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Abstract

In this article we propose an arbitrary order Arbitrary Lagrangian Eulerian framework with optimal accuracy and
efficiency. The construction is done in two steps, the first one follows the standard construction while the second step
builds a high order correction with the solution of a local differential operator, enabling any types of displacements
as well as domains shape. Finally we verify on a 3D example that we recover the expected accuracy for first to fourth
order geometries.
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1. Introduction

In the context of evolutionary partial differential equations defined in a domain that changes shape over time, the
Arbitrary Lagrangian Eulerian (ALE) framework is a well known coordinate system. It allows to keep track of the
domain’s deformation through a transformation, called the ALE map. In this note, we address the construction of such
transformation using polynomials of arbitrary degree. In the literature, the reader can find several possible choices to
define this transformation in a discrete fashion. Since in most cases we are interested in solving a partial differential
equation using a discretization method (finite/spectral element method, for instance), the ALE map that is needed in
these calculations is defined in a mesh and is usually a piecewise polynomial belonging to the same approximation
space used in the discretization of the PDE. The most common strategy, under the assumption of small displacements,
is the use of a harmonic extension operator or a modified version of it, both in the context of piecewise linear finite
elements, see Nobile [1], Richter and Wick [2] and Murea and Sy [3], as in their higher order counterpart, see Ho
and Rønquist [4]. Another alternative, using arbitrary degree polynomials, suggests the use of a Stokes operator,
see Bouffanais [5], to define the so called the mesh velocity, and after a time integration procedure, obtain the ALE
transformation. This approach has the advantage of defining a divergence free mesh velocity.

Recently, in [6], the authors proposed an arbitrary degree transformation, based on the harmonic extension operator
and Gordon-Hall transformations, that has optimal approximation properties with respect to geometry while retaining
a low computational cost. However, this methodology is not easily generalized to arbitrary geometrical elements, nor
to tridimensional domains.

In the following, we detail the construction of a ALE map, based on the ideas of [6], avoiding the troublesome
(implementation-wise) use of Gordon-Hall transformations. The construction of the map is still done in two steps but
the second step — formerly the Gordon-Hall transformation — is replaced by a correction built with the solution of
a local differential operator, enabling more generality for the type of displacements used, as well as the shape of the
handled domains.

2. Notations and preliminaries

Given a elementary simplex domain K∗ ⊂ Rd, d = 1, 2, 3, and a positive integer N, let us denote by PN(K∗) the
space of polynomials of total degree less of equal than N, defined in K∗. We fix a reference element, K̂, and consider
a transformation ϕK∗ : K̂ −→ K∗, called the geometrical transformation.
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We consider now two domains, Ω∗ and Ω ⊂ Rd, d = 1, 2, 3, which we later refer as the reference and the
computational domains respectively. We further assume that the reference domain has a straight edge/face mesh
associated with it, T ∗, ie, ϕK∗ ∈ P1(K̂),∀K∗ ∈ T ∗. Furthermore we admit that the mesh T ∗ covers exactly the
domain Ω∗, i.e., Ω∗ =

⋃
K∗∈T ∗ K∗. We denote PN

c,h(Ω∗), PN
c,h(Ω∗) the spaces of piecewise scalar, respectively vectorial,

polynomial of total degree N continuous functions in Ω∗ and PN
td,h(Ω∗) the space of piecewise polynomial of total

degree N totally discontinuous functions in Ω∗. Let us denote by η : ∂Ω∗ −→ ∂Ω a displacement function. Through η,
we classify three subsets of the boundary: (i) Γ∗M , the portion of the boundary that moves according to the displacement
η, (ii) Γ∗F , the portion of the boundary that stays fixed (ie, η(s) = s,∀s ∈ Γ∗F) and (iii) Γ∗N , the part of the boundary on
which we do not prescribe a displacement, and let the differential operator determine the ALE map freely. The image
of each subset, Γ∗M , Γ∗F and Γ∗N by η is denoted by ΓM ,ΓF and ΓN , respectively. These three sets do not overlap and
they verify ∂Ω∗ = Γ∗M ∪ Γ∗F ∪ Γ∗N . To ease the notations, we define ∂Ω∗η = Γ∗M ∪ Γ∗F and ∂Ωη = η(∂Ω∗η). We introduce
now the homeomorphism g : ∂Ω∗η 7→ ∂Ωη associated to η such that

g(x∗) = x∗ + η(x∗), ∀x∗ ∈ ∂Ω∗η. (1)

The ALE transformation between the reference and the computational domains is a homeomorphism A : Ω∗ 7→ Ω

such that

A |∂Ω∗η
= g, A(Ω∗) = Ω. (2)

3. Construction of the map

We will now assume we are given η ∈ PN
c,h(∂Ω∗η). Our goal in this section is to construct a discrete approximation

AN ∈ PN
c,h(Ω∗) ofA that verifies (2). The construction is in two steps.

The first step is to perform a modified harmonic extension (according to Masud and Kanchi [7]) of the displace-
ment η to the interior of Ω∗ using piecewise linear polynomial functions. The corresponding ALE transformation,A1,
satisfies ∫

Ω∗
(1 + τ)∇A1 : ∇z dx = 0,∀z ∈ P1

c,h(Ω∗) and A1 = η, on ∂Ω∗η (3)

where τ ∈ P0
td,h(Ω∗) is defined as follows

τ|K∗ =
1 − Vmin

Vmax

VK∗

Vmax

, ∀K∗ ∈ T ∗.

and Vmin and Vmax are the minimum and maximum volumes of the elements in T ∗ and VK∗ is the volume of the element
K∗. This step is standard in the finite element community regarding the construction of the ALE map.

The second step however is new and is a correction performed in each element K∗ whose boundary intersects Γ∗M
in order to build an order N approximation. Denote T ∗,b = {K∗ ∈ T ∗ : ∂K∗ ∩ Γ∗M , ∅} the set of elements K∗ sharing
a face with the boundary of Ω∗, in each element K∗ ∈ T ∗ we look forAN

K∗ ∈ [PN(K∗)]d
∫

K∗
(1 + τ)∇AN

K∗ : ∇z dx = 0, ∀z ∈ [PN(K∗)]d

AN
K∗ (x∗) = η(x∗) + x∗ −A1(x∗), ∀x∗ ∈ ∂K∗ ∩ Γ∗M
AN

K∗ = 0, elsewhere on ∂K∗.

(4)

The final ALE map,AN is obtained by adding toA1 the correctionAN
K∗ on each of the elements it concerns

AN(x∗) = A1(x∗) +
∑

K∗∈T ∗,b
AN

K∗ (x
∗) + x∗ (5)

In order to illustrate the different steps of this construction, we display in Figure 1 the high order mesh construction
at each different stages using the following displacement defined at the top and bottom of a rectangular reference
domain ηrect(x∗) = 0.2 exp( x∗

5 ) sin
(
πx∗
2.5

)
n∗ where n∗ denotes the unit outward normal of the respective reference

domains.
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(a) Reference mesh (b) effect of the modified harmonic
extension

(c) High order correction

Figure 1: Steps to compute the ale map

Proposition 1 (Properties of AN). Under the previous assumptions and by construction, AN ∈ PN
c,h(T ∗,b) — en-

joys optimal approximation properties i.e. the boundary approximation is O
(
hN+1

)
in the L2-norm — and AN ∈

P1
c,h(T ∗\T ∗,b).

We discuss now the ALE map construction and proposition 1. First it is clear that the ALE map described previ-
ously and the triangulation T ∗ induce a triangulation in Ω, T . We highlight also that the construction presented in this
paper does not depend on the shape of the elements that the reference triangulation is made of, nor their topological
dimension. This has a major impact in the easiness of implementation of this ALE map which can be performed in a
wide range of codes.

Another point we would like to stress out is that the operator used to generate the first order ALE map does
not have to be the harmonic extension and the whole construction is independent of the choice of the map. In fact,
for the overall construction, we are only interested in having a first order ALE map and any other approach can be
plugged in. Since in the case of small displacements the modified Laplace equation provides acceptable results, we
chose this operator for the presentation in the paper. However, in the more general setting, it fails to provide a usable
triangulation T and other ways of generating the first order ALE map have been considered and used successfully
such as the Winslow smoother [8].

Proposition 1 has two important consequences concerning the elements of T : the only elements of T that have
curved edges/faces are located in the boundary of the domain and all the other elements in the triangulation have
straight edges/faces. In the framework of Galerkin methods with numerical integration, this feature of the triangulation
can provide considerable time savings in the assembly of linear and bilinear forms when compared to a triangulation
where all the elements have curved edges/faces. Notice also that the first order ALE map can be computed cheaply and
the correction to produce a high order approximation of the domain’s boundary is an operation performed elementwise
in a small set of elements (compared with the number of elements in T .)

4. Numerical Experiments

We present now some numerical experiments to verify proposition 1. In order to conduct these experiments we
use (i) Gmsh[9] in order to build the initial high order meshes in 2D and 3D and visualize the meshes computed by our
methods and (ii) Feel++[10] which provides the framework for arbitrary order Galerkin methods to solve the partial
differential equations and handle the computational meshes. Note that the mesh T ∗ used to solve equation (3) is built
automatically from the initial high order mesh.

As an example of application, we consider the reference domain depicted in figure 2(a) of length 5 and radius
0.5 and the associated displacements at the boundary of each domain ηcy(x∗) = 0.2 exp( x∗

5 ) sin
(
πx∗
2.5

)
n∗. Figures 2(b)

display the computational domain colored by the corresponding ALE maps.
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(a) Cylinder, Ω∗,cy (b) Cylinder, Ωcy = A4(Ω∗,cy)

Figure 2: References meshes (top) and Computational meshes (bottom) of order 4 displayed Gmsh colored by the displacement 2-norm

Finally Figure 3(a) displays the convergence rate of the quantity ‖AN (x∗)−
(
x∗ + η(x∗)

)
‖[L2(Γ∗M)]d which confirms

the results of Proposition 1. Figure 3(b) represents the convergence rate with respect to geometric order N.
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Figure 3: Convergence rate plots ofAN,cy (top) and Convergence rate plots ofAN,cy with respect to N (bottom).
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