible sequence of strategies.
	(A Y ) The following non-negative random variable is a.s. finite: for some ρ Y >
	4(ρ N -1)			
	sup n≥0	ε -ρ Y n	sup 1≤i≤N n T	|∆Y τ n i | < +∞.
	EXAMPLE 2.1. Let T := {T n : n ≥ 0} satisfy (A S )-(A N ).
	1. Asian options : applying Corollary 2.2 (item ii) with ρ = 2 3 and taking ρ Y

  h.s. converges a.s. to T 0 Tr(H t d M t ): indeed, the difference is bounded by C 0 T 0 |H t -H ϕ(t) |dt and we conclude by an application of the dominated convergence theorem, invoking the continuity and boundedness of H and the convergence to 0 of the mesh size of T n (see Corollary 2.2). Thus, it remains to show that the stochastic integral w.r.t. dM t converges a.s. to 0. Owing to Corollary 2.1, it is enough to study the series of quadratic variations, i.e.

	to show that ∑ n≥0	T 0 ∆M * t (H ϕ(t) + H * ϕ(t) )d M t (H ϕ(t) + H * ϕ(t) )∆M t	3 a.s. -→ , and
	since α and H are a.s. bounded on [0, T ), it is sufficient to show
	(2.7)	n≥0 ∑	0	T	|∆M t | 2 dt	3 a.s.

  ∆S t ) • dS t , R n . T .Now, we wish an expression involving only the Brownian motion for ease of mathematical analysis: hence we replace ∆S t by σ ϕ(t) ∆B t and d S t by σ ϕ(t) σ *

								2 xx u ϕ(t) ∆S t + e n 1,T
	where						
	(3.8)					e n 1,T := R n	T + 2	0	.	(D 2 xx u ϕ(t) ϕ(t) dt,
	leading to					
		Z n	T =	0	T	∆B * t σ * ϕ(t) D 2 xx u ϕ(t) σ ϕ(t)	2	∆B t dt + e n 1,T + e n 2,T ,
	(3.9)	e n 2,T :=	0	T	∆S * t D 2 xx u ϕ(t) ∆(σ t σ * t )D 2 xx u ϕ(t) ∆S t dt

  ) n≥0 be an admissible sequence of strategies and let (H t ) 0≤t<T be a continuous adapted d × d-matrix process such that sup t∈[0,T ) |H t | < +∞ a.s. . Then for any p > ∆B t ∆B * t H ϕ(t) dB t | p converges almost surely.

	• Proof of ε n -2ρ N	3,T e n	a.s.
				2 3-2ρ N , the series
	∑ n≥0 |ε n -2ρ N t H ϕ(t) PROOF. Set α n T 0 ∆B * t := ∆B * t H ϕ(t) ∆B t ∆B * t H ϕ(t) and define the scalar continuous local
	martingale M n t := ε n -2ρ N	t 0 α n s dB s . In view of Corollary 2.1, it is enough to check
	that ( M n p/2 T ) n≥0 defines the terms of an a.s. convergent series. An application of
	Corollary 2.3-ii) with ρ

-→ 0. It is a direct consequence of the following lemma. LEMMA 3.3. Assume (A σ ). Let T = (T n

  s.. Proof of Theorem 3.2. We first check the admissibility of T µ , by applying Proposition 2.4. Indeed, owing to (A u ) and (A (Λ t ) 0≤t<T is a continuous adapted nonnegative-definite d × d-matrix process with sup 0≤t<T |Λ t | < +∞ a.s. . The same properties clearly hold for (Λ ≤ µ + sup 0≤t<T λ max (Λ t ) < +∞ a.s. . Therefore, T µ is admissible and in addition sup n≥0 ε 2 n N n T < +∞ a.s. . Hence, it allows to re-use the computations of the proof of Theorem 3.1 in the case ρ N = 1. Now let us show the µ-optimality. Writing N n T

	We are finished.
	3.3. Ellip. σ ), µ t ) 0≤t<T . In addition, λ min (Λ t ) ≥ µ/2 > 0 µ
	and sup 0≤t<T λ max (Λ

µ t )

  2 ≤ -α 2 2 + β 2 , we obtain, for t ∈ [t 0 (ω), T [ Observe that c(ω) > 0 implies that the above upper bound converges to 0 as t → T : thus, we have completed the proof of lim δ →0 sup 0≤t<T sup |x-S t |≤δ D 2 xx u(t, x) < +∞ a.s. . For the third derivative, similarly we obtain for t ∈ [t 0 (ω), T [ and δ ≤ δ 0 (ω) ∧ [2 -1 inf 0≤t≤T S t (ω)] and we conclude as for the second derivative. To derive the property for D 2 tx u, we use the relation D 2 tx u = -1 2 σ 2 x 2 D 3 xxx uσ 2 xD 2 xx u. Finally, (A u

	sup |x-S t |≤δ	|D 2 xx u(t, x)| ≤	2 σ S t 2π(T -t)	exp -	c 2 (ω) 4σ 2 (T -t)	+	1 8	σ 2 T .
	sup |x-S t |≤δ	|D 3 xxx u(t, x)| ≤	S 2 t	4(1 + σ √ 2πσ 2 (T -t) √ T )	exp -	c 2 (ω) 8σ 2 (T -t)	+	1 16	σ 2 T

with the usual convention inf / 0 = +∞.

According to[START_REF] Geiss | Fractional smoothness and applications in finance[END_REF], the fractional smoothness of g(S T ) is 1 2 ; thus, when N n T (ω) is deterministic, this choice of fractional mesh yields that E( Z n T ) is of order 1 w.r.t. the inverse of the number of times, instead of order[START_REF] Bertsimas | When is time continuous?[END_REF] 2 with the uniform mesh.
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Lookback option in Black-Scholes model. The payoff is of the form S Tm ∧ min 0≤t≤T S t or M ∨ max 0≤t≤T S t -S T for lookback call or put, (M ∨ max 0≤t≤T S t -K) + or (Km ∧ min 0≤t≤T S t ) + for call on maximum or on minimum, (S Tλ m ∧ min 0≤t≤T S t ) + (with λ > 1) or (λ M ∨ max 0≤t≤T S t -S T ) + (with λ < 1) for partial lookback call or put. In all these cases, Black-Scholes type formulas are available in closed forms [START_REF] Conze | Path dependent options: the case of lookback options[END_REF]. Then it is straightforward to check that (A u ) is satisfied and this is essentially based on the property that under the assumption of non-zero volatility, the joint law (S T , max 0≤t≤T S t , min 0≤t≤T S t ) has a density (derived from [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF]Exercise 3.15]), implying that the events on which the derivatives may blow up (such as {S T = min 0≤t≤T S t } . . . ) have zero probability.