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S U M M A R Y
We employ basic non-equilibrium thermodynamics to propose a general equation for the mean
grain size evolution in a deforming medium, under the assumption that the whole grain size
distribution remains self-similar. We show that the grain size reduction is controlled by the rate
of mechanical dissipation in agreement with recent findings. Our formalism is self consistent
with mass and energy conservation laws and allows a mixed rheology. As an example, we
consider the case where the grain size distribution is lognormal, as is often experimentally
observed. This distribution can be used to compute both the kinetics of diffusion between grains
and of dynamic recrystallization. The experimentally deduced kinetics of grain size coarsening
indicates that large grains grow faster than what is assumed in classical normal grain growth
theory. We discuss the implications of this model for a mineral that can be deformed under both
dislocation creep and grain size sensitive diffusion creep using experimental data of olivine.
Our predictions of the piezometric equilibrium in the dislocation-creep regime are in very
good agreement with the observations for this major mantle-forming mineral. We show that
grain size reduction occurs even when the average grain size is in diffusion creep, because the
largest grains of the grain size distribution can still undergo recrystallization. The resulting
rheology that we predict for olivine is time-dependent and more non-linear than in dislocation
creep. As the deformation rate remains an increasing function of the deviatoric stress, this
rheology is not localizing.

Key words: Plasticity, diffusion and creep; Creep and deformation; Fault zone rheology;
Dynamics of lithosphere and mantle; High strain deformation zones; Rheology, crust and
lithosphere.

1 I N T RO D U C T I O N

The localization of deformation in narrow shear bands is necessary
for plate tectonics to occur (see e.g. Bercovici et al. 2000). Weak
faults can be formed during deformation but their weakness can
persist even after a reorganization of the large scale stress pattern
(e.g. Gurnis et al. 2000). This indicates that the rheology is not only
controlled by the instantaneous stress field but has memory and
healing.

Localization occurs by a feed-back between the rheological law
and the deformation wherein a faster deformation can be obtained
with a lower stress. In simple shear experiments, this happens when
the derivative of deviatoric stress τ with respect to strain-rate ε̇ is
negative (Bercovici 1993; Montési & Zuber 2002). The fact that the
rheology of silicates is often expressed by a non-linear expression
with ε ∝ τ n and n ≥ 1 (Ranalli 1995) does not lead to strike slip
localization as τ remains a monotonically increasing function of ε̇

(Bercovici 1995). Non-linear rheologies with large positive expo-
nents tend, however, to narrow the zones of deformation (Weinstein
& Olson 1992; Landuyt & Bercovici 2009).

Shear heating has often been proposed as a source of localiza-
tion that provides some long term memory to the rheology (the
thermal diffusion time) (Fleitout & Froidevaux 1980; Leloup et al.
1999; Kameyama et al. 1997). Unfortunately, although shear heat-
ing is necessarily associated with localization, it does not seem to
explain either the narrowness of plate boundaries, or their geome-
tries (e.g. Bercovici & Karato 2003). A local increase of poros-
ity/microcraks occurring during deformation has also been invoked
for localizing the deformation (Bercovici 1998; Ogawa 2003) but
this process is not efficient in 3-D simulations at generating toroidal
motions, for example, shearing between plates and plate rotations
(Bercovici & Ricard 2005). Anisotropic mechanical behaviour due
to an inherited preferred orientation of crystals could also con-
trol or favour the localization (e.g. Bystricky et al. 2000; Tommasi
et al. 2009). Once the localization is effective, minor mineralogical
phases like serpentine can also lubricate the motion (Hilairet et al.
2007).

Grain size reduction seems the most attractive physical process
for explaining the initial localization of the deformation. Cataclastic
fracturing and recrystallization are well known mechanisms of grain
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size reduction and the ductile deformation in the diffusive regime
is facilitated in the presence of small grains (Kelemen & Hirth
2007). However, models of localization by grain size reduction are
not self-consistent. Recrystallization is observed in the dislocation
regime (i.e. when the microscopic deformation proceeds by coherent
motion of crystal dislocations rather than by the individual diffusion
of atoms and vacancies). Grain size reduction and localization by
grain size sensitive rheology occur therefore in somewhat exclusive
regimes (Karato et al. 1980; Derby & Ashby 1987). Various models
have however discussed the possible interactions between large scale
deformation and grain size evolution (Kameyama et al. 1997; Braun
et al. 1999; Montési & Hirth 2003; Bercovici & Ricard 2005).

Up to now, most attempts to model the evolution of grain sizes
have been derived from phenomenologic laws involving only a mean
grain size. A few attempts have been made to describe in a very
general way the evolution of an assemblage of grains under defor-
mation (e.g. Slotemaker 2006; Ricard & Bercovici 2009). In these
approaches, one has to consider the complete distribution of grains
ν(R, X, t) (which is the number of grains per unit volume near the
position X and at time t, having a size between R and R + dR).
Although a general and physically consistent theory has been pro-
posed (Ricard & Bercovici 2009), the mathematical formalism re-
mains cumbersome and a general implementation in a 3-D and time
dependent geodynamic simulation seems implausible.

The approach followed by Ricard & Bercovici (2009) shows
that the grain size reduction cannot be related to the stress or to
the strain-rate tensor, alone, but necessarily to their scalar product
τ : ε̇ (where τ : ε̇ = �i jτi j ε̇i j ). This result is based on the second
law of thermodynamics that requires the positivity of the entropy
sources. This theoretical requirement already used in Bercovici &
Ricard (2005), has been confirmed empirically by Austin & Evans
(2007) that concluded that the grain size is a ‘paleowattmeter’ (i.e. a
measure of the rate of dissipation) rather than a ‘paleo piezometer’
(i.e. a measure of the deviatoric stress).

At a microscopic level and laboratory scale there are a large num-
ber of observations regarding the evolution of silicate rheology with
grain size, pressure, temperature and stress (but also, water content,
oxygen fugacity, porosity. . .). At the same time, models of mantle
convection simulate the existence of plates with ad hoc rheologies
(Tackley 2000; Stein et al. 2004). Up to now, these models are not
based on experiments but often assume that the lithosphere has a
linear viscosity with a plasticity threshold. The goal of this paper is
to provide a theory based on laboratory experiments that could be
used in large scale geodynamic modelling.

2 E V O LU T I O N O F G R A I N S I Z E
D I S T R I B U T I O N

Within a volume of material, there is a continuous distribution of
grain sizes, ν(R, X, t), so that the number of grains dn with sizes
between R and R + dR, per unit volume dV , at position X and
time t is

dn(R, X, t) = ν(R, X, t) dR dV . (1)

The distribution ν has units of m−4. From this distribution, average
quantities like the mean grain size can be computed. The equations
for grain size evolution that have been proposed are empirical and
consider the mean grain size only. Here, we also derive an equa-
tion for the mean grain size but from theoretical thermodynamic
considerations, starting explicitly from the existence of the grain
size distribution.

The grain size distribution evolves through two different pro-
cesses. First, mass transfer between grains can occur continuously
through grain boundary migration or diffusion. This involves a
change in the number of grains dn in the bin of size R (i.e. a
change in the number of grains of sizes between R and R + dR)
by coarsening of smaller grains (or continuous reduction of larger
grains). This can be described by introducing the rate of movement
of the grain in size space Ṙ = ∂R(X, t)/∂t (Lifshitz & Slyozov
1961). Mathematically, this process occurs at constant total number
of grains per unit volume (experimentally, smallest grains shrink
below observability). Second, the number of grains of a given size
can be populated by a discontinuous transfer from remote popu-
lation bins. For example, large grains can be subdivided by the
formation of sub-grain boundaries that nucleate new small grains
(Hobbs 1968), or can be broken by cataclasis. We call �(R) the rate
at which grains are added to or removed from the bin of size R by
discontinuous process. This discontinuous process changes the total
number of grains per unit volume. The balance of grain population
implies a continuity equation for the grain size distribution itself
(Hillert 1965; Atkinson 1988; Ricard & Bercovici 2009)

∂ν

∂t
+ ∂Ṙν

∂R = �, (2)

where t is time. For simplicity we omit the space variable X and the
advection term ∇ (vν) where v(X, t) is the macroscopic velocity of
the grained medium (Ricard & Bercovici 2009).

Most attempts of modelling grain coarsening or damage have
assumed that the whole grain size distribution can be obtained by the
knowledge of its mean grain size (cf. De Bresser et al. 2001; Ricard
& Bercovici 2009). Representing the whole grain size distribution
by only a single size scale (e.g. some average) means mathematically
that the distribution is self-similar, that is,

ν(R, t) = A(R0)H (u), (3)

where R0 is some average grain size function of t that will be
defined later, u = R/R0 is the self-similarity variable and A is
an amplitude. This self-similarity assumption is supported exper-
imentally (e.g. Slotemaker 2006) although exceptions exist such
as abnormal grain growth (Hillert 1965). Self-similarity has also a
mathematical justification. If one solves the eq. (2) starting from
any arbitrary distribution and for quite general assumptions for Ṙ
or �, the distribution evolves toward a self-similar solution like (3),
after sufficiently long time. This mathematical result has been used
in various classical studies of grain coarsening (Lifshitz & Slyozov
1961; Wagner 1961; Hillert 1965), grain fragmentation or aggre-
gation (Collet 2004) and is valid under more general assumptions
(Ricard & Bercovici 2009). Our basic start is therefore that although
the self-similarity may not be strictly valid, the system remains close
enough to a self-similar state than a mean size theory remains use-
ful and is a reasonable compromise between the complexity of a
general grain size distribution theory and what can be constrained
by the available observations. Future observations of time evolution
of grain size variance, skewness and other higher moments of the
grain size distribution will be needed to adjust the parameters of a
more general theory.

The mass conservation equation, assuming a constant density of
grains, implies that the unit volume is just the sum of the volumes
of grains, which leads to the normalization

∫ ∞

0
v̆ν(R) dR = 1, (4)
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A general equation for grainsize evolution 721

where

v̆ = 4

3
πR3 (5)

is the grain volume. The notations follow Ricard & Bercovici (2009)
and the breve accent (e.g. ˘ ) represents variables at the grain size
level. The grains are assumed to be spherical, but more complex
shapes could be handled easily by replacing π by a comparable fac-
tor accounting for polyhedral grain shapes (see Ricard & Bercovici
2009). In the normalization (4), we omit the space and time variables
and we integrate the distribution over all grain sizes, potentially from
R = 0 to R = +∞ (we assume that H is zero after some finite
value or is well-behaved enough that all the integrals containing H
converge at u = +∞).

Using the self similar expression (3), this normalization condition
implies

A(R0) = 3

4πλ3

1

R4
0

(6)

where we define, as in Ricard & Bercovici (2009),

λn =
∫ ∞

0
un H (u)du. (7)

The amplitude A(R0) is therefore related to the grain size distribu-
tion H .

3 AV E R A G E G R A I N C OA R S E N I N G A N D
DA M A G E

The rules of differentiation applied to distribution (3) taking into
account the time dependence of the amplitude (6) lead to

∂ν

∂t
= − 3

4πλ3

1

R5
0

dR0

dt

1

u3

∂u4 H

∂u
. (8)

This proves that ∂ν/∂t is also a self similar function as it can be
written as a function of R0 times a function of u. As ∂ν/∂t appears
in the evolution eq. (2), ∂Ṙν/∂R (and therefore Ṙ) and � must
also be self similar (or have non self similar contributions that
cancel each other and are irrelevant to the grain size evolution).
� is therefore the product of a time-dependent (or R0-dependent)
amplitude C(R0) times a shape functions of u = R/R0 such that

� = 3

4πλ3R5
0

C(R0)
1

u3

∂u4 H

∂u
, (9)

(the coefficient 3/(4πλ3R5
0) is included for subsequent simplifica-

tion). Similarly, given (2) and (8), Ṙ can be written as

Ṙ = B(R0)
1

H

(
b +

∫ u

0

1

v3

∂v4 H

∂v
dv

)

= B(R0)

(
b

H
+ u + 3

H

∫ u

0
Hdv

)
(10)

and where B(R0) is an amplitude factor. The integration constant
b can be obtained from the condition of mass conservation (see
Ricard & Bercovici 2009)∫ ∞

0
v̆�(R)dR = 0 and

∫ ∞

0

dv̆
dt

ν(R)dR = 0, (11)

where v̆ is the volume of a grain (5). This assumes that mass is con-
served either during the fusion or fission of grains (first equality) or
during continuous mass transfer between grains (second equality).

According to (3), (9) and (15), these two equations become∫ ∞

0

du4 H

du
du = 0 and

∫ ∞

0
u2(b + u H + 3

∫ u

0
H dv)du = 0.

(12)

The first condition is already verified provided that u4 H is zero for
u = 0 and u = +∞. Then, by using an integration by parts,∫ X

0

(
3u2

∫ u

0
Hdv

)
du =

[
u3

∫
H du

]X

0

−
∫ X

0
u3 H du (13)

in the limit of X → + ∞, we therefore prove that mass conservation
implies

b = −3
∫ +∞

0
H du. (14)

which allows us to write

Ṙ = B(R0)

(
u − 3

H

∫ +∞

u
Hdv

)
. (15)

As the u-shapes of � and Ṙ are derived from (2), which is itself
another expression of the condition of mass conservation, it is not
surprising that mass conservation is naturally satisfied.

When the self similar expressions (9) and (15) are introduced
back into (2), the shape function can be eliminated and only a
differential equation for the average size R0 remains

dR0

dt
= B(R0) − C(R0). (16)

Up to now the signs of B(R0) and C(R0) are not known. The goal
is therefore to constrain these quantities which control the kinetics
of continuous and discontinuous grain processes, respectively from
observations guided by the necessary condition of positivity of
entropy production.

4 E N E RG Y C O N S I D E R AT I O N S

During deformation, part of the input energy is simply dissipated
(entropy) and part is stored reversibly (work). The irreversible en-
ergy is dissipated as heat although some minor entropy component
(here neglected) can be associated with interfaces when the sur-
face energy is temperature dependent (Bailyn 1994; Bercovici et al.
2001a). Three reversible terms can be considered: the macroscopic
elastic energy, the energy of dislocations (Karato 2008) and the sur-
face energy of grains, γ (in J m−2). The elastic energy stored around
dislocations is always negligible compared to the surface energy of
grains (see Shimizu 2008). When a material is deformed, some of
the input energy is initially stored elastically, then some is used
to increase the density of dislocations (see, Kohlstedt & Weathers
1980; Karato & Jung 2003). At a given point, the dislocations will
rearrange to form subgrain boundaries and later, grain boundaries.
The elastic energy around dislocations is therefore mostly a tempo-
rary buffer converting some of the deformational work into surface
energy. Our assumption is that, in the long term, the energy balance
is between the deformational work, the viscous dissipation and the
change of grain surfaces. Understanding the grain size evolution is
therefore understanding how the macroscopic energy partitions be-
tween dissipation (through heat production) and storage (by creation
of new grain surface through a temporary elastic stage).

Ricard & Bercovici (2009) show that the energy conservation and
the requirement of entropy positivity lead to∫ ∞

0

(
−2γ

R
dv̆
dt

ν(R) − 3

2

2γ

R v̆�(R) + τ̆ : ˙̆ε v̆ν(R)

)
dR ≥ 0.

(17)
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722 A. Rozel, Y. Ricard and D. Bercovici

Although complex, the meaning of this equation is straightforward.
The first term represents the continuous change of surface energy of
grains and the second term the surface energy stored or removed by
the fusion or fission of grains. The third term represents the energy
deposited in each grain by the deformation (τ̆ and ˙̆ε are the stress
and strain-rate in each grain). We retain the term 2γ /R as it appears
in the Laplace expression for the excess pressure in a sphere due to
surface tension γ (γ can either be interpreted as a surface energy
(in J m−2) or as the surface tension (in N m−1) (see Bailyn 1994).

The likely most common case of grain size evolution is when
the grain growth is dominated exclusively by the diffusive mass ex-
change in keeping with Lifshitz & Slyozov (1961), Wagner (1961),
Feltham (1957), but where grain reduction is driven by the de-
formation populating the material with small grains issued from
‘breaking’ large grains. This suggests we look for mechanisms that
independently obey to∫ ∞

0
−2γ

R
dv̆
dt

ν(R) dR ≥ 0 (18)

and∫ ∞

0

(
−3

2

2γ

R v̆�(R) + τ̆ : ˙̆ε v̆ν(R)

)
dR ≥ 0. (19)

According to (3), (9) and (15) these two conditions can be readily
expressed. The first one, (18), just implies

−B(R0)
∫ ∞

0
u

(
u H − 3

∫ +∞

u
Hdv

)
du = 1

2
B(R0)λ2 ≥ 0,

(20)

where the equality is obtained by integration by parts (similar to
(13) with n = 2) and where λ2 is the positive integral defined
in (7). This inequality means that B(R0) ≥ 0 and therefore that
continuous transport must always lead to grain coarsening. The
second inequality imposed by the positivity of entropy sources (19),
becomes

3γ

R2
0

λ2

λ3
C(R0) ≤

∫ ∞

0
τ̆ : ˙̆ε v̆ν(R) dR. (21)

Note that while the continuous coarsening of grains is necessarily
an entropy source (i.e. B(R0) must be positive), the processes of
fragmentation/coagulation of grains can be either a source (when
C(R0) ≤ 0) or a sink (when C(R0) ≥ 0) of entropy. The dissipation
term itself τ̆ : ˙̆ε is always positive.

The process reducing the grain size is an entropy sink C(R0) ≥ 0.
This term is bounded by the mechanical dissipation expressed by the
previous inequality. As advocated in a series of papers (Bercovici
et al. 2001a,b; Bercovici & Ricard 2005; Ricard & Bercovici 2009),
a reasonable and pragmatic choice is to introduce a partitioning
function f̆ (R, τ ), with 0 ≤ f̆ (R, τ ) ≤ 1 so that

C(R0) = R2
0

3γ

λ3

λ2

∫ ∞

0
f̆ τ̆ : ˙̆ε v̆ν(R) dR. (22)

The general expression of the grain size evolution (16) becomes
therefore

dR0

dt
= B(R0) − R2

0

3γ

λ3

λ2

∫ ∞

0
f̆ τ̆ : ˙̆ε v̆ν(R) dR. (23)

The coarsening term is often given on the form B(R0) = G/R0
p−1

(Hillert 1965; Atkinson 1988; Karato 2008) where p is of order 2
(corresponding to a coarsening law where R0 ∝ t1/2). The kinetic
term G is temperature dependent, G = k0 exp(−Eg/(RT )) but we

Table 1. Chosen sets of parameters: (1 from Duyster & Stockhert (2001),
2 from Hirth & Kohlstedt (2003), 3 from Kameyama et al. (1997).

Reference
case

Parameter Value Unit

γ 1 J m−2 Surface tension1

E1 530 kJ mol−1 Act. Energy (disl.)2

A1 1.1 105 MPa−n s−1 Prefactor2

V 1 2 10−5 J mol−1 Pa−1 Act. volume2

n 3.5 disl. exponent 2

E2 375 kJ mol−1 Act. Energy (diff.)2

A2 1.5 109 µmm MPa−1 s−1 Prefactor2

V 2 5 10−6 J mol−1 Pa−1 Act. volume2

m 3 diff. exponent2

Eg 200 kJ mol−1 Act. Energy (growth)3

k0 2.0 104 µmp s−1 Kinetic factor3

p 2 growth exponent3

are not aware of an experimentally observed dependence on stress
(cf. Table 1). We therefore use

dR0

dt
= G

pRp−1
0

− R2
0

3γ

λ3

λ2

∫ ∞

0
f̆ τ̆ : ˙̆ε v̆ν(R) dR. (24)

5 T H E C A S E O F L O G N O R M A L
D I S T R I B U T I O N S

5.1 Experimental distributions

Various experimental studies have indicated that the grain size
distribution is lognormal (e.g. Feltham 1957; Faul & Scott 2006;
Slotemaker 2006). The distribution of grain sizes (1) is in this case,
a Gaussian when plotted as a function of lnR, that is,

dn ∝ exp

(
− (ln(R/R0)2

2σ 2

)
d lnR dV

= 1

R exp

(
− (ln(R/R0)2

2σ 2

)
dR dV . (25)

In this expression, σ is the dimensionless variance of the distribution
of ln(R/R0) and R0 is the ‘mean’ grain size.

The lognormality of observed grain size distributions is only
approximate. In a recent compilation of quartz grain sizes, Stipp
et al. (2010) argue that the distribution is not lognormal but shows
modes indicative of the various processes occurring during dynamic
recrystallization. However, to first-order, the distribution observed
by Stipp et al. (2010) is, in fact, not far from lognormal when plotted
in appropriate logarithmic coordinates. We therefore introduce the
lognormal shape function

H (u) = 1√
2πσu

exp

(
− (ln u)2

2σ 2

)
, (26)

(while experimentalists often use the common (base 10) logarithm,
we use the natural logarithm which makes the computations of
derivatives and integrals less confusing).

In the following of the paper, we refer to R0 as a mean grain size,
in agreement with experimental literature. However the real mean
grain size is defined as

〈R〉 =
∫ ∞

0
Rν(R) dR

/ ∫ ∞

0
ν(R) dR = R0 exp

(
σ 2

2

)
(27)
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A general equation for grainsize evolution 723

while the true definition of R0 is exp(〈lnR〉) as using (3),

〈ln(R)〉 =
∫ ∞

0
ln(R)ν(R) dR

/ ∫ ∞

0
ν(R) dR = ln(R0). (28)

The ‘mean’ grain size reported in most publications is indeed the
mean of the grain size distribution plotted as a function of lnR
rather than 〈R〉. The difference between R0 and 〈R〉 decreases
with the decreasing variance of the distribution σ , see (27). For
a monodisperse distribution of grain sizes (a Dirac distribution)
the two quantities become identical. The choice of a lognormal
distribution allows us to compute explicitly the integrals that appear
in various equations (e.g. 27 or 28). A similar exercise could have
been done with any other distribution.

The lognormal distribution means that when the maximum of the
grain size distribution is at R0, the grains of sizes

Rσ = R0 exp(±σ
√

2 ln 2) (29)

are two times less frequent. From observations on olivine
(Slotemaker 2006; Karato 2008), σ seems to be between 0.5 and 1.
This indicates that grains, 3 times larger or 3 times smaller than the
average grain size are half less probable than grains of the grain size
(this estimate uses σ = 0.93). In other words, the centre of the dis-
tribution covers already about one order of magnitude in sizes (32)
and the tails of the distribution cover another order of magnitude.

With this choice of distribution law, we get∫
un H (u) du = −1

2
exp

(
n2σ 2

2

)
erf

(
nσ 2 − ln(u)√

2σ

)
, (30)

which implies

λn =
∫ ∞

0
un H (u) du = exp

(
n2σ 2

2

)
, (31)

Ṙ = B(R0)

[
u − 3

2H (u)
erfc

(
ln u√

2σ

)]
, (32)

where erfc is the complementary error function, (1 − erf) and finally,

� = 3C(R0)

4πλ3R5
0

H (u)

(
3 − ln u

σ 2

)
. (33)

These distributions are plotted in Fig. 1. The function H is
shaded and the Ṙ and �u3 normalized functions (i.e. Ṙ/B(R0)
and 4πλ3R5

0�u3/(3C(R0))) are depicted in blue dot-dashed and

Figure 1. The lognormal distribution H is shaded. The normalized function
�u3 is depicted with a red dashed line, the normalized grain growth Ṙ by a
blue dot-dashed line. The value σ = 0.6 has been used.

Figure 2. The shape of the function Ṙ, similar to Fig. 1 but with a different
scale, is depicted with a black line. Previous studies have assumed that Ṙwas
given by the red (dashed) (Ricard & Bercovici 2009), purple (dot-dashed)
(Hillert 1965) or blue (double-dot-dashed) (Lifshitz & Slyozov 1961) lines.
We arbitrary choose the amplitudes of these three later curves so they change
sign with the same slopes.

red dashed. We display a curve proportional to �u3 instead of � to
emphasize the negative lobe of the damage term. These two curves
change sign roughly at the average grain size around u = 3. As
expected the function �, accounting for the discontinuous forma-
tion of grains, implies the breaking of large grains (� < 0 for large
R) and thus the formation of small grains (� > 0 for large R).
Although the Ṙ function (32) seems very complex, it is a simple
monotonically increasing function.

Notice that Feltham (1957) in a well-known paper, using an ap-
proach that is, in principle, equivalent, writes that a lognormal dis-
tribution corresponds approximatively to Ṙ = C ′(R0) ln u/u. His
result is not in agreement with our findings. In his demonstration,
Feltham (1957) identifies wrongly the grain size distribution with
the size distribution of grain sections. The probability to have a
grain section of radius r is actually the convolution of the grain size
distribution by the probability to cut any grain of radius larger than
r, at the specific grain size section of radius r.

The grain growth law, Ṙ, is not much different from the functions
previously used (see Fig. 2), which are based on the inference that
the kinetics of intergranular exchange is related to 2γ /R−2γ /R =
2γ /R0(1/u − 1/u), that is, the difference between the pressure in
a given grain due to its surface tension, ∝ 2γ /R and some average
grain pressure written as ∝ 2γ /R (where R is related to the grain
size distribution through mass conservation, see 11). When u is
large the shape of Ṙ looks like u(1/u − 1/u), while the shape used
by Lifshitz & Slyozov (1961) was 1/u(1/u − 1/u) and the shape
used by Hillert (1965) was (1/u − 1/u) (see Fig. 2). The stronger
dependence of Ṙ with R at large grain size, suggests that grains
significantly larger than the average grain size are more favourable
than expected by Lifshitz & Slyozov (1961) or Hillert (1965). These
other authors’ assumptions yield narrow grain size distributions of
finite extent (see Ricard & Bercovici 2009) where the maximum
grain size is only twice the average grain size, while observations
show distributions with much longer tails (Faul & Scott 2006).

5.2 Microscopic rheology

At grain size level, and for mantle conditions, the olivine rheol-
ogy is generally found as a mixture of diffusion and dislocation
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724 A. Rozel, Y. Ricard and D. Bercovici

creep (Karato 2008; Hirth & Kohlstedt 1995a,b; Ranalli 1995). At
very high stress regimes, other deformation mechanisms might be
present like grain boundary sliding (Kohlstedt & Wang 2001; Hirth
& Kohlstedt 2003; Drury 2005; Langdon 2006; Kohlstedt 2007) or
Peierls mechanisms (Evans & Goetze 1979; Frost & Ashby 1982;
Raterron et al. 2004; Katayama & Karato 2008; Kohlstedt 2007).
We only consider diffusion and dislocation creep laws for simplifi-
cations, but other mechanisms could be added. We use

˙̆ε = (aτ̆ n−1 + bR−m)τ̆ (34)

assuming that the mechanisms of deformation occur in parallel (and
τ̆ is the second invariant of τ̆ ). In (34), the two terms correspond
to the dislocation stress-dependent mechanism and to the diffusion
grain size-dependent mechanism. Typically n ∼ 3 and m ∼ 3 (Hirth
& Kohlstedt 2003; Kohlstedt 2007).

The macroscopic rheology τ = 2ηε̇ is obtained by computing the
volume average deformation rate and stress (see Ricard & Bercovici
2009, for more details). This can be done numerically but not analyt-
ically in the more general case although some variational estimates
might be possible as in Hashin & Shtrikman (1963). As a simple
case, we assume that the stress tensor at the grain size level τ̆ is
uniform and therefore equal to the macroscopic stress τ . This is
akin to the Reuss averaging in elasticity (Reuss 1930). In this case,

ε̇ = τ

∫ +∞

0
(aτ n−1 + bR−m)v̆ν(R) dR (35)

and the use of a self-similar distribution (3) allows us to express
this relation as a function of average grain size R0 and stress τ .

ε̇ =
(

aτ n−1 + b
λ3−m

λ3
R−m

0

)
τ = aτ n−1

(
1 +

(Rc

R0

)m)
τ , (36)

where

Rc =
(

b

a

λ3−m

λ3
τ 1−n

)1/m

(37)

is the average grain size at the macroscopic transition between dif-
fusion and dislocation creeps. The macroscopic rheology is thus
a function of the mean grain size R0 and the grain size distribu-
tion through λ3−m/λ3. Note that when the average grain size is Rc,
the macroscopic material is exactly at the transition between dif-
fusion and dislocation, the individual grain with the same radius
is still largely in the diffusion regime as λ3−m/λ3 ∼ 0.1 according
to (31). The experimentalist that works with a sample containing a
distribution of grain sizes cannot measure directly the microscopic
rheological factor of diffusion creep b, but only get the macroscopic
coefficient b(λ3−m/λ3). This coefficient together with the rheolog-
ical factor a of dislocation creep, are both temperature dependent
with an Arrhenius form and their own activation energies, that is,

a = A1 exp

(
− E1

RT

)
and b

λ3−m

λ3
= A2 exp

(
− E2

RT

)
, (38)

where R is the gas constant.
To provide a simpler expression for the grain size evolution than

the general expression (24), we need to know the value of the
partitioning energy factor f̆ . In the absence of direct observations,
we can make two simple guesses:

(i) The simplest case is to assume a constant partitioning f̆ =
f0. The partitioning is the same irrespective of the deformation
mechanism itself. In this case the general grain size evolution would
obey

dR0

dt
= G

pRp−1
0

− f0
R2

0

3γ

λ3

λ2
τ : ε̇ (39)

Figure 3. The normalized partitioning function f 1/ f 0 (solid blue curve)
for a mean grain size varying between 10−1 and 10 times the critical grain
size at the macroscopic boundary between diffusion and dislocation creep.
The transition between diffusion and dislocation creeps occurs through a
large range of grain sizes.

(ii) The creation of new grains occurs by formation of subgrain
boundaries (Twiss 1977; Derby 1990, 1991; Bresser et al. 1998;
Shimizu 1998a,b, 1999; Bresser 2002). This requires the presence
of dislocations density and it can be argued that the partitioning
of energy only occurs during dislocation creep (in each grain, the
strain-rate is determined by a mixture of diffusion and dislocation
creep, but only the mechanical work done by dislocation creep can
be used to form new grains). This means that

dR0

dt
= G

pRp−1
0

− f0
R2

0

3γ

λ3

λ2
τ : ε̇disloc

= G

pRp−1
0

− f1(τ,R0)
R2

0

3γ

λ3

λ2
τ : ε̇, (40)

where

f1(τ,R0) = f0
1

1 + (Rc/R0)m
. (41)

which is depicted in Fig. 3. The function goes from 0 (no grain
reduction occurs when the mean grain is largely in the diffusion
regime) to f 0 (all the grains are in the dislocation regime and they
all shrink). The partitioning function is independent of σ , the spread
of the grain size distribution.

6 A P P L I C AT I O N T O O L I V I N E

The creep map of olivine has been described by various authors
(Chopra & Paterson 1981; Karato et al. 1986; Karato & Wu 1993;
Hirth & Kohlstedt 2003; Korenaga & Karato 2008). We compiled
some reference values for exponents, prefactors and activation en-
ergies appropriate for dry olivine in Table 1. The exponents n and m
are close to n 
 3.5 and m 
 3 for dry olivine although Korenaga &
Karato (2008) suggest a larger n exponent, n 
 4.94 for dislocation
creep.

There are few studies and more uncertainty for the grain growth
kinetics. As a reference case, we use a value of p = 2 taken from
Karato (1989) and in agreement with the theoretical model of Hillert
(1965) and the form of G = k0 exp(−Eg/RT ) (see Table 1) is
identical to that chosen in Kameyama et al. (1997). This choice
based on Karato (1989) leads to a grain growth much faster than
what is obtained in Evans et al. (2001) or Faul & Scott (2006) who
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A general equation for grainsize evolution 725

use p = 4.3 and much larger than what is expected from observations
of natural peridotites. Grain boundary pinning by impurities and
minor phases may explain this discrepancy.

Eqs (39) and (40) imply the existence of steady state regime,
dR0/dt = 0 where a constant grain size results from balancing
grain coarsening by dynamic recrystallization. If we use (40), coars-
ening can only be driven by energy subtracted from the dissipation
associated with dislocations. In this case, the steady state regime
usually called piezometric equilibrium (Van der Wal et al. 1993;
Bresser et al. 1998) satisfies

R0 =
(

3γ

p

G

f a

)1/(p+1)

τ−(n+1)/(p+1). (42)

This equilibrium, where R0 ∝ τ−1.5, occurs both in the dislocation
and diffusion regimes because even in the diffusive regime, the
larger grains in the grain size distribution are still subject to dynamic
recrystallization. If even the energy subtracted from dissipation in
the diffusive regime contributes to grain size reduction, as in (39),
another equilibrium can be reached with

R0 =
(

3γ

p

Gλ2

f bλ3−m

)1/(p+1−m)

τ−2/(p+1−m). (43)

In the case p = 2 and m = 3, as p + 1 − m = 0, this equilibrium be-
comes independent of R0 and simply defines a plasticity threshold,
τ c = (3γ Gλ2/p f bλ3−m)1/2.

Fig. 4, depicts the domains of dislocation dominant and diffusion
dominant creeps for olivine at 1923 K. The dot-dashed black and
solid blue curves indicate the equilibrium states (∂R0/∂t = 0) pre-
dicted by (42) and (43) when we choose f 0 = 1.5 10−6 ( f 0 controls
the intercepts of the theoretical piezometers, not their slopes). All
grains below these curves grow until they reach the piezometric
curve and reciprocally, above these curves the dynamic recrystal-
lization dominates and the grain size decreases. Purple squares
represent experimental data from Karato et al. (1980) which fit our
model for the chosen f 0. In the diffusion creep domain, no exper-
imental points are available. This is reasonable because if the hy-
pothesis (39) is true, the plasticity threshold forbids any equilibrium
in the diffusive regime. Even in the case where the recrystallization

Figure 4. Equilibrium curves using our two approximations. We use the
standard set of rheologies displayed in table 1, T = 1923 K, P = 1 atm.
The green shaded area corresponds to the zone where the rheology is pre-
dominantly in the diffusive regime. The equilibrium state (or piezometer) in
the dislocative regime goes through the experimental points (Karato et al.
1980). A plasticity threshold is predicted for the case defined by (39) (label
f 0).

Figure 5. Various experimental piezometers can be fitted by choosing
f 0 = exp (−2.0 (T /1000)2.9). The fit does not seem to depend much on the
pressure or the water content.

is only controlled by the dislocation, i.e. using (40) (Fig. 4, blue
curve), the equilibrium in the diffusive domain may be difficult to
identify. Indeed, as the equilibrium grain size is stress dependent,
R0 ∝ τ−1.5, the diffusive grain size dependent rheology appears, at
equilibrium, more stress dependent than in the dislocation domain
since ε̇ ∝ R−3

0 τ = τ 5.5. The experimentalist may interpret the data
as an indication of grain boundary sliding rather than diffusion.

Fig. 4 is computed at T = 1923 K. Other experimental piezome-
ters have been proposed at different temperature and for olivine with
different water contents (Post 1977; Karato et al. 1980; Ross et al.
1980; Van der Wal et al. 1993; Zhang et al. 2000; Jung & Karato
2001; Jung et al. 2006). For each set of experiments we can obtain
an appropriate value for f 0. These different values are depicted in
Fig. 5. We also infer an empirical fit f 0 = exp (−2.0(T /1000)2.9)
that agrees with the requirement 0 ≤ f 0 ≤ 1. The partitioning
factor decreases significantly with temperature and does not seem
to vary much with pressure or water content ( f 0 might decrease
slightly with water content and increase slightly with pressure). The
non-equilibrium thermodynamics imposes the form of the evolution
equation and bounds the possible values of f 0, but at this stage, we
have not tried to derive this parameter from a microscopic kinetic
model.

When the grain size evolves with time and stress, the rheology
becomes itself a time dependent function. We illustrate this point in
Fig. 6. We start with an olivine with very small grain size (1 μm)
and impose a constant deviatoric stress at a temperature of 1100 K.
In this case, the rheology is initially Newtonian, that is, in the
diffusion creep (dashed line). However, the grains coarsen or shrink
(at very large stress) and the rheology becomes non-linear. For low
deviatoric stresses (below 300 MPa), the equilibrium rheology is
dislocative (stress exponent 3). For larger stresses, the grains deform
under diffusion creep but as the grain size is stress dependent, the
equilibrium rheology is also non-linear (stress exponent 5.5).

Another illustration of the time dependence of the rheology is
provided in Fig. 7. We compute a stress profile within an oceanic
lithosphere with age 50 Myr (the temperature is an error function
with standard parameters). A uniform strain-rate ε̇ = 10−15 s−1

is imposed (Goetze & Evans 1979). We assume that the average
grain size is initially R0 = 1 µm and, except in the shallower zone
where the stress is limited by Byerlee failure criterion (Byerlee
1978), diffusion creep prevails. The grain size then evolves quite
rapidly and the strength of the lithosphere increases with time. The
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726 A. Rozel, Y. Ricard and D. Bercovici

Figure 6. Evolution of the rheology with increasing grain size (from 1µm).
The shear stress varies initially with the strain-rate as τ (diffusive case), then
as τ 1/3.5 (dislocative case, for τ < 300 MPa), or as τ 1/5.5 (diffusive case
with stress dependent grain size).

lithosphere recovers in a few 10 kyr. At equilibrium, the lithosphere
is in the dislocation regime at large depth (above 50 km). From 20 to
50 km, the presence of small average grain sizes places the rheology
in the diffusive regime. In this layer whose deeper limit is marked
by a kink in the equilibrium grain size (see Fig. 7, bottom panel),
the rheology is in fact more stress-dependent than in the underlying
layer undergoing dislocation creep.

7 D I S C U S S I O N A N D C O N C LU S I O N

In this paper, we started from simple thermodynamics requirements
to derive a very general equation for grain size evolution. Our
method takes into account the spread of the grain size distribution
and considers that, at a given time and around a given position,
not all grains deform with the same creep mechanism. Large grains
can be submitted to recrystallization while the small grains can
deform then coarsen in the diffusive regime. A corollary of our
approach is that the kinetics of coarsening and recrystallization can
be estimated from the grain size distribution itself. Experimental
observations suggest that the growth of large grains is faster than
what was considered in the classic theories of Lifshitz & Slyozov
(1961) or Hillert (1965).

We infer a grain size equation of the form

dR0

dt
= G

pRp−1
0

− f0
1

1 + (Rc/R0)m

R2
0

3γ

λ3

λ2
τ : ε̇, (44)

where Rc is the transitional grain radius between diffusion and dis-
location. This equation assumes the self similarity of the grain sizes
within a lognormal distribution. As already stated, self-similarity
is approximately verified experimentally and is the consequence of
the equation of grain size distribution itself (2) whose solutions
tend to self-similarity. If we reject this hypothesis, then we need to
derive the expressions for Ṙ and � directly from observations. The
difficulty is then not so much with the mathematics than with the
experiments: reporting the evolution of the average grain size but
not the evolution of the grain size distribution itself is not sufficient
to constrain the kinetics of grain diffusion and recrystallization.

The rheology of the grained material is naturally non-linear and
time-dependent (it could also be anisotropic which is another com-
plexity not accounted for in this paper Tommasi et al. 2009). This

Figure 7. Time dependent stress profile (top) and time dependent grain size
profile (bottom). The initial grain size is d = 1µm, a constant and uniform
strain-rate is assumed, across a 50 Myr oceanic lithosphere.

provides a memory to the mechanical behaviour of the lithosphere,
an ingredient that is missing to the models of convection with self-
consistent plates (i.e. Tackley 2000; Stein et al. 2004). When the
grain size-stress relation is taken into account, we predict that the
diffusive rheology is more stress-dependent than the dislocative
rheology, in contradiction with traditional rheological models.

At equilibrium, the strain-rate remains an increasing function of
the stress and the rheology appears to be monotonic and simply non-
linear with an exponent varying from 3.5 to 5.5. This is however,
a very partial view of the rich dynamics implied by eq. (44). In
a realistic time dependent situation, the rheology maybe far from
equilibrium and the effective stress–strain-rate relation can be much
more complex than at equilibrium. The dynamics is also affected by
the feedback between deformation and heat production by viscous
dissipation as various parameters are temperature dependent. All
these aspects are beyond the scope of the present paper but will be
studied in the future.

The eq. (44) can be compared to what is used in various pub-
lications (Kameyama et al. 1997; Braun et al. 1999; Bercovici &
Karato 2003).

dR0

dt
= s

G

pRp−1
0

− ε̇

ε̇T
(R0 − RP ), (45)

where s goes from 1 in the diffusion domain to 0 in the dislocation
domain, ε̇T is an experimental parameter and RP the equilibrium
grain size function of stress.
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A general equation for grainsize evolution 727

Our formalism (44) differs from what has been used previously
(45) by various points. We assume that coarsening occurs even in the
dislocation regime while (45) considers that it only happens in the
diffusion regime (although Bercovici & Karato 2003, use 45 with
s = 1). Using non-equilibrium thermodynamics, we prove that grain
reduction is related to the energy dissipated in the system, not to the
strain-rate alone. In our model, the term representing recrystalliza-
tion always reduces the grain size while in (45), recrystallization
facilitates grain coarsening when R0 < RP . At last, we predict
the piezometric equilibrium while (45) must include an equilibrium
radius RP which is not consistently deduced by the model itself.
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