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Abstract

Level set method seems to be one of the most suitable solution for simulation of two phase flow

systems. It can be implemented with different numerical methods (the commonly used one is Finite

Differences Method FDM). In this work we chose to use a Finite Elements Method (FEM) to have

more flexibility since it opens the way to high order discretization, irregular meshes and even high

order geometry to handle large deformations.

A model of vesicle using a level set method has already been developed in [1] where the mem-

brane of the vesicle is described only by adding a forcing term to the fluid equations. This model

has the advantage to be coupled easily with any fluid solver accepting a forcing term as input.

In this paper, we present a new implementation of this model using a finite element approach.

Firstly we show a validation of our two phase flow model on a well-known two phase flow system :

the rising of a bubble. Then we show that we are able to recover the known equilibrium shapes of

vesicles in a fluid at rest.

1 Introduction

Vesicles are systems of two fluids separated by a bi-layer membrane of phospholipids which has the

property to be inextensible. These objects are biomimetics in the sense that they reproduce some bi-

ological objects behaviors. Specifically, vesicles have a mechanical behavior close to the one of Red

Blood Cells (RBC) in a fluid flow. Indeed, it has been accepted for many years as a good model for

RBC and they have been studied experimentally, theoretically and numerically. Simulating vesicles is

very challenging in the sense that it combines fluid structure interaction and two phase flow systems.

Several methods have already been developed such as lattice Boltzmann methods [2], boundary integral

methods [3], or level set methods using FDM [1]. We propose in this paper a framework to simulate

vesicles using finite element approximations. In the first part of the paper, we present a validation of the

two phase flow solver. In the second part, we describe our model of vesicle and its validation using the

equilibrium shapes of vesicles in a fluid at rest.

2 Level set description

2.1 Description

Let’s define a bounded domain Ω ⊂ R
p (p = 2, 3) decomposed into two subdomains Ω1 and Ω2. We

denote Γ the interface between the two partitions. The goal of the level set method is to track implicitly

the interface Γ(t) moving at a velocity u. The level set method has been described in [4] and its main

ingredient is a continuous scalar function φ (the level set function) defined on the whole domain. This

1



function is chosen to be positive in Ω1, negative in Ω2 and zero on Γ. The motion of the interface is then

described by the advection of the level set function :

∂φ

∂t
+ u · ∇φ = 0. (1)

A convenient choice for φ is a signed distance function to the interface. This function is given by

equation (2) and we remark that |∇φ| = 1 eases the numerical solution of equation (1), it reads

φ(x) =







dist(x,Γ) x ∈ Ω1,

0 x ∈ Γ,
− dist(x,Γ) x ∈ Ω2,

(2)

where dist is the distance function : dist(x,Γ) = min
y∈Γ

|x− y|.

It’s known that the advection equation (1) does not conserve the property |∇φ| = 1. When |∇φ| is

far from 1 we use a fast marching method (FMM) which resets φ as a distance function without moving

the interface (see [5] for details about the fast marching method).

2.2 Interface related quantities

In two phase flow simulations, we need to define some quantities related to the interface such as the

density, the viscosity, or interface forces. To this end, we introduce the smoothed Heaviside and delta

functions :

Hǫ(φ) =



















0, φ ≤ −ǫ,

1

2

(

1 +
φ

ǫ
+

sin(πφ
ǫ
)

π

)

, −ǫ ≤ φ ≤ ǫ,

1, φ ≥ ǫ.

δǫ(φ) =















0, φ ≤ −ǫ,
1

2ǫ

(

1 + cos(
πφ

ǫ
)

)

, −ǫ ≤ φ ≤ ǫ,

0, φ ≥ ǫ.

where ǫ is a parameter defining a numerical thickness of the interface. A typical value of ǫ is 1.5h (h

being the mesh size).

We now easily define the density or the viscosity in the two domains using the Heaviside function.

It reads: ρ = ρ2 + (ρ1 − ρ2)Hǫ(φ) and similarly for the viscosity. The delta function is used to define

quantities on the interface and we replace integrals over the interface by integrals over the entire domain

using the smoothed delta function. If φ is a signed distance function, we have that :

∫

Γ

1 =

∫

Ω

δ ≃

∫

Ω

δǫ(φ). (3)

If φ is not close enough to a distance function, then
∫

Γ
1 ≃

∫

Ω
|∇φ|δǫ(φ) which still tends to the

delta function as ǫ vanishes. However, if φ is not a distance function, the support of δǫ can have a

different size on each side of the interface. More precisely, the support of δǫ is narrowed on the side

where |∇φ| > 1 and enlarged on regions where |∇φ| < 1. It has been shown in [6] that replacing φ by

ψ = φ
|∇φ| has the property that |∇ψ| ≃ 1 near the interface and has the same iso-value 0 as φ. Thus,

replacing φ by ψ in the delta function do not move the interface. Moreover the spread interface has the

same size on each part of the level-set φ = 0. It reads

∫

Γ

1 ≃

∫

Ω

δǫ(ψ) =

∫

Ω

δǫ(
φ

|∇φ|
).



2.3 Numerical implementation and coupling with the fluid solver

We use the finite element C++ library Feel++ [7, 8] to discretize and solve the problem. Equation (1)

is solved using a stabilized finite element method. We have several stabilization methods at our disposal

such as StreamLine Upwind Diffusion (SUPG), Galerkin Least Square (GLS) and Subgrid Scale (SGS).

A general review of these methods is available in [9]. Other available methods include the Continuous

Interior Penalty method (CIP) described in [10]. As to the Navier-Stokes solver, it is described in [11].

The coupling algorithm is presented in Algorithm 1

Algorithm 1 Level set - Navier Stokes Coupling

while time < final time do

Calculate ρ(φn−1), µ(φn−1), and F (φn−1)
Solve Navier Stokes equation to get un

Advect level set function with un to obtain φn

end while

3 Validation of two phase flow solver

We now turn to the validation of our framework using the benchmark [12].

3.1 Benchmark problem

The benchmark objective is to simulate the rise of a 2D bubble in a newtonian fluid. The equations

solved are the incompressible Navier Stokes equations for the fluid and the advection for the level set:

ρ(φ(x))

(

∂u

∂t
+ u · ∇u

)

+∇p−∇ ·
(

µ(φ(x))(∇u+ (∇u)T )
)

= ρ(φ(x))g, (4)

∇ · u = 0, (5)

∂φ

∂t
+ u · ∇φ = 0, (6)

where ρ is the density of the fluid, µ its viscosity, and g ≈ (0, 0.98)T is the gravity acceleration.

The computational domain is Ω×]0, T ] where Ω = (0, 1) × (0, 2) and T = 3. We denote Ω1 the

domain outside the bubble Ω1 = {x|φ(x) > 0}, Ω2 the domain inside the bubble Ω2 = {x|φ(x) < 0}
and Γ the interface Γ = {x|φ(x) = 0}. On the lateral walls, slip boundary conditions are imposed, i.e.

u · n = 0 and t · (∇u + (∇u)T ) · n = 0 where n is the unit normal to the interface and t the unit

tangent. No slip boundary conditions are imposed on the horizontal walls i.e. u = 0. The initial bubble

is circular with a radius r0 = 0.25 and centered on the point (0.5, 0.5). A surface tension force fst is

applied on Γ, it reads using equation (3):

fst =

∫

Γ

σκn ≃

∫

Ω

σκnδǫ(φ), (7)

where σ stands for the surface tension between the two fluids, n the unit vector normal to the interface

defined as n = ∇φ
|∇φ| and κ = ∇ · ( ∇φ

|∇φ|) is the curvature of the interface.

We denote with indices 1 and 2 the quantities relative to the fluid in domain respectively Ω1 and

Ω2. The parameters of the benchmark are ρ1, ρ2, µ1, µ2 and σ. We define two dimensionless numbers:

firstly, the Reynolds number which is the ratio between inertial and viscous terms and is defined as :

Re =
ρ1
√

|g|(2r0)3

µ1
; secondly, the Eötvös number represents the ratio between the gravity force and

the surface tension E0 =
4ρ1|g|r

2
0

σ
. The table 1 reports the values of the parameters used for two

different test cases proposed in [12].



Tests ρ1 ρ2 µ1 µ2 σ Re E0

Test 1 (ellipsoidal bubble) 1000 100 10 1 24.5 35 10

Test 2 (skirted bubble) 1000 1 10 0.1 1.96 35 125

Table 1: Numerical parameters taken for the benchmarks.

The quantities measured in [12] are Xc the center of mass of the bubble, Uc its velocity and the cir-

cularity defined as the ratio between the perimeter of a circle which has the same area and the perimeter

of the bubble which reads c =
2(π

∫

Ω2
1)

1

2

∫

Γ
1

.

3.2 Results

In the first test case, the bubble reaches a stationary circularity and its topology does not change. The

velocity increases until it attains a maximum then decreases to a constant value. Figure 1 shows the

results obtained with different mesh sizes. Table 2 shows a comparison of our results with those of

[12]. We monitor cmin the minimum of the circularity, tcmin
the time to attain this minimum, ucmax

the

maximum velocity, tucmax
the time to reach it, and yc(t = 3) the position of the bubble at final time

(t = 3).

(a) Shape of ellipsoidal bubble at final time (t = 3). (b) yc vertical position of the ellipsoidal bubble.

(c) Vertical velocity of the ellipsoidal bubble. (d) Circularity of the ellipsoidal bubble.

Figure 1: Results for the ellipsoidal bubble

In the second test case, the bubble gets more deformed because of the lower surface tension. Some

filaments (skirts) appear at the bottom. The velocity attains two local maxima. Figure 2 displays these



cmin tcmin
ucmax

tucmax
yc(t = 3)

lower bound 0.9011 1.8750 0.2417 0.9213 1.0799

upper bound 0.9013 1.9041 0.2421 0.9313 1.0817

h=0.00625 0.9001 1.9 0.2412 0.9248 1.0815

h=0.0075 0.9001 1.9 0.2412 0.9251 1.0812

h=0.00875 0.89998 1.9 0.2410 0.9259 1.0814

h=0.01 0.8999 1.9 0.2410 0.9252 1.0812

h=0.02 0.8981 1.925 0.2400 0.9280 1.0787

Table 2: Results comparison between benchmarks values (lower and upper bounds) and ours for ellip-

soidal bubble.

results. Table 3 shows the comparison with the benchmark results. We monitor the same quantities as in

the previous test case except that we add the second maximum velocity ucmax2
, and the time to reach it

tucmax2

.

(a) Shape of squirted bubble at final time (t = 3). (b) yc vertical position of the skirted bubble.

(c) Vertical velocity of the skirted bubble. (d) Circularity of the skirted bubble.

Figure 2: Results for the skirted bubble.



cmin tcmin
ucmax1

tucmax1

ucmax2
tucmax2

yc(t = 3)

lower bound 0.4647 2.4004 0.2502 0.7281 0.2393 1.9844 1.1249

upper bound 0.5869 3.0000 0.2524 0.7332 0.2440 2.0705 1.1380

h=0.00625 0.4616 2.995 0.2496 0.7574 0.2341 1.8828 1.1186

h=0.0075 0.4646 2.995 0.2495 0.7574 0.2333 1.8739 1.1111

h=0.00875 0.4629 2.995 0.2494 0.7565 0.2324 1.8622 1.1047

h=0.01 0.4642 2.995 0.2493 0.7559 0.2315 1.8522 1.1012

h=0.02 0.4744 2.995 0.2464 0.7529 0.2207 1.8319 1.0810

Table 3: Results comparison between benchmarks values (lower and upper bounds) and ours for skirted

bubble

4 Vesicle dynamics simulation

4.1 Model

The model usually admitted for vesicle membrane assumes three properties : (i) the membrane has a

bending energy Eb, called the Canham, Helfrich energy [13, 14], (ii) the inner fluid is incompressible,

so the total surface of the vesicle is conserved and finally (iii) the membrane is quasi inexentensible, so

the local perimeter is conserved over the time.

4.1.1 The bending energy

The bending energy can be written in 2D as follows:

Eb =

∫

Γ

kB

2
κ2 (8)

where kB is the bending modulus (a typical value for phospholipidic membrane is kB ≈ 10−19 J). A

derivation of this energy gives a bending force, its expression is given in [15] and reads :

F ∗

b =

∫

Γ

kB

2

[

κ3

2
+ t · ∇(t · ∇κ)

]

n, (9)

(note that equation (9) has the opposite sign that the one in [15] because our definition of the curvature

has an opposite sign). A more general equation has been proposed in [1] using the virtual power method

:
dEb

dt
= −

∫

Ω
Fb · u. The derivation of the force and the link between this expression and the equation

(9) are detailed in [1], one obtains in 2D :

Fb =

∫

Ω

kB∇ ·

[

−κ2

2
n+

1

|∇φ|
(t · ∇{|∇φ|κ}) t

]

δǫn. (10)

4.1.2 Membrane inextensibility

In many models, the local area of the vesicle is conserved by adding a Lagrange multiplier which ensures

the membrane inextensibility as in [15, 16, 17]. In [6], the authors show the possibility to get the quasi

inextensibility of the membrane by adding an elastic force using the derivative of an elastic energy.

They show that the stretching of the interface is recorded in the gradient modulus of φ. Indeed, under

the assumption that the flow is incompressible, one can write a constitutive law of the stretching related

to |∇φ|. The elastic energy reads :

Eel =

∫

Ω

E(|∇φ|)δǫ,



with E(|∇φ|) a constitutive law of the membrane such that E(1) = 0 (no initial stretching). A simple

definition of E′(∇φ) (the derivative of E) can be used as a linear law : E′(|∇φ|) = Λ(|∇φ|−1). In our

case, we takeE′(|∇φ|) = Λmax((|∇φ|−1), 0) which ensures that there is no force when the stretching

is not positive. By differentiating the energy, it has been shown in [6] that one can write the elastic force

as :

Fel =

∫

Ω

{∇E′(|∇φ|)−∇ · [E′(|∇φ|)n]n} δǫ. (11)

One can see that choosing to add a force to maintain incompressibility has some advantages. For

example, we can add complexity to the model such as changing the constitutive law of E′ (e.g. a more

rigid part which could take into account the cytoskeleton of a red blood cell) or add a new force like a

surface tension force.

The main drawback is that in general, this technique leads to a larger variation of the surface area

than the ones using Lagrange multipliers. Note also that in this model, we need to keep the information

of ∇φ so that to avoid reinitialization which resets |∇φ| = 1 and forgets the stretching information. The

conservation of the total surface of the vesicle is better than the conservation of the local perimeter since

it is enforced by the incompressibility of the fluid. Finally, we just have to add forcing terms Fb and Fel

to equation (4) to simulate the presence of the membrane.

4.2 Dimensionless equations

To scale the different parameters of the simulation we use dimensionless numbers. One can easily write

the Navier-Stokes equations with forcing terms Fb and Fel using dimensionless numbers as (see [1] for

details) :

Reρ∗(
∂u∗

∂t∗
+ u∗ · ∇∗u∗)−∇∗ · (η∗D(u∗)) +∇∗p∗

=

{

1

We

[

∇∗E′∗ −∇∗ · [E′∗n]n
]

+
1

Ck

∇∗ ·

[

−κ∗2

2
n+

1

|∇∗φ∗|
(t · ∇∗{|∇∗φ∗|κ∗}) t

]}

δǫ,

where the quantities denoted with a star are dimensionless quantities using references parameters : x =

Lx∗, u = Uu∗, η = ηrefη
∗ and ρ = ρrefρ

∗. The Reynolds number is given by Re =
ρrefLU

ηref
. The two

other dimensionless numbers are Ck =
ηrefUL

2

k
the capillary number, and the Weissenberg number

We =
ηrefU

Λ
.

4.3 Equilibrium shape

The first known behavior on which we can validate our code is the shape that takes a vesicle in a fluid

at rest. Indeed, the vesicle takes the shape which minimizes its Helfrich energy (8). Since there is

no characteristic velocity imposed, we take a dimensionless number which takes into account the ratio

between the curvature force and the elastic force Rf =
Ck

We

=
L2Λ

k
where we take as reference length

L the radius of a circle having the same perimeter than the vesicle. We then fix this parameter to 5 · 104.

The other parameter is the reduced volume α, which measures how much the vesicle is deflated. It is

defined as the ratio between the area of the vesicle and the area of a disk having the same perimeter than

the vesicle : α =
4πA

P 2
. Vesicles are initialized as ellipses having the same perimeter, only their surface

changes to decrease α. The vesicle being out of equilibrium starts to move and induce a fluid flow

around it. Figure 3 shows our results for different reduced volume. Obviously for α = 1 the equilibrium

shape of the vesicle is a sphere (circle in 2D). It is interesting to see that for a reduced volume lower than

0.5, the vesicle takes a biconcave shape which is also typical for red blood cells. The loss of perimeter

is of the order of few percents which is higher than the one obtained using a Lagrange multiplier method



to enforce perimeter conservation. The loss of surface is lower that one percent since it is enforced by

the divergence-free velocity of the fluid.

Figure 3: Equilibrium shapes of vesicles for different reduce volumes.

5 Conclusion

We have shown that we have validated our framework using finite element approximations of two phase

flow simulations. We also presented the first results obtained on vesicle simulation which proves that we

are able to capture the basic behavior of these objects. In a near future, further tests on basic behavior

is expected such as the tumbling motion and the migration of a vesicle in a Poiseuille flow. Another

interesting improvement will be to add many vesicles in the same simulation to mimic more realistic

biological flows.
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