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[1] A new scheme is proposed for the inversion of surface waves using a continuous
formulation of the inverse problem and the least squares criterion. Like some earlier
schemes a Gaussian a priori covariance function controls the horizontal degree of
smoothing in the inverted model, which minimizes some artifacts observed with spherical
harmonic parameterizations. Unlike earlier schemes the new approach incorporates some
sophisticated geometrical algorithms which dramatically increase computational efficiency
and render possible the inversion of several tens of thousands of seismograms in few
hours on a typical workstation. The new algorithm is also highly suited to parallelization
which makes practical the inversion of data sets with more than 50,000 ray paths. The
constraint on structural and anisotropic parameters is assessed using a new geometric
approach based on Voronoi diagrams, polygonal cells covering the Earth’s surface. The
size of the Voronoi cells is used to give an indication of the length scale of the structures
that can be resolved, while their shape provides information on the variation of azimuthal
resolution. The efficiency of the scheme is illustrated with realistic uneven ray path
configurations. A preliminary global tomographic model has been built for SV wave
heterogeneities and azimuthal variations through the inversion of 24,124 fundamental and
higher-mode Rayleigh waveforms. Our results suggest that the use of relatively short paths
(<10,000 km) in a global inversion should minimize multipathing, or focusing/defocusing
effects and provide lateral resolution of a few hundred kilometers across the
globe. INDEX TERMS: 7218 Seismology: Lithosphere and upper mantle; 7255 Seismology: Surface

waves and free oscillations; 7260 Seismology: Theory and modeling; 8180 Tectonophysics: Tomography;
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1. Introduction

[2] The dramatic increase in the number of seismic
stations over the past 20 years has led to modern global
surface wave tomographic models being constrained by
several tens of thousands of seismograms [e.g., Su et al.,
1994; Trampert and Woodhouse, 1995; Ritsema et al.,
1999]. With such large amounts of data the assessment of
resolution can become problematic [Nolet et al., 1999]. For
massive data sets (i.e., >30,000 ray paths) the distribution of
rays is also far from regular due to the uneven distribution
of stations and seismic events [e.g., see van Heijst and
Woodhouse, 1999]. An area of particularly poor coverage is
the Southern Hemisphere where few permanent stations are
available for global tomography. In such regions the number
of independent data available can be much smaller than the

number of independent parameters sought, and in these
cases a sophisticated definition of the a priori information
can help reduce artifacts in the inverted model.
[3] In most linear imaging problems involving large data

sets, Earth structure is usually expanded into a set of global
basis functions truncated at some arbitrary level, e.g.,
spherical harmonics. When the truncation is crude, side
lobes in the averaging kernels can produce artifacts in the
inverted models. In order to minimize such effects, Whaler
and Gubbins [1981] proposed down-weighting of the coef-
ficients as the degree of the spherical harmonic increased,
i.e., a form of taper. An alternative approach is to use
smooth local basis functions that behave as natural tapers.
Such an approach was developed by Montagner [1986]. His
‘‘continuous regionalization’’ method was used to constrain
velocity and azimuthal anisotropy from regional path aver-
age measurements and is derived from the continuous form
of an inversion approach developed by Tarantola and
Valette [1982]. In this case a smooth model is obtained by
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imposing correlation between neighboring points in the
Earth through a Gaussian prior covariance function. In this
way a natural taper is produced, which allows potential
ringing phenomenon to be minimized. The use of a Gauss-
ian covariance function also deals in a natural way with the
effect of uneven data sampling. Indeed, the Tarantola and
Valette [1982] least squares approach can be seen as a way
of finding the model that gives the best fit to the data while
keeping as ‘‘close’’ as possible to the a priori information.
The smoothness of the inverted model in poorly sampled
regions is therefore mostly constrained by the width of the
Gaussian covariance function, while in regions with higher
ray density the need for a satisfactory data fit results in a
rougher model.
[4] Another attractive feature of this approach is that the

prior information imposed on the inverse problem has a
direct interpretation in terms of physical properties of the
model. The Gaussian covariance function is defined by a
prior variance s(r) and a horizontal correlation length Lcorr
(see equation (5)). These control the allowable perturbations
of the velocity model in terms of amplitude and lateral
length scale, respectively. The most reasonable way to
chose Lcorr is to make sure that the overlap between the
surfaces of width 2Lcorr centered around each of the ray
paths ensures a good coverage of the area under study and
that Lcorr is larger than the wavelength at the period
considered [Montagner, 1986]. For large data sets it is
expected that the first condition is fulfilled when Lcorr
corresponds to the wavelength of the considered period,
and one might argue that the choice of Lcorr is more
physically based than choosing damping parameters in an
iterative inversion scheme.
[5] These characteristics make the Montagner [1986]

approach robust and well adapted for underdetermined
problems where the lack of information in the data is
compensated by the a priori information on the model.
The main drawback of the continuous regionalization
approach has been the computational cost required to
determine the a priori model covariance function. Initially,
it was designed for regional applications at the scale of a
tectonic plate which involved relatively few data. By the
end of the 1980s, applications typically included several
hundred seismograms and could be performed on a single
processor workstation. However, the computational cost of
the original Montagner [1986] method scales with the
square of the number of data N and can become impractical
when the number of seismograms exceeds a few thousand.
Modern global surface wave data sets often involve several
tens of thousands of seismograms [Ritsema et al., 1999]. To
overcome this problem, Montagner and Tanimoto [1990]
introduced several simplifications to the original method
and were able to apply a continuous regionalization scheme
to 2600 seismograms within a global-scale inversion. In
their simplified approach the matrix to be inverted was
approximated as quasi-diagonal, and the inverse was
obtained using a standard series expansion. In terms of
the prior model covariance function this approximation
corresponds to assuming that the correlation in the Earth
model between points belonging to different ray paths is
null, except at points where the paths cross.
[6] In this paper, we present an efficient extension of the

Montagner [1986] method that improves upon the N2 run

time dependence while preserving the complete use of prior
information contained in the original scheme; that is,
correlation between points on all pairs of ray paths is
included, not just intersection points. The efficiency of the
new scheme makes it practical to include several tens of
thousands of seismograms in an inversion for local varia-
tions of both seismic velocity and azimuthal anisotropy.
Calculations show that data sets of up to 20,000 paths can
be inverted in a few hours on a single processor of a
standard desktop workstation, and just a few minutes are
required to process several thousand paths.
[7] The new approach is highly parallel and lends itself

for use on multiprocessor machines. This will further
increase the number of seismograms that can be considered
routinely, thereby making the scheme well suited for
construction and testing of tomographic models with mod-
ern data sets. To circumvent the difficulty in computing the
resolution and a posteriori covariance of the resulting
massive tomographic systems of equations [Nolet et al.,
1999], we also propose a procedure to assess the variability
of model constraint. This is a geometric approach which
makes use of Voronoi diagrams [Okabe et al., 1992] to
qualitatively estimate how well a given parameter can be
resolved from the available ray coverage. The new ap-
proach for massive surface wave data sets is demonstrated
using both synthetic experiments and a real data set of
24,124 Rayleigh wave seismograms. Software implement-
ing the new scheme are available on request from the first
author.

2. Continuous Regionalization Algorithm

[8] A classical approach in surface wave tomography is
to build a three-dimensional (3-D) model of seismic veloc-
ities in two stages. The first involves a 2-D regionalization
and the second involves an inversion for depth. The
regionalization step is 2-D because local seismic parameters
are retrieved from a set of ‘‘path average’’ measurements
between an epicenter and a station. Phase or group velocity
maps are built at different periods and then combined using
depth kernels to produce fully 3-D S wave models [e.g.,
Ritzwoller et al., 2001]. This regionalization approach can
also be used to retrieve the local shear velocity at each depth
from a set of 1-D depth-dependent path-average measure-
ments [e.g., Debayle and Lévêque, 1997]. In this paper, we
focus on the 2-D regionalization step and follow the
formalism of Tarantola and Valette [1982] for a least
squares inverse problem, where unknowns are a function
of a continuous variable and where the theoretical relation-
ship between the data and unknowns is assumed to be
linear. This formalism has been applied to body waves by
Tarantola and Nercessian [1984] and to surface waves
by Montagner [1986]. In this section we first describe
the Montagner [1986] approach for regional surface
wave tomography before presenting our new efficient
implementation.

2.1. Forward Problem

[9] In a medium where seismic parameters vary smoothly
and velocity gradients are not strong, the incremental phase
for a given surface wave is the integral of the phase
slowness along the path, while the path itself is determined
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by the lateral variations in phase velocity [Woodhouse,
1974]. For a source-receiver path i we have

1=Ci Tð Þ ¼ 1=Li

Z
i

1=C T ; q;fð Þds; ð1Þ

where T is the period, q and f are the coordinates of the
geographical points along the great circle, and Li is the
source receiver distance. Ci(T) is the phase velocity
measured along the ith path at period T, and C(T, q, f) is
the local phase velocity at geographical point (q, f) and
period T.
[10] For longer-period waves an additional approximation

is to neglect the deviations of the path from the great circle.
There is a general agreement that the great circle approxi-
mation is reasonable for the fundamental mode and the
first few higher modes of surface waves at periods larger
than 40 s [e.g., Kennett, 1995; Ritsema et al., 1999]. Using
the great circle approximation, the inverse problem can be
written in the form of a linear relationship between a data
vector d (which contains the average slowness along each
path 1/Ci(T)) and a parameter vector m (which contains the
local slowness 1/C(T, q, f) at each geographical point).
Segmenting path i in segments d s, one can state in matrix
form

d ¼ Gm; ð2Þ

where the matrix G contains the partial derivatives ds/Li.

2.2. Inversion

[11] The simplest way to retrieve seismic heterogeneities
from a set of path average surface wave measurements is to
divide the Earth into tectonic provinces. This constitutes a
‘‘pure path’’ inversion which significantly reduces the size
of the inverse problem, because the parameters at each
depth correspond to only a few tectonic regions. The early
regionalization techniques were based on this type of
pure path inversion [Dziewonski, 1971; Okal, 1977;
Lévêque, 1980]. The drawback of such approaches is that
they require a priori the definition of boundaries between
tectonic provinces, and deeper structure may not be simply
related to surface tectonics in many regions of the Earth
[Montagner, 1986; Debayle and Lévêque, 1997].
[12] A more flexible approach would be to avoid the a

priori definition of tectonic boundaries and instead use a
large number of smaller regular blocks [Aki and Husebye,
1977]. With a large number of blocks the inverse problem is
likely to become underdetermined, and in order to stabilize
the solution, a priori information on the model must be
introduced. A classical least squares solution for discrete
linear inverse problem is proposed by Tarantola and Valette
[1982]

m̂ ¼ m0 þ Cm0G
tS�1 d� Gm0ð Þ ð3Þ

with

S ¼ GCm0G
t þ Cd0ð Þ; ð4Þ

where t denotes the transpose, m̂ is the inverted model, m0

is the a priori model, Cm0 represents an a priori covariance

matrix on the model, and Cd0 is an a priori covariance
matrix on the data.
[13] The continuous regionalization consists then in de-

creasing indefinitely the size of the blocks while increasing
their number toward infinity. With an ‘‘infinite’’ number of
blocks the problem would clearly be underdetermined and
require a priori constraints to be introduced to stabilize the
solution. This can be done through the definition of an a priori
model m0 and an a priori covariance function Cm0(r, r

0).
Montagner [1986] choose Cm0(r, r

0) to be in the form

Cm0 r; r0ð Þ ¼ s rð Þs r0ð Þ exp
��2

r;r0

2L2corr

 !
; ð5Þ

where r and r0 are two geographical points separated by a
distance �. The Gaussian defined through the exponential
term has a standard deviation given by Lcorr. This acts as a
spatial filter, imposing correlation between points separated
by distances of order Lcorr. The function s(r) controls the
amplitude of the model perturbation allowed at r.
[14] In the continuous form, the unknowns are functions

of a continuous variable and equation (3) becomes

m̂ rð Þ ¼ m0 rð Þ þ
X
i

" Z
Cm0 r; r0ð ÞGi r

0ð Þdr0:

�
X
j

S�1
ij d0j �

Z
Gj r

00ð Þm0 r00ð Þdr00
� �#

ð6Þ

with

Sij ¼ Cd0ij þ
Z
i

Z
j

Gi r1ð ÞCm0 r1; r2ð ÞGj r2ð Þdr1dr2: ð7Þ

For propagation along the great circle, equations (6) and (7)
can be written

m̂ rð Þ ¼ m0 rð Þ þ
X
i

" Z
path i

dsk

Li
s rkð Þs rð Þ: exp

��2
rk ;r

2L2corr

 !

�
X
j

S�1
ij d0j �

Z
path j

Gj r
00ð Þm0 r00ð Þdr00

� �#
ð8Þ

Sij ¼ Cd0ij þ
Z
path i

dsk

Li

Z
path j

dsl

Lj
s rkð Þs rlð Þ exp

��2
rk ;rl

2L2corr

 !
: ð9Þ

Indices i and j correspond to the ith and jth surface wave
paths while k and l refer to the kth and lth points along the
ith and jth paths, respectively. The estimation of m̂(r)
presents several practical difficulties that become increas-
ingly severe as the number of rays increase. The first lies in
the evaluation of the integral

Ai rð Þ ¼
Z
path i

dsk

Li
s rkð Þs rð Þ exp

��2
rk ;r

2L2corr

 !
; ð10Þ

which in the discrete case corresponds to the computation of
one element of the matrix Cm0G

t (see equations (3) and (4)).
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Figure 1 shows how this integral can be visualized
geometrically. To determine Ai(r) at each geographical
point r on the Earth, it is necessary to compute the
correlation between the Earth model at r and the Earth
model at each point rk along the ith path. When the distance
�rk ,r

is much larger than Lcorr, the exponential term ensures
that the contribution to the integral becomes negligible.
Therefore, in the evaluation of Ai(r) it makes sense to first
compare �rk ,r

with Lcorr so that the exponential term is only
evaluated where the contribution is significant. However,
even in this case, one must still evaluate �rk ,r

for all pairs of
points (r, rk) and for each path i, and this itself can become
extremely time consuming for large numbers of paths. In
section 3.1 we present an alternative approach that only
requires the evaluation of�rk ,r

for geographical points (r, rk)
that contribute significantly to the integral. This is done by
defining an ‘‘influence zone’’ about each path i, for which
�rk ,r

is about 2.64 � Lcorr, and then only collecting
contributions to Ai(r) from this zone. The factor of 2.64 has
been chosen to truncate the Gaussian at �30 dB from its
maximum following Dziewonski et al. [1969]. This choice
allows capture of 99.18% of the surface below the Gaussian.
[15] A second practical difficulty is the computation of Sij

in equation (9) which requires the evaluation of the double
integral

Bij ¼
Z
path i

dsk

Li

Z
path j

dsl

Lj
s rkð Þs rlð Þ exp

��2
rk ;rl

2L2corr

 !
: ð11Þ

Figure 2 gives a geometrical interpretation of this integral.
One sees that the model correlation between each
geographical point belonging to the paths i and j is needed.
However, only the points of path j located in the influence
zone of path i contribute significantly to the double integral.
In section 3.2 we again use the notion of the influence zone
to present an approach that evaluates the double integral in

equation (11) by only considering points in both influence
zones of each pair of paths, i.e., again �(rk, rl) is not
evaluated when rk is outside of the influence zone of rl.
Numerical illustrations of the new procedures to evaluate
Ai(r) and Bij are given in sections 3 and 5.
[16] A third practical problem for inverting massive

surface wave data sets using equations (8) and (9) is the
inversion and storage of the matrix Sij. S is a square matrix
whose dimension is the size of the data vector, i.e., the
number of paths at a given period. With several tens of
thousands of paths, inverting S becomes impractical with
currently available computation. One solution is to approx-
imate the determination of the double integral Bij by
considering only the case when i = j. In this case the
resulting matrix is almost diagonal so that only its diagonal
terms can be kept for the inversion. This type of approach
was followed by Montagner and Tanimoto [1990] to suc-
cessfully invert a few thousand seismograms. Here we
determine S in full using a new implementation of the
double integral calculation described below. We store S by
utilizing a row-indexed compact sparse matrix storage
technique [Press et al., 1992] and avoid the need for directly
calculating the inverse of S by using a conjugate gradient
algorithm to determine Ai = Sij

�1(dj0 � (Gm0)j) (i.e., we
solve the system of equations (d � Gm0) = SA for A).

2.3. A Posteriori Covariance and Resolution

[17] The discrete formulation of the a posteriori covari-
ance matrix Cm and the resolution matrix R is given by
Tarantola and Valette [1982]:

Cm ¼ Cm0 � Cm0G
tS�1GCm0 ð12Þ

R ¼ Cm0G
tS�1G: ð13Þ

From equations (12) and (13) we see that evaluation of the
matrices Cm and R requires the computation of the product

Figure 1. Estimation of Ai(r) everywhere on the Earth requires the computation of Cm0(rk, r) between
each point rk of path i and each point r across the globe. When the distance �(rk, r) between rk and r
becomes large compared to Lcorr, the exponential term becomes negligible and its evaluation can be
omitted. However, a computation of the distance �(rk, r) and a comparison with Lcorr are still required a
large number of times, making the current inversion schemes impractical when the number of paths
exceeds a few thousand.
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S�1G, with G being a d � m matrix, where d is the number
of data and m is the number of model parameters. In terms
of computational cost this is equivalent to solving the
inverse problem m times. For example, in surface wave
tomography inverting for only a single elastic parameter
varying over a 1 � 1 degree global grid, the computation of
Cm and R would cost about 64,800 times that of obtaining
an inversion solution. With a large number of data this is
clearly impossible. This problem is also well known in body
wave tomography, and although some workable approx-
imations for Cm and R have been proposed [e.g., Nolet et
al., 1999], no exact solution is currently available.
[18] In the continuous case the equivalent problem is the

evaluation of the a posteriori covariance function Cm(r, r
0),

Cm r; r0ð Þ ¼ Cm0 r; r0ð Þ �
X
i

Z
path i

dsk

Li
Cm0 r; rkð Þ

	 X
j

Z
path j

� S�1
ij Cm0 rl; r

0ð Þ dsl
Lj



ð14Þ

and the resolution kernel R(r, r0),

R r; r0ð Þ ¼
X
i

X
j

Z
path i

dsk

Li

dsl

Lj
Cm0 r; rkð ÞS�1

ij ð15Þ

(see Tarantola and Nercessian [1984] and Montagner
[1986] for derivations). As with the discrete case, their
evaluation also remains impractical for large data sets. In
section 4 we propose a technique to circumvent this
problem, which produces a qualitative estimation of model
constraint as a function of geographical position.

3. Optimization

3.1. Optimized Computation of Ai(r)

[19] As described above, the computational cost of eval-
uating Ai(r) for all paths (using equation (10)) is very large

because the correlation function Cm0(rk, r) must be evalu-
ated (using equation (5) for every pair of points (rk, r), i.e., a
‘‘double loop’’ over every point in the model with every
point along the ith path. Finally, this calculation has to be
repeated for every ray path, i (see Figure 1).
[20] Our optimization strategy consists of restricting all

calculations to only the pairs of points which will contribute
significantly to Ai(r). We define an influence zone about the
ith great circle path, as containing all points r which satisfy

�rk ;r < 2:64Lcorr; ð16Þ

where rk is any point along the ith great circle path. The
influence zone defined in this way corresponds to the region
where the Gaussian term in the integral (10) falls to about
3% of its maximum. Figure 3 shows an example. The
complete influence zone for the ith great circle path can be
thought of as the union of the influence zones of each point
along the ith path, and it is this concept which forms the
basis of the algorithm used to compute Ai(r).
[21] The ‘‘outer loop’’ of the algorithm is the same as

previous implementations, i.e., we consider each point rk
along the ith great circle path and evaluate its contribution
to the integral for Ai(r) in equation (10). In practice the
entire Earth’s surface is divided into a fine grid of regular
cells the centers of which form the set of model points r.
The integral in equation (10) becomes a summation of the
exponential term s(rk)s(r)exp (��rk ,r

2 /2Lcorr
2 ) for all point

pairs (r, rk). However, rather than testing each point in the
entire model grid to determine which are within the influ-
ence zone (which is the approach adopted in previous
schemes) we use a more sophisticated geometric search
technique based on a ‘‘last in first out (LIFO) stack’’. LIFO
stacks can be used to ‘‘map out’’ arbitrarily shaped contin-
uous regions, such as our influence zone, by starting from
any point within the zone and stepping between neighbors
in a systematic manner. Figure 4 shows a flow diagram for

Figure 2. For each pair of ray paths (i, j) the calculation of Bij involves a double integral of the cross-
correlation function Cm0(rk, rl) along paths i and j, where rk is the kth point along path i and rl is the lth
point along path j. When the distance �(rk, rl) between rk and rl becomes large compared to Lcorr, the
exponential term in Cm0 becomes negligible and its computation can be skipped. However, distance
computations �(rk, rl) are still required for every pair of points along every pair of paths, making current
inversion schemes impractical when the number of paths exceeds a few thousand.
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the method. It can be summarized using the following six
steps:
[22] 1. Let r be the center of the cell containing rk.
[23] 2. Put r on the stack.
[24] 3. If the stack is empty, then we finish.
[25] 4. Get the current point r from top of the stack.
[26] 5. If r is in the influence zone of rk, then (1) add

contribution of pair (r, rk) to Ai(r), and (2) if the neighboring
cells of r (e.g., N, S, E, W) are not already on the stack, then
put them on it.
[27] 6. Go to step 3.
[28] The important point about this type of technique is

that ‘‘nearly all’’ of the points r are in the influence zone of
rk. As soon as r falls outside of the zone, it makes no
contribution to Ai(r), but more importantly its neighboring
cells are not placed on the stack (at step 5). This means that
when the stack is empty (and the algorithm finished),
distance evaluations, �rk ,r

, have only been necessary for
cells whose centers are either within the zone or in the
immediate ‘‘ring’’ surrounding the zone. It turns out that this
approach will work regardless of the size of the regular grid
of cells and the shape of the influence zone (as long as it is
continuously connected).
[29] This type of ‘‘mapping out’’ algorithm is common in

computational geometry problems and was previously used
by Sambridge et al. [1995] to solve similar geometric
problems arising in the construction of complex 3-D param-
eterizations for seismic tomography. By restricting all
calculations to only the influence zone of the paths, the
total cost of the calculation becomes proportional to NKI,
where N is the total number of paths, K is the average
number of steps per path, and I is the average number of
cells in the influence zone of the points along the paths, rk.
The computational cost can be compared to that of the
classical Montagner [1986] approach which sweeps the
entire Earth’s surface for each point along every ray path.
In that case, run time is proportional to NKX, where X is the

number of cells spanning the globe. Since Lcorr will typi-
cally be on the order of 500 km, we have I 	 X, and hence
the new scheme will be considerably more efficient than the
original (see Figure 3).

3.2. Optimized Computation of Bij

[30] The evaluation of Bij is essentially a double integral
along every pair of paths but with an integrand which is
negligible when the paths are further than a specified
distance apart, which we call their common influence zone.
Note that the distance between paths is itself a variable
along each path, and so following a similar reasoning to
previously, we need to restrict all calculations to point pairs
(rk, rl) on the i and j paths, respectively, which are less than
certain distance apart, i.e., �rk ,rl

< 2.64 Lcorr.
[31] The new scheme begins with a preprocessing step,

which consists of dividing the Earth’s surface into a number
of cells and determining which rays pass through each cell.
This can be achieved by simply stepping down each ray j
and locating the cell C containing each point rl. The step
length along the rays can be chosen independently of the
cell size. A step length much smaller than the cell allows a
better accuracy in sampling the cells crossed by the rays but
is more expensive. However, our experience shows that a
value of 2� (i.e., similar to the actual cell size) is both
efficient and produces indistinguishable tomographic maps
from much finer discretizations. In addition to storing the
list of rays j in each cell C, we also record the list of points rl
along ray j which lie in cell C. We denote these as rl (l = Cj1,
. . ., Cj2). Clearly, the computational cost of the preprocess-
ing step scales with the number of rays and the average
number of steps along each ray, i.e., NK.
[32] The main part of the algorithm consists of an outer

loop over all rays, i (i = 1, . . ., N). For each ray i we step
along the path points, rk (k = 1, . . ., K) and use the mapping
out algorithm described in Figure 4 to sample all of the cells
C within the influence zone about rk. For each cell C in the

Figure 3. For each point rk of the great circle i the algorithm in Figure 4 locates the current cell and
explores the model in a region located within 2.64Lcorr of rk. The ‘‘influence zone of the complete path’’
(in light gray) is the union of the ‘‘influence zones of each point along the great circle path’’ (shown in
dark gray for the first, middle, and last points). In the new approach only the model contributions located
within the influence zone of the rays are considered in the estimation of Ai(r). Because of the use of the
‘‘mapping out’’ algorithm no distance evaluations, �(rk, rl), are required outside the influence zone.
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Figure 4. Flowchart of the ‘‘mapping out’’ algorithm used to determine the influence zone about a
geographical point rk and to calculate its contribution to Ai(r).
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influence zone we already know which other rays j also pass
through that cell, together with their path points rl (l = Cj1,
. . ., Cj2). Therefore, for every ray j and each cell C we can
calculate the quantity

bij ¼
Xl¼Cj2

l¼Cj1

dsk

Li

dsl

Lj
s rkð Þs rlð Þ exp

��2
rk ;rl

2L2corr

 !
: ð17Þ

Note that the values bij form a matrix of the same size as the
matrix B formed by the values of Bij. By summing the
values bij for all cells C of the influence zone about rk and
then for all rk along path i we obtain the ith row of the
required matrix B. After repeating for all rays i we obtain
the complete matrix B.
[33] As before, the key point is that by exploiting the

mapping out algorithm, all calculations (including distance
evaluations �rk,rl

) are restricted to the part of paths j that
are located within the influence zone of path i (Figure 5).
[34] Assuming that n is the average number of rays per cell

and p is the average number of steps along a ray within a cell,
the computational cost for computing Bij becomes propor-
tional toNK +NKInp. In comparison, theMontagner original
scheme involves a double loop over each point of each ray to
compute the double integral in equation (11) and has com-
putation time proportional to (NK)2. Note that we always
have n 	 N and p 	 K. If N is very small and the path
coverage very poor, it can be more efficient to evaluate Bij

using the classical Montagner approach because a large
number of cells in the influence zone may not be crossed
by any path. In this case, although the computation needed to
estimateBij is increased, themore efficient calculation ofAi(r)
counteracts the effect, and overall, the new approach still
remains more efficient than the classical Montagner [1986]
scheme. As the number of data increases, say larger than a few
tens of paths, we show in section 2.5 that the new algorithm
for calculating Bij becomes significantly more efficient.

3.3. Performance of the New Scheme

[35] We made a series of tests to compare the perform-
ance of our optimized scheme with the original one

developed by Montagner [1986]. In all cases we generate
a realistic global synthetic coverage based on permanent
stations taken from the IRIS catalog and events from the
Harvard centroid moment tensor catalog [Dziewonski et al.,
1981]. For all paths the minimum epicenter-station distance
is taken as 1200 km, which is typical of surface waveform
tomography. The synthetic path average measurements are
generated by using the 3SMAC a priori Earth model [Nataf
and Ricard, 1995]. The inversion is performed under the
same conditions and using the same a priori values for both
the optimized scheme and the Montagner [1986] approach.
[36] Figure 6 and Table 1 summarize the results. In all

cases the velocity maps obtained using the two schemes are
identical. The largest number of paths for which use of
the original scheme was practical was 3090, and this took
9 hours 24 min 49 s to produce a result on a single 2.4-GHz
Pentium 4 processor with 2 Gb of RAM. The optimized
scheme achieved the same result in 3 min 6 s. (As seen in
Table 1, decrease in computation time by more than 98%
was achieved in all cases.) With the optimized scheme
we have been able to invert 21,184 seismograms in 3 hours
58 min on a standard workstation. The main limitation is the
amount of memory required. Inverting 21,184 seismograms
requires about 1.9 Gb of memory in this case. With
increasing speed and memory becoming available, much
larger data sets should be soon become practical on a single
workstation. Using about 4 Gb of memory on a single
processor of an IBM Power 4 machine, we have been able
to invert 37,320 path-average measurements in 22 hours
43 min. The input and recovered models for this case are
shown in Figure 7.
[37] An important point to note about the algorithms for

Ai(r) and Bij is that they are ideally suited to parallelization.
In the calculation of both Ai(r) and Bij each ray path is
processed independently and hence calculations may be
carried out simultaneously on different processors.
[38] Current efforts are directed to implementing a paral-

lelized version of the algorithms described in section 3.
Preliminary results show that using parallelization, it is
possible to improve efficiency still further. As an example,

Figure 5. For each point rk of the great circle i the algorithm in Figure 4 explores the Earth’s surface
within a distance 2.64Lcorr of rk (region in grey). With the new scheme, only the part of paths j that are
located within the influence zone of path i are considered in the estimation of Bij. No computation is made
outside of the influence zone.

B02316 DEBAYLE AND SAMBRIDGE: MASSIVE SURFACE WAVE TOMOGRAPHY

8 of 20

B02316



we have been able to invert 25,460 path average measure-
ments in 3 hours 16 min using 16 processors of the IBM
power 4 parallel machine at Institute for development and
Resources in Intensive Scientific Computing. On the basis
of these results we expect that data sets exceeding 50,000
paths will soon become practical on multiprocessor
machines.

4. Using Voronoi Diagrams to Assess Model
Constraint

[39] To circumvent the problems in assessing the resolu-
tion and a posteriori covariance when massive data sets are
involved, we propose a new procedure to estimate the
variation of constraint provided by the ray path coverage.
The approach makes use of computational geometry tech-
niques, which have seen several applications to geophysical
problems in recent times. Sambridge et al. [1995] presented
a technique for interpolating a property of the Earth spec-
ified at a series of reference points, while Gudmundsson and
Sambridge [1998] and Sambridge and Faletič [2003] make

use of Voronoi polyhedra and Delaunay tetrahedra as a
parameterization for 3-D travel time tomography.
[40] In all cases, algorithms from the field of computa-

tional geometry are used to partition a medium into either
Delaunay triangles (tetrahedra in three dimensions) or
Voronoi cells (polyhedra in three dimensions) constructed
around a set of irregularly spaced references nodes. In two
dimensions a Voronoi diagram divides the plane into a set of
polygons, one about each node, such that all points in a
particular cell are closer to its defining node than any other
node. Figure 8 shows an example on the Earth’s surface.
[41] Surface wave regionalization is a 2-D problem in

which the degree of constraint placed on seismic structure at
a given location is highly dependent on the distribution of
rays, which is always irregular. To produce a qualitative
measure of constraint we aim to build an ‘‘optimized’’
parameterization of the model in which each geographical
point belongs to the smallest cell for which an appropriate
‘‘quality criterion’’ is satisfied. If the quality criterion is
chosen to measure the degree of constraint imposed locally
on a particular type of inversion parameter, then the overall

Figure 6. Performance of the optimized scheme (solid line) against the original Montagner approach
(dashed line). All tests were carried out on a single 2.4-GHz Pentium 4 processor with 2 Gb of RAM.
Here azimuthal anisotropy is present in the inverted model, and the Earth model was discretized into cells
of 2� � 2�.

Table 1. Performance of the Optimized Scheme Against the Original Montagner [1986] Approacha

Number of Paths
Original Scheme

Computation Time, s
Optimized Scheme
Computation Time, s

Improved Efficiency,
%

60 50 1 98.0
111 116 2 98.3
223 288 5 98.3
395 762 8 98.9
805 2,499 21 99.2

1,532 7,862 53 99.3
3,090 33,889 186 99.4
5,672 763
11,303 3,422
16,936 7,956
21,184 14,282

aAll calculations were performed on a 2.4-GHz single processor with 2 Gb of memory. These values correspond to the curve displayed in Figure 6.
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pattern of the optimized parameterization will reflect varia-
tions in model constraint.

4.1. Constructing Optimized Voronoi Meshes

[42] As a starting point, we build an ‘‘initial Voronoi
diagram’’ from a uniform set of nodes, e.g., falling on a 2��
2� grid. Using a 2� � 2� grid, our initial Voronoi diagram
has therefore only 16,200 Voronoi cells across the globe and
can be handled easily on a single workstation.
[43] From this starting Voronoi diagram we proceed by

building a new Voronoi diagram in such a way that a
particular quality criterion (which depends on the ray

distribution) is satisfied for each cell. (For the moment we
omit the definition of the quality criterion and simply
assume that for any given cell on the Earth’s surface it is
possible to determine whether it is satisfied or not.) The
process of generating the new ‘‘optimized’’ Voronoi dia-
gram is simply a matter of deleting nodes which do not
match the criterion and then recalculating the Voronoi cells
about the remaining nodes. Note that when nodes are
deleted, the neighboring Voronoi cells inherit the area and
ray paths previously contained in the deleted Voronoi cell
(see Figure 8). This makes the new cells larger on average
and more likely to satisfy the quality criterion.

Figure 7. (a) Input SV velocity distribution used in the synthetic tests (from the 3SMAC model of Nataf
and Ricard [1995]). (b) Final model after the inversion of 37,320 synthetic path average measurements.
The corresponding ray density is shown in Figure 15. Recovery is excellent in most parts of the globe.
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[44] Imposing a 2� � 2� lower limit on the initial Voronoi
diagram is not a disadvantage when dealing with surface
wave measurements in the period range of 40–300 s
because the shortest distance scales resolvable will be of
the order of a few hundred kilometers anyway.
[45] A complication in the approach described thus far is

that every time a node is removed, one should, in principle,
recalculate the positions of all remaining Voronoi cells and
update their quality criteria. This is because the removal of
any one node can affect the value of the quality criterion in
its neighbors, and so all need to be recalculated before
deciding on which node to delete next. The resulting
optimized Voronoi diagram therefore depends on the order
in which the nodes are removed. In practice, we iterate the
procedure and at each stage randomly remove a fixed
fraction of the nodes whose cells do not satisfy the quality
criterion. Experience shows that so long as the fraction
removed is small (
10%) the order is not important but the
cost of the procedure is considerably reduced. Figure 9
shows a flowchart of the deletion process. By deleting a
small proportion of nodes at each iteration in this way we
can build an optimized Voronoi diagram very close to the
ideal one that would contain the largest possible number
of cells for which the corresponding quality criterion is
satisfied.

4.2. Quality Criterion

[46] Here we propose a particular quality criterion based
on the azimuthal distribution of surface wave paths within

each cell. The azimuthal variation of surface waves is well
known since the work of Smith and Dahlen [1973], who
established the following relation for surface waves phase
and group velocities in a slightly anisotropic medium:

C Tð Þ ¼ C0 Tð Þ þ A1 Tð Þ cos 2qð Þ þ A2 Tð Þ sin 2qð Þ þ A3 Tð Þ cos 4qð Þ
þ A4 Tð Þ sin 4qð Þ; ð18Þ

C0(T) is the isotropic term representing the local value of the
phase and group velocities and A1(T), A2(T), A3(T) and
A4(T) are anisotropic coefficients.
[47] From a set of path-average phase or group velocity

curves, it is possible to build some tomographic maps for
the lateral variations and azimuthal anisotropy in group or
phase velocity. A recent global study by Trampert and
Woodhouse [2003] suggests that both 2q and 4q terms are
required to explain Rayleigh phase velocities while Love
waves do not require 2q terms. Montagner and Nataf [1986]
have shown that the local values of C0(T), A1(T), A2(T),
A3(T), and A4(T) can be inverted for an isotropic term
associated with the local shear velocities and for anisotropic
terms corresponding to linear combinations of the elastic
coefficients. The inversion at depth is straightforward be-
cause the partial derivatives needed are those of a trans-
versely isotropic medium with a vertical axis of symmetry
[Montagner and Nataf, 1986]. In the case of Rayleigh
waves the largest partial derivatives for the anisotropic
terms are associated with the cos(2q) and sin(2q) terms
and the azimuthal variation for a long-period SV wave
propagating horizontally with velocity bv at a given depth
z can be approximated with the following expression
involving only the 2q variation:

bv zð Þ ¼ bv0 zð Þ þ Gc=2rbvð Þ cos 2qð Þ þ Gs=2rbvð Þ sin 2qð Þ; ð19Þ

where bv0(z) is the isotropic shear velocity at depth z and Gc

and Gs are some combinations of the elastic parameters
described by Montagner and Nataf [1986].
[48] In the case of Love waves the dominant anisotropic

terms for the inversion are those associated with the cos(4q)
and sin(4q) terms and the following relation yields for a long-
period SH wave propagating horizontally with velocity bh:

bh zð Þ ¼ bh0 zð Þ þ Cc=2rbhð Þ cos 4qð Þ þ Cs=2rbhð Þ sin 4qð Þ: ð20Þ

The combinations of the elastic parameters Cc and Cs are
also given by Montagner and Nataf [1986]. Lévêque et al.
[1998] demonstrate that equations (19) and (20) are those
that govern, in the long-period approximation, the velocities
of long-period SV and SH waves propagating horizontally in
the azimuth q. Therefore, even in fully anisotropic structure,
the velocity of horizontally propagating long-period SV and
SH waves, in a depth range controlled by the rank and the
period of the mode, is the most influential factor in the first-
order variation of surface wave phase velocities. Finally,
note that modern surface wave tomographic procedures
often involve the building of path average 1-D shear
velocity models before inverting them to retrieve the local
structure [e.g., Zielhuis and van der Hilst, 1996; Debayle
and Lévêque, 1997]. Lévêque et al. [1998] show that
equations (19) and (20) can be used to retrieve the local
distribution of shear velocity and anisotropy from a set of

Figure 8. An example of a Voronoi diagram on the Earth’s
surface. The boundaries of each cell are great circles
equidistant from the defining nodes, which are plotted as
filled circles. Each Voronoi cell contains that part of the
Earth’s surface closest to the defining node. In this case the
nodes are randomly positioned. The Voronoi diagram is
used to build qualitative measures of model constraint is
section 4.
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path average SV and SH models obtained after applying a
waveform inversion technique.
[49] The Rayleigh waves cos(2q) sin(2q) variation are

periodic in p and require at least three paths with different
azimuths to be properly retrieved without aliasing artifacts
(the Nyquist criterion). Figure 10 illustrates a quality
criterion which ensures that the azimuthal coverage is
dense enough in each cell to resolve a 2q azimuthal
variation. Here the quality criterion is based on a subdi-
vision of the 180� azimuth range into five bins of 36�
each. A score of 1 is given if at least one path samples the
corresponding azimuth range in a given cell, otherwise it
is set to 0. With five azimuthal bins, there are 25 possible
combinations of scores for any cell, and we divide these
into the eight possible classes shown. Each class repre-
sents an approximately equivalent level of azimuthal
coverage.
[50] For any given ray path coverage an optimized

Voronoi diagram can then be generated using the nodal
deletion technique in Figure 9 by requiring that the final
cells all belong to class 1, i.e., at least one path in each
36� azimuth bin. This ensures that a minimum of three
different azimuths are sampled in each cell, so that the
azimuthal variation of Rayleigh waves can be resolved.
Note that a similar quality criterion can be developed for
Love waves by using nine azimuthal bins of 20� each.
This would guarantee that a minimum of five directions
are sampled, and hence that the cos(4q) sin(4q) azimuthal
variation, which is the most important for resolving Love

waves and long-period horizontally propagating SH
waves.

4.3. Examples

[51] We present here two examples illustrating applica-
tions of the automated procedure for building optimized
Voronoi diagrams. In each case the quality criteria repre-
sented by Figure 10 for Rayleigh waves are used. At each
iteration of the process, N nodes corresponding to a per-
centage P of the initial number of nodes are deleted. The N
nodes are taken in the ‘‘worst’’ class, according to the
classification of Figure 10. If N is larger than the number
of nodes Ni in class i, Ni nodes are removed in class i, while
the remaining N � Ni nodes are taken from class i � 1. This
process is applied until nodes remain only in classes 1 and 2.
At this stage the N2 remaining nodes are removed by
halving, over two iterations.
[52] In Figure 11 we plot three examples of optimized

Voronoi diagrams obtained by applying our procedure with
P = 10%, P = 5%, and P = 1% to an actual database of
24,124 Rayleigh wave seismograms (Figure 12) previously
analyzed in Australia [Debayle and Kennett, 2003], north-
eastern Africa [Debayle et al., 2001], Asia [Priestley and
Debayle, 2003], and South America [Heintz et al., 2000].
The three optimized Voronoi diagrams are extremely similar
in the well-resolved areas where small Voronoi cells are
obtained. The most significant differences occur in the
poorly resolved regions where the shape of some of the
cells can be affected by the random process used to delete

Figure 9. Flowchart of the iterative procedure used to generate the optimized Voronoi diagram with
respect to any quality criterion. At each iteration the cells neighboring those deleted increase in size and
capture more rays, which makes them more likely to satisfy the quality criterion.
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the nodes. Large Voronoi cells fill up regions with no
seismic rays such as the Pacific Ocean. Only the edges of
these large cells are sampled, generally by small portions of
rays with different azimuths. They tell us that if we aim to
determine anisotropic directions on the whole Earth with
our ray coverage, in some regions it is not possible to do a
better job than using the crossing rays on the edge of the
cells to constrain the azimuthal direction before extrapolat-
ing the measurement over a large surface.
[53] Note that the inversion procedure is designed to deal

with this kind of underdetermined problem through the
definition of the a priori model covariance. In regions not
sampled by seismic rays the inverted model stays close to
the a priori model. This can be seen in Figure 13, where no
azimuthal anisotropy is observed in the regions poorly
sampled by the data. The size and shape of the Voronoi
cells are more interesting in the regions sampled by seismic
rays. In the well-sampled regions, such as the eastern and
north central part of Australia, most of Siberia, the north-
eastern part of Africa and Saudi Arabia and most of South
America the initial 2� � 2� cells are preserved in the
optimized Voronoi diagram. This means that restricting
the inversion to those parameters that describe the 2q
azimuthal anisotropy of Rayleigh waves, our ray distribu-
tion allows resolution of azimuthal anisotropy in these
regions on a 2� � 2� grid. In practice, the data often require
variations of both isotropic and anisotropic parameters and
this decreases the horizontal resolution.
[54] With the quality criterion of Figure 10 the optimized

Voronoi diagram is a proxy for resolution of the 2q
azimuthal parameters but does not incorporate any a priori
information on data and model and does not take into
account the decrease in resolution which would result when

other parameter types are introduced. At first glance, our
optimized Voronoi diagram is far from a rigorous estimation
of resolution which should incorporate both effects. How-
ever, in practice, we can argue that the information provided
is quite reasonable. This is because the interpretation of the
optimized Voronoi diagram can be guided by the horizontal
degree of smoothing imposed a priori. Note that in order to
minimize trade-off between isotropic and anisotropic
parameters the horizontal degree of smoothing should be
chosen in such a way that both parameters can be resolved
on the smallest surface over which the model is required to
be smooth (in our case this surface is circular and has a
diameter close to Lcorr). Therefore when the size of the
Voronoi cells is comparable to the horizontal degree of
smoothing imposed a priori, the azimuthal anisotropy is
guaranteed to be resolved. Conversely, where the size of the
Voronoi cells are larger, data constraint on local Rayleigh
wave azimuthal variations is less, and so if the Voronoi cell
size exceeds the horizontal degree of smoothing imposed a
priori, then azimuthal anisotropy should not be interpreted.
[55] In Australia it is possible to compare the pattern of

Voronoi cells observed in Figure 11 with the a posteriori
error maps published at 100 km by Debayle and Kennett
[2000] or with the resolution maps published by Simons et
al. [2002]. At 100 km depth the structure is constrained by
most of the paths used by Debayle and Kennett [2000], with
a ray coverage very similar to the one available here. A
good agreement exist between the pattern of Voronoi cells
observed in Australia and the a posteriori error maps.
However, if the Voronoi diagram provides us with a
somewhat more qualitative information than the absolute
value of the error, the information regarding the size and the
shape of the region where a given parameter can be resolved

Figure 10. Definition of a quality criterion measuring azimuthal path coverage. The 180� azimuth range
is divided into five ‘‘boxes’’ of 36�. The quality criterion is based on a sequence of five numbers, one for
each box. Each number is either set to 1 if at least one path samples the azimuth range represented by the
box, otherwise it is set to 0. With five boxes, 25 possible values exist for the quality criterion which can
be grouped into the eight classes shown. These have equivalent azimuthal coverage. Each cell of the
optimized Voronoi diagram is designed to be in class 1 (at least one path in each 36� box), thereby
ensuring that azimuthal variation of Rayleigh waves is well resolved. White bars simulate the worst
azimuthal ray sampling possible in class 1, where only three different azimuths are sampled.
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Figure 11. Optimized Voronoi diagram for (a) P = 10%, (b) P = 5%, and (c) P = 1%. The corresponding
ray path coverage is shown in Figure 12.

B02316 DEBAYLE AND SAMBRIDGE: MASSIVE SURFACE WAVE TOMOGRAPHY

14 of 20

B02316



is more complete. A set of Voronoi cells elongated in the
east-west directions, as observed on the western coast of
Indian or in the southern Atlantic Ocean eastward of the
Brazilian coast, suggests that changes in anisotropic direc-
tions are more easy to resolve in the north-south directions
than in the east-west direction.
[56] Figure 14 shows a second example where the opti-

mized Voronoi diagram is built using P = 10% for a
synthetic coverage of 37,320 paths corresponding to a
realistic distribution of stations and events shown in
Figure 15. The optimized Voronoi diagrams for P = 1%
and P = 5% are virtually indistinguishable from Figure 14
and are not shown. In this case the process took 12
iterations (54 min 29 s) for P = 1%, 3 iterations (15 min
04 s) for P = 5%, and 2 iterations (14 min 14 s) for P = 10%
(using the same hardware as previously). The optimized
Voronoi diagram of Figure 14 mostly consists of a regular
2� � 2� grid. Larger Voronoi cells are only needed in some
parts of the Southern Hemisphere because of the lack of
seismic stations. This confirms that on the basis of ray
distribution alone, the azimuthal variations of Rayleigh
waves could, in principle, be resolved almost everywhere
on the Earth at this scale. However, as the inversion is likely
to be unstable when both isotropic and anisotropic param-
eters are involved, a priori information on these parameters
needs to be introduced and will therefore reduce the
resolution. Global surface wave tomography has been until
now restricted to the period range between 40 and 300 s,
where surface waves have Fresnel zones with maximum
widths exceeding a few hundred kilometers. This further
limits the horizontal resolution attainable since under the
assumption of ray theory, such surface wave data cannot in
principle resolve structures smaller than the Fresnel zone
width [e.g., Spetzler and Snieder, 2001]. The horizontal
correlation length Lcorr introduced in the inversion (see
equation (5)) is chosen to mimic the Fresnel zone of long-
period surface waves and forces the inverted model to be
smooth, and hence it is not possible to resolve structure with

wavelengths shorter than the Fresnel zone. As a result, a
somewhat smoother pattern of anisotropy is obtained in
Figure 13 compared to the size of the Voronoi cells in
Figure 11. It will always be the case that the actual
horizontal resolution achieved in surface wave tomography
will be a combination of the geometrical constraint given
the azimuthal distribution of rays and the limitations im-
posed by the underlying physics of surface waves.
[57] With the quality criterion used in this paper our aim

has been to produce a simple, efficient, and practical guide
on the resolution attainable for azimuthal parameters. In
principle, it is possible to design a more sophisticated
Voronoi diagram that would tell us more about the resolv-
ability of a given parameter at a given depth or period.
For example, an optimized Voronoi diagram could be
built separately for the fundamental and the higher modes
coverage. In the case of the regionalization of 1-D depth-
dependent path average shear velocity model, the ‘‘a pos-
teriori’’ error at each depth on the path average models
could be used to discriminate between paths that constrain
different depth intervals. It may also be possible to design
other quality criteria that would be closer to the inverse
operator and hence obtain a better estimate of resolution.
These remain areas for further study.

5. Application to Real Data

[58] We have applied the algorithms described above to
the tomographic inversion of 24,124 Sv velocity path
average measurements obtained using the automated ver-
sion [Debayle, 1999] of the Cara and Lévêque [1987]
waveform inversion technique. The corresponding ray cov-
erage is shown in Figure 12, and two maps of the lateral
variations in shear wave velocity and azimuthal anisotropy
at a depth of 100 and 150 km are presented in Figure 13.
The tomographic inversion took approximately 5 hours per
layer on a single 2.4-GHz Pentium 4 processor, using 2 Gb
of memory.

Figure 12. Ray coverage corresponding to the 24,124 path average measurements compiled from four
regional tomographic studies by Debayle et al. [2001] (eastern Africa, northern Indian Ocean, and
southern Asia), Debayle and Kennett [2003] (Australia and surrounding oceans), Heintz et al. [2000]
(South America and surrounding oceans), and Priestley and Debayle [2003] (Asia).
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[59] The optimized Voronoi diagrams of Figure 11 con-
firm that the ray coverage is dense enough to constrain the
Sv wave azimuthal anisotropy beneath most of Asia, north-
eastern Africa, central and eastern Australia, and South
America. In western and southern Africa, in the southeast
Atlantic Ocean, and in western Australia the larger Voronoi
cells indicate a degradation of resolution, but their size
remains comparable to the horizontal correlation length of
400 km used for the inversion. This suggests that anisotropy
can still be interpreted. In other regions (e.g., North Amer-
ica) the size of the Voronoi cells generally exceeds the

horizontal correlation length indicating a lack of resolution.
Here the inverted seismic parameters generally remain close
to the a priori values (i.e., no anisotropy and a Sv wave
perturbation close to 0%) in Figure 13 and should not be
interpreted.
[60] This preliminary joint inversion of the data associated

with four regional tomographic models underlines the ability
of the continuous regionalization approach to process het-
erogeneous data sets. The Tarantola and Valette [1982]
inversion scheme naturally finds a compromise between
the smoothness required by the Gaussian a priori covariance

Figure 13. SV wave heterogeneities and azimuthal anisotropy (black bars) at (a) 100 km and (b) 150 km
depth obtained from the inversion of 24,124 path average measurements of Figure 12. Hot spots locations
are indicated with green circles. The length of the black bars is proportional to the maximum amplitude of
azimuthal anisotropy. The reference velocity for the Sv wave heterogeneities is PREM. See color version
of this figure at back of this issue.
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function and the level of heterogeneities required by the data.
In regions where no coverage is available, such as the
Pacific, southern Indian Ocean, or Antarctica, the inverted
model displays no lateral heterogeneities and stays at the
uniform a priori model. In poorly covered regions such as the
northern Canadian shield, long-wavelength lateral variations
imposed by the a priori covariance function characterize the
model, while much more structural detail is present beneath
the well-covered continents.
[61] The geodynamical results associated with each re-

gional tomographic model have been discussed in detail by
Heintz et al. [2000], Debayle et al. [2001], Priestley and
Debayle [2003], and Debayle and Kennett [2003]. We note
here that the joint inversion allows us to improve the
coverage in the regions where the different regional studies

overlap, mostly in southern Asia and central Africa
(Figure 12). It also allows a direct comparison of results
of different regional tomographic studies. For example, the
joint inversion reveals that significant heterogeneities exist
in the amplitude of seismic anisotropy in regions where
good resolution is achieved. This is especially clear beneath
the slowly moving African plate, which is associated with a
weak azimuthal anisotropy, compared to Australia, South
America, and Asia. We also note that the correlation
between seismic heterogeneities and surface tectonics is
extremely good. At 100 km depth, high seismic velocities
are associated with the main cratons and the bottom of old
oceanic basins where surface waves are still sensitive to the
thickest oceanic lithosphere. At 150 km depth, high seismic
velocities are observed beneath cratons and some tecton-

Figure 14. Optimized Voronoi diagram for P = 10%. The corresponding ray density is shown in
Figure 15.

Figure 15. Ray density averaged over 4 � 4 degree cells, distribution of events (circles) and stations
(stars).
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ically active regions where the lithosphere is thickened by
subduction (e.g., Tibet). Slower seismic velocities are lo-
cated in the oceanic asthenosphere, and beneath the thin
Phanerozoic lithosphere of eastern Australia and Asia.
[62] Finally, we note a reasonable correlation between the

pattern of slow velocities and the location of the main hot
spots according toMüller et al. [1993]. This is, for example,
relevant at a depth of 100 km in the southern Atlantic
Ocean and in Africa. Our ability to retrieve heterogeneities
with wavelengths shorter than 1000 km is enhanced by
the large number of short paths used in this preliminary
inversion.
[63] Under the assumption of ray theory, surface waves

cannot in principle resolve structures smaller than the
Fresnel zone width [e.g., Spetzler and Snieder, 2001]. It
is, however, a matter of debate as to which subregion of the
first Fresnel zone should be considered to properly model
the scattering sensitivity of surface waves. Yoshizawa and
Kennett [2002] show that a primary sensitivity zone span-
ning only about one third of the width of the first Fresnel
zone represents the region over which surface waves are
coherent in phase. They argue that the crossover region
between the primary sensitivity zone of two physical rays
provides an upper bound for the lateral resolution that can
be achieved in surface wave tomography. This crossover
region is slightly larger than the width of the sensitivity
zones which are less than 500 km for paths shorter than
6000 km and periods smaller than 100 s (Figure 16). On the
other hand, Spetzler and Snieder [2001] found that a
broader sensitivity zone which almost entirely encompasses
the width of the first Fresnel zone has to be considered in
order to adequately model scattering under the Born/Rytov
approximation. For path lengths typical of global surface
wave tomography (8000–10,000 km), Figure 16 shows that
the upper bound for horizontal resolution is on the order of
1000–1500 km between 50 and 100 s periods. Note that the
maximum width increases with path length, irrespective of
the choice of subregion for the first Fresnel zone. It is clear

that short paths are associated with thinner Fresnel zones
and allow improved lateral resolution using ray theory.
Short paths also have the advantage of being less sensitive
to spurious effects such as multipathing or focusing/defo-
cusing compared to the longer R1 and R2 paths commonly
used in global tomography. Therefore, in regions where
short paths allow sufficient coverage it is expected that
structures with smaller horizontal wavelengths can be
resolved.
[64] A histogram of path lengths for the 24,124 path

average measurements presented in Figure 17 has 73%
of the paths shorter than 6000 km. Our preliminary results
suggest that structure with wavelengths smaller than
1000 km can be resolved in the uppermost 300 km of the
mantle. This is consistent with the prediction of Yoshizawa
and Kennett [2002] but suggests that the estimation by
Spetzler et al. [2002] is too pessimistic. Note also that these
short-wavelength heterogeneities have not previously been
resolved in global tomography where the lateral resolution
is usually larger than 1000 km. The recent S20RTS global
Sv wave model of Ritsema et al. [1999] has a horizontal
resolution of the order of 2000 km. In the upper mantle and
transition zone, S20RTS is primarily constraint by funda-
mental and higher-mode surface waves, while long-period
body waves have also been incorporated to provide addi-
tional resolution down to the lower mantle. In S20RTS the
fundamental and higher-mode surface wave data set comes
mostly from the work of van Heijst and Woodhouse [1999],
who did not process paths shorter than 3500 km and
favored large earthquakes with well-excited overtones at
periods greater than 100 s. Long-period overtones contrib-
ute significantly to resolve heterogeneities in the transition
zone because of their deep penetration, but they limit lateral
resolution. In this study we favor shorter paths (33% of
our paths are shorter than 3500 km), and to achieve a
good horizontal coverage, we need to incorporate a larger
proportion of intermediate size earthquakes. The use of
shorter paths allows us to improve the lateral resolution
in the uppermost mantle; however, the use of intermediate
size earthquakes limits the number of events that can
be analyzed at periods greater than 100 s, especially for
the overtones and therefore reduces the sensitivity to
structure deeper than 500 km compared to Ritsema et al.
[1999].

Figure 16. Maximum width of the sensitivity zone (as a
function of path length) required to adequately account for
scattering effects according to Yoshizawa and Kennett
[2002] (dashed line) and Spetzler et al. [2002] (continuous
line). The light gray curves show the case for 50 s period,
and the dark curves show the case for 100 s. In each case
this ‘‘sensitivity zone’’ corresponds to only a subregion of
the first Fresnel zone.

Figure 17. Distribution of lengths for the 24,124 paths of
Figure 12.
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[65] We are currently working on building a new global
tomographic model, primarily constrained by a massive data
set of epicenter-station paths shorter than 10,000 km. The
new model will benefit from a large proportion of short
epicenter-station paths related to intermediate size earth-
quakes, typical of regional tomography at the scale of a
tectonic plate, but will also include larger events to improve
the sampling of the deep structure using long-period fun-
damental modes and overtones. In this way, we aim to
image the upper mantle structure at a global scale with a
lateral resolution of a few hundred kilometers, typical of
what can be currently achieved in regional surface wave
tomography.

6. Conclusions

[66] We have presented an approach that allows surface
wave tomography to be applied to the massive volumes of
data currently available at the global scale. The new scheme
is an extension of the continuous regionalization method of
Montagner [1986] in that it preserves its use of a priori
information on the model but considerably improves effi-
ciency. All of the advantages of the Montagner [1986]
continuous regionalization approach are retained, including
its robustness and use of a continuous parameterization
instead of expansion in terms of arbitrarily truncated basis
functions (a well-known source of artifacts in tomographic
models). The use of a Gaussian a priori covariance function
on the model is particularly useful with large or mixed
regional and global data sets because it naturally handles the
inevitable variations in the ray path density.
[67] Experiments show that the scheme allows the region-

alization of up to 25,000 path-average measurements in a
few hours on a standard workstation. It is also ideally suited
to parallelization, which in the near future should make
routine the inversion of data sets exceeding 50,000 paths.
[68] To circumvent the difficulty of assessing resolution

and a posteriori covariance when such large data sets are
involved, we have proposed a new technique, based on the
construction of optimized Voronoi diagrams. In this ap-
proach the size of the Voronoi cells gives an indication of
the scale length of the structure that can be resolved, while
their shape provides information on resolvability of struc-
tural variation along different azimuths.
[69] The first application of the complete approach to a

real data set of 24124 path average Sv wave measurements
suggests that in most parts of the Earth, upper mantle
heterogeneities with wavelength smaller than 1000 km
can be resolved. With the new approach it will be possible
to combine into a single global inversion, the multiple data
sets of fundamental and higher-mode surface waves that are
more typically associated with regional tomography.
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Figure 13. SV wave heterogeneities and azimuthal anisotropy (black bars) at (a) 100 km and (b) 150 km
depth obtained from the inversion of 24,124 path average measurements of Figure 12. Hot spots locations
are indicated with green circles. The length of the black bars is proportional to the maximum amplitude of
azimuthal anisotropy. The reference velocity for the Sv wave heterogeneities is PREM.
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