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We consider a wide class of increasing Lévy processes pedury an independent Brownian motion as a degradation model
Such family contains almost all classical degradation nsdensidered in the literature. Classically failure tinss@ciated

to such model is defined as the hitting time or the first-passimge of a fixed level. Since sample paths are not in general
increasing, we consider also the last-passage time asithefame following a recent work by Barker and Newby [4]. We
address here the problem of determining the distributidhefirst-passage time and of the last-passage time. Inghsdation

we consider a maintenance policy for such models.

Keywords:First-passage time, last-passage time, scale functiduregaime, Lévy process, gamma process, compound Poisson
process, Brownian motion with drift
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1 Introduction and Model

For several decades, degradation data have been more aadisgarto understand ageing of a device, instead of
only failure data. The most widely used stochastic procefsedegradation models belong to the class of Lévy
processes. More precisely, the three main models are tlwviof ones: (a) Brownian motion with (positive)
drift; (b) gamma processes; (c) compound Poisson procebtm® generally we consider a broad class of Lévy
processes corresponding to subordinators perturbed mdapéndent Brownian motion:

VtZO,Dt:Gt+UBt

where{G, t > 0} is a subordinator, i.e. a Lévy process with non decreasintpkapaths. Since jumps of
{D;, t > 0} are issued frodG,, t > 0} and are positive, we recall that we say that;, ¢ > 0} is spectrally
positive This process can be characterized in terms of Lévy expenent

Vu€eR, exp(tép(u)) =E[e™”'] = exp(toc(u)) exp(top(u)) = exp(tc(u) eXp(—%tu%Q)

o (u) = ifiu + A\{O}[ei“x — 1 —duxl_ 1)(2)]Q(dx)

Exponentgp is associated to the Brownian motion and to G, which is in all generality a jump process.
It follows that the Lévy measure dfD;, ¢ > 0} is the same as that diG;, ¢t > 0} that we will denote by
vp(dz) = Q(dx). Furthermore we will suppose that meas@re) admits a density with respect to the Lebesgue
measure, i.e. thad(dz) = q(x)dz for some density(.). In the following we will also need

. 1
op(u) = ¢op(iu) = pa(u) + §u202,
i.e. op(u) is such thal[e~ "] = et*r ("), We recall, sincd Gy, t > 0} is a subordinator, that may write in this

casepp(u) in the following way

() = —pu+ /0 e QU + e,
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for someu > 0. We consider in this paper several approaches for modealiggadation of a device and its failure
time. Failure time can traditionally be derived from a detation model by considering the first hitting tirfig

of a critical levelb > 0. The first-passage time distribution has been already el finr the particular case of two
sub-models. In the case of Brownian motion with drift (cepending toG; = ut, u > 0), it is the well-known
inverse Gaussian distribution, see [15] for instance. Rerpure gamma process (i.e.= 0 and{G;, ¢t > 0}

is a gamma process), it has been studied by Park and Padgktt\Mdreover they proposed an approximation
for the cumulative distribution function of the hitting terbased on Birnbaum-Saunders and inverse Gaussian
distributions.

Recently a new approach to define the failure time was prapbgeBarker and Newby [4] that consists in
considering théast passage time of degradation proc€sk, ¢ > 0} aboveb. As explained in that paper, this is
motivated by the fact that, even{fD;, ¢t > 0} reaches and goes beyohdesulting in a temporarily "degraded"
state of the device, it can still always recover by gettingkdaelowd provided this was not the last passage time
throughd. On the other hand, if this is the last passage time then raveeg is possible afterwards and we may
then consider it as a "real" failure time. Of course, thizdssion about modelling failure time by the first or last
passage time becomes irrelevant whenever prog@sst > 0} has non decreasing paths (which is not the case
e.g. of the Brownian motion) since in that case both quastitbincide.

In this paper we then investigate these quantities for @ratide class of so-called perturbed process. In Section
2 we provide the Laplace transform of the first passage Tineith penalty function involving the corresponding
under and overshoot of the process. We then confront thisbapp to related recent existing results on such
passage times distributions in the general theory of Léwggsses, that introduces the notion of so-calleale
functions The case of several sub-models is reviewed (or revisitéd)these cases the probability distribution
function (pdf) and/or the cumulative distribution funeti¢cdf) can be computed explicitly, or at least numerically.
In conclusion of this section we propose an alternative alggion process that takes into account the fact that the
process cannot be in theory negative and suggest$ ihatt > 0} be reflected at zero. In that setting we use the
aforementioned recent results in the theory of Lévy andatefteLévy processes to obtain the joint distribution
of the first passage time jointly to the overshoot distritmti In Section 3 we study the case where failure time
corresponds to the last passage timeaboveb and derive its distribution in the non reflected and reflectse.
Finally we consider in Section 4 a maintenance policy pnobilespired by [4] and derive distribution of related
quantities.

To conclude this introduction, we make precise where in ttesgnt paper previously published results are
reviewed and what is actually novel. Proposition 2.2 in ®eacR.1 is new, but its proof is similar to the one
corresponding to proof of Remark 4.1 as well as Expressibd3 é&nd (4.5) of Garrido and Morales [16]. Section
2.3 recalls facts (with short proofs) previously estatdislin the literature that are useful later on. On the other
hand and to the best of our knowledge, Theorems 3.2 and 3.&ditio8 3 concerning last passage times may be
linked to Chiu and Yin [11], Baurdoux [5] and recent paper Kgpouet al. [21] but are otherwise genuinely new.
Similarly Section 4 deals with determining reliability quaies features unheard-of results.

2 First-passage time as failure time
We consider here the hitting time distribution of a fixed ldve- 0 by the perturbed proce$®;, ¢t > 0}:

Ty, =inf{t >0; D; > b}

which we remind is a.s. finite. We study below the distribntas (7, D1, —, D, ) by determining the following
quantity
¢w(5; b) - E(eiswa(DTb*aDTb» (2)

whered > 0 andw(.,.) is an arbitrary continuous bounded function that will beeregd to apenalty function

In the following we will drop the subscript when there is nolaguity onw(.,.) and then writes(, b) instead of
¢w(6,b). We then determine (1) in the general case and then illestrait results to sub-models, some of which
distribution ofT; has already been obtained.

2.1 General case

We are interested in the case where prodéss ¢ > 0} is general. To this end, we use a well known technique
that consists in approaching the jump part procedgsin ¢ > 0} by a compound Poisson processes which, as said
in the Introduction, is similar to the one used in [16] (for raaletails see Appendix A.1 in [16]). More precisely
this process can be pointwise approximated by a sequenoagfauind Poisson processés (¢, 7)):>o0)nen SUCh
that:
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1. (S(t,n))nen Is increasing for alt > 0,
2. pt +lim, o S(t,n) = Gy forallt > 0,

3. foralln, (S(t,n)):>0 has intensity\,, and jump size with c.d.fP, (z) with

A = Qu/n) ) 2)
Py(z) = Wl{wzwn} (3)

whereQ(z) := Q([x, +o0)). Note that) defines measure such th@tdz) = —Q(dz).

([o,
n — oo, i.e. when process has infinitely many jumps on any interiretuitively {S(¢,n), ¢
from {G:, t > 0} by discarding all jumps that are of size less thdn. Since{S(¢,n), t > 0} i
{D, t > 0}, we have that

Note that this approach is particularly interesting when= Q(1/n) — Q(0) = o)) = +oco as

> 0} is obtained
ncreases towards
'\ T1p, n— o0, a.s, 4)

whereT}" is the hitting time of leveb of the truncated proceg9Dy, ¢t > 0} defined byD}* = S(¢,n) + 0B, for
anyt > 0 and anyn € N. We remind thafl}* is also a.s. finite. In fact}’ may be described as a ruin time (i.e.
the first hitting time o) of a stochastic process) in the following way:

Ty =inf{t >0; b—pt— S(t,n) + 0B, <0}

and we are interested in the Laplace transfgrni) := E(e—éT?w(D%g_, D%bn)) of T with penalty function
w(.,.) forallé > 0. Letp, = p,(d) be the positive solution to the following equation:

0.2

)\n/ e P AP, (x) = A + 0 —
0 2

P+ 11pn (5)
that we will callgeneralized Lundberg equatiowe start by showing convergence®f asn — oc.

Proposition 2.1 p,, converges as — oo to the unique solutiop > 0 to the following generalized Lundberg
equation:

o?
0——5pr =valp) = d=vp(p) (6)

Proof: Thanks to Expressions (2) and (3).0f and c.d.f.P,,, we may rewrite (5) in the following way

[e’e] -~ 2 e’} e’} 2
/ awnmwdwmwwf%ﬁ+wn¢¢/ Q) = [ Q(dx) + 38— Tp% +
1/n 1/n 1/n
2 o]
= /- %pi + [pn +/ (1—e ") Q(dzx) = 0.
1/n

Thusp,, is the only positive solution to equatign(z) = 0 wheref, (z) := 5*%222+M2+f107n (1 —e ") Q(dx).
Let us note thatf,, ),y increasingly converges pointwise towards

2

F&) =0 et [ (1= ) QU =0 - (),

so thatp,, converges increasingly towar@$ := sup,,cy pn. Besides one can verify thgt(z) = 0 admits an
unique solution or0, +o0c), which is solutiorp to Equation (6). Thug* is less than or equal to solutigrand we
prove that we in fact have equality = p which is achieved by showing th#fp*) = 0. Indeed, using inequality
0<1-e** <zzforall z,2 > 0and sincef,(p,) = 0, we have

FE) = 176" = Falp) < 150" = Fou)| + 17 (0n) = Falow)]
1/n 1/n
If(p*)Aijpn)l**][ (14*6‘ﬁ"m)62(dw)f§Ij(p*)gfj(pn)l%fpnjf 2Q(dz)
0 0

IN

1/n
U@w—fmm+pA Q(dz) sincep, < p* < p. @)

IN
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We recall that the fact th&tG;, ¢t > 0} is a subordinator (a non decreasing Lévy process) impl'alasfgﬁ(l A

7)Q(dz) < +oo (see e.g. (2) p.72 of [6)]), heng%l/" xQ(dr) — 0. Remembering thaf is a continuous
function, this implies that (7) tends to zeronas~ +oo, hencef(p*) = 0. |

The Laplace transform,, (§) with penalty functionw(.,.) of T;* is given through the following which is a
particular case of Theorem 2 of [29] adapted to our context:

Theorem 2.1 Letw(.,.) be a bounded continuous function and define
wp(x) = / w(z,y — x)dP, (y).
Thenb — ¢,(,b) := ]E(e—‘sTlflw(D%gu, Dr.)) satisfies the renewal equation

where functiong,, (-, -) andh,(-, -) are defined by

2 [V o on @) [ gmpa@)a—s)
gn(5,y) = 0_— € " e dPn(x)dS (9)
0 s
2 2>\n 4 2 o0
ha(By) = e l2/P a4 2An / o—=201/0%+pn (9))(y—3) / =P @@=y, (p)dads.  (10)
o 0 s

Proof: With notations of [29], we have, (§, y) expressed as in (1.10) therein with= b(5) = —2u/0? + p,(6),
A= A\, P(+) := P,(-) andD = o2 /2. Still with notations of [29], and in Theorem 2 therein, we $leat function

y 5 hn(6,y) is the sum ofe~[=2#/*+rx(®)lv and some function,,(-) defined in Expression (2.8) of [29] that
depends ow,,. It is easy to verify that this function is the last term on tight-handside of (10). |

Passing on the limit. — +oc in Theorem 2.1 yields the following renewal equation fordtion (1):
Proposition 2.2 Letw(z) := [ w(z,y — 2)Q(dy). Functiong (s, -) = ¢,, (6, -) satisfies the renewal equation

where functiong(-, -) andh(-, -) are defined by

9(0,y)

% /‘ye,[,wgzﬂ((;)](y,s) / " PO O(dr)ds (12)
0

S

Woy) = el 2 / Y =20/ 4] (4—) / " e PO@=5) (1) dads, (13)
o 0 s
Henceg(4, b) is given by the Pollaczek-Kinchine like formula
$(6,0) = > g**(8,.) + h(3,.)(3,b). (14)
k=0
Note that (14) is analogous to Expression (4.2) in [16].

Proof: Let us prove thah,w, converges ta. This is easily seen by remembering that= Q(1/n) and thus
that, by (3),

Nowon(z) = — / w(yy — )1/ Q)

which converges to the desired expression, remembering-#@(y) = dQ(y). Convergence of,, to h follows
from (10). In the same way,, [~ e=P»(O)(==9)gp, (z) convergestg, ™ e~#)@=9)Q(dz), yielding convergence
of g,, to g thanks to (9). |

As announced in the Introduction, it is also possible to beetheory of Lévy processes to propose a differ-
ent approach for determining the joint distribution of thitig time 7} jointly to the state ofDy, , usingscale
functions More precisely, we have the following proposition from.ekgprianou and Palmowski [20]:
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Proposition 2.3 (Theorem 1 (4) [20])Let us define for alb > 0 the scale functioi?(?), through its Laplace
transform, andZ(®) by

RO I S
/0 e WO (2)dr = PEVETE A > p(6) (15)
29 = 148 [ WO, (16)
0

where we recall thap(9) is solution to the Lundberg equatign, (A) = §. Then from Expression (4) p.19 of [20]

one has that 5

— w®

p(5)W (b). a7)
Just to be clear on notations, we emphasize that [20] de#tsspictrally negative processes. To apply it here
(hence to obtain Expressions (15), (16) and (17)), we thesl ne consider hitting time of of processD, :=

— D, starting fromD, = b. In particular, Laplace expone#i.) of D, as defined in Expression (2) of [20] by
E[e*t] = et does coincide with functiopp (.), and®(5) = sup{\ > 0] ¥(\) = §}, also defined in [20],
coincides withp(9).

Ele=T] = 2O (b) —

Remark 2.2 (scale function regularity) A necessary condition for functidiv (*) defined in the Proposition 2.3
to be differentiable is thaf D;, ¢ > 0} has unbounded variation, which is the case here since it h@aassian
component (i.e.c > 0). In fact it is shown in [9] the stronger fact that > 0 implies thati¥ () is twice
differentiable.

Remark 2.3 (boundary value of scale function)Still in the present case where procesB;, ¢ > 0} has un-
bounded variation, we have thit (®)(0) = 0 by Lemma 8.6 p.222 of [19].

As a complement to (17), it is interesting to note that Ren®adf [20] gives an explicit expression of the joint
Laplace transform ofI3, D, ).

The approach in Proposition 2.3 has however a cost, whichaisa Laplace Transform inversion of (15) is
required to obtain the scale function. However recent tesidve been found concerning expressiofigf) in
particular cases, see Hubalek and Kyprianou [18] as welbasrftand Yamazaki [14] in the case whér&,;, ¢ >
0} is a compound Poisson process with jumps following phage-tlistribution. In fact the following result
combines both approaches given in Propositions 2.2 anda@dBtheoretically gives a closed form expression of
scale functiori? (%) of any spectrally positive Lévy process:

Proposition 2.4 Scale functio?(®) uniquely defined by Laplace transform (15) satisfies thewig first order

differential equation

WO (z) — p() WO () = —% kz:: Yx ' (8,.)(6,z) := H(6,x) (18)

whereg(4, .) is given by (12) and’ (4, .) is derivative ofi(d, .) given in (13) withw = 1, i.e.

2 [ , -
K (8,y) = —[—2u/0® + p(8)]e~l721/o"+p@®ly 4 _2/ e~ 720/ 4D @=0) () d

ag
Y
92 Y o0 _
2o + pl6)] % / o~ 1=20/0* (D)) (y—3) / P9 O(2)dads.  (19)
g 0 s
ThusW () () has the following explicit expression

WO () = / e POV H (5, y)dy. (20)
0

Proof: Differential equation (18) simply comes from (17) that ofiféedentiates with respect tip(which is possible
sincelV (%) is differentiable in light of Remark 2.2), using expressifa—°"*] = ¢,,(J, b) where penalty function
w(.) is identically equal td, and finally using Expression (14). Note that differentiatof (14) is done by using
the well known property of derivation of convoluted funetsy f x g)’ = f' x g = f x ¢/, explaining whyH (4, .)
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features derivative of functioh(J, .).
Since by Remark 2.3 one has th&t®) (0) = 0, Equation (20) is then obtained by solving the standarddirer
differential equation (18). |

Note however that Formula (20) requires to compute the ieftseries appearing in (18), which in practice may
not be handy. However, since such scale functions are impiirt the theory of Lévy processes (in particular,
these functions will be useful in Sections 2.3 and 3 for deteing quantities related to first passage times of
reflected processes and last passage times), any expreasibe considered as welcome.

Remark 2.4 Asymptotic behaviour @f, asb — +oco may be obtained through Roynette et al [27]. More precisely,
it was proved thatT;, + b/, (0))/v/b converges in distribution to a (0, — ¢’ (0)/¢’, (0)?) distribution. One
can also compute from [27] asymptotic behaviour of trip(éfb + /¢ (0))/Vb, D, — b, b— DTb_)that we
did not include here but that involve technical expressions

2.2 Examples
We illustrate the previous study with examples and reviemefamous examples related to degradation models.

Pure gamma process Here we assume that= 0 and tha{ G, ¢t > 0} is agamma process with shape parameter
« and scale parametér We recall that its Lévy exponent and Lévy measure are given b

va(u) = ¢p(u) = —alog(l+u/f)
vp(dr) = Q(dz)=z"'e ¢adz.

Considering this special case into the generalized Lumipbguation, it follows that this equation has no positive
solution. It appears that the presence of the perturbatidheé degradation model is important for applying the
result obtained by Tsai and Wilmott [29] as we did in Progosi2.2. However, in this first special case, the
degradation process reduces to a pure stationary gammaesgraad sd D;, t > 0} has increasing paths. It
follows that:

vt >0, P[T, >t =P[D; <b].
Consequently it is sufficient to study the distribution/af for anyt > 0. The hitting time distribution was already
given for instance p.517 of Park and Padgett [23]:

Proposition 2.5 (Park and Padgett [23]) The cumulative distribution function (cdf) &f is:

Vt>0, F(t)= L?&%O,

wherel'(-, -) is the upper incomplete Gamma function. The probabilityrithistion function (pdf) off;, is, for any
t>0:

Ft) = a <\I/(ozt) “log (g)) 7(;‘5’0%5) + (at);li(at) <§>at 2 Fy(at, at;at + 1, at + 15 —b/€),

whereV is the di-gamma function (or logarithmic derivative of thar@ma functionyy(-,-) = I'(-) = I'(-, -) is the
lower incomplete Gamma function ap#l, the generalized hypergeometric function of or¢zr2).

It has been proved (see [1] or Section 5 of [28] for instaniea)t;, has an increasing failure rate.

Perturbed gamma Process Statistical inference in a perturbed gamma process hasshegied in [8] using only
degradation data. However sometimes both degradatioraddtéailure time data are available (see [22] for such
problem for a related model). In addition, from parametatsreation (based on degradation data for instance),
one can obtain an estimation of the failure time distributiblence the distribution df;, can be of interest. In
that case{G;, t > 0} is a gamma process with shape parametand scale parametér We recall that Lévy
exponent and Lévy measure of proc€gk, ¢ > 0} are then given by

ep(u) = falog(1+u/§)+%u202

vp(dr) = Q(dz)=a"'e fada. (21)
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Thus, Proposition 2 2 gives joint distribution @fy, Dr,—, Dr,) through expression af(d, b) wherew(z) :=
7w,y — )< ' dy and g(6, y) Z [ e PD=9) [ g=p(O)(@=s)e :/Edmds w(.,.) being an arbitrary
bounded function. Also note that from Remark 2.4 one hasthn[27] the Central Limit Theorem

T, —&b/a p ( a/&? + o2
— — N 0,7(13/53

Finally, expression of the scale function is then given W) (&ith ¢, (.) andQ(.) defined in (21). This will come
in handy in Section 3.

), b — +o0.

Brownian motion with positive drift We consider the case whefg = ut, i.e. {D;, t > 0} is a Brownian
motion with drift. In such case, the distribution of the inigf time of the constant boundabyis known and is
called the inverse Gaussian distribution. Its pdfis givgn b

2
VE> 0, f(t) = \/%exp (_@%7:;)) .

Proof of this result is generally based on the symmetricgipie full-filled by the Brownian motion whep = 0,
or can be showed with martingale methods in the gase0. Alternatively the pdf can be obtained by inverting
the Laplace transform df,:

6(0) = Ble ] = exp (220 @)

with 75 = \/p? + 2002. Note that the expression of this Laplace transform is stehdnd can be found e.g.

in Expression (38) p. 212 of [12] (see also [1], page 19). Alste that (22) is compatible with Expression

(14). Indeed in the context of Proposition 2.2 we have here 0 andh = 0, thus (14) reduces t@(4,b) =

e~ [=2u/7* o)y wherep(9) satisfies (6= 0 = Z-p(8) — up(é) — 4, giving the exact same expression (22).
Expression of the scale function for this case is then givgne121 in [18] by

2 2 2 T
(6) 1/0 2 —px/o ;
W (J}) — == ’u e — sinh (J v 2002 + ) = _’yge = sinh (—02 'y(;) . (23)

Note that there seems to be a small mistake in [18] of expressi|V (%) () (where there are somes instead
of 2's), that we corrected here. As proved by Chhikara and FdlR$, [the failure rate of an inverse Gaussian
distribution is non-monotone, but it is initially increagiand then decreasing.

Perturbed compound Poisson process with phase-type jumpsLet us suppose thd(G,, ¢t > 0} is a compound
Poisson process of intensitywhose jumps are phase-type distributed with representétio o, T). Lett :=
—T1 wherel is a column vector of which entries are equal ®of appropriate dimension (see e.g. Chapter VIl
of Asmussen [2] for an extensive account on such distribgdioln that casep is given by

ep(u) = %uQJQ + Ma(ul —T)" 't —1).
Egami and Yamazaki [14] give the expression of the LaplaaesfiormE (e ~°7+) by determining a closed formula
for the scale function®/? and using results in Proposition 2.3. More precisely foltay[14], let us denote for all
d > 0 the complex solution&s; 5); (resp.(n;);) of Equationpp(u) = ¢ (resp.d/(6 — ¢p(u)) = 0), u € C. We
suppose that th§ 5’s are distinct roots. We set

Zs = {ilep(—&s)=3dandR(& s) > 0},
Js = {i|d/(0 —ep(—m)) = 0andR(n;) > 0},
or(u) = [Les,(wt+ni)  Tliez, &is .
’ iern  1lier,(w+&o)

On page 4 of [14] it is stated that C4fg) = Card J5) + 1 (this results in fact comes from Lemma 1 (1) of [3]),
so thatyy (co) exists and is equal . We then define

(Ais)iezs St w5 (u) =5 (0) = @5 (u) = Z Ais S

ics €z 5+ uw’
05 = Z Ai,&fi,s-

i€ls
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Then Proposition 2.1 of [14] gives expression of the Laplacansform ¢(5) = E(e %)
> ez, A; se~%s(@=9)and Proposition 3.1 of [14] yields the following interegfiand useful expression of the
scale function

2 6@6 T —&i5T
W(é) (I’) = Z Aiﬁm |:€p(6) — € 51’6 . (24)

Furthermore, as pointed out in [14], expressionddf) are more complicated but available when ragtss have
multiplicity m; > 1.
2.3 Reflected processes

The previous model may not be too realistic if we considerBh@vnian motion as a means of modelling small
repairs, as the degradation proc€$%, ¢ > 0} may then be negative. An alternative for this is to consiter t
reflected version of D;, ¢ > 0} defined in the following way

Vt>0, Dj:=D,— inf (DyAO).
0<s<t

The hitting time distributioril};’ of {Dj, t > 0} jointly to the overshoot and undershoot pdf is given by the
following theorem

Theorem 2.1 Let us suppose thdtD;, ¢t > 0} is non monotone, i.e. that > 0. Let W (®) be defined by (15)
where we recall thap = p(9) is solution to the Lundberg equatian, (z) = §. Then

Ele " Iip;. _eay, py, ca] = v(dz = ) (b y)dy (25)
(9) (8)'
(5) WO OWE () s
wherer,” (b, y) := W (b) W (y).
Proof: We apply results from Doney [13] and we write, following nidas therein X; := — Dy, so that Lévy

measure of X;, ¢ > 0} is II(dz) := vp(—dz)and procesd (t) := supp<s<(Xs vV 0) — Xy is equal toD;.
Following terminology of [13]J7 () is thed-scale function of X;, ¢+ > 0} and is defined by (15) with_ ; instead

of ¢p. Remark 4 p.14 of [13] gives expression (25) Whéb(t‘sé is given by Pistorius [24] (see also Expression (15)
in Theorem 1 of [13]) withz := 0 anda := b, noting that functiod? () is differentiable by Remark 2.2. o

Note again that Theorem 2.1 is especially interesting whiestion W (%) admits closed form expressions, as
in [18, 14]. For example in the case of a perturbed compourgsBo process with phase-type distributed jumps
(and using the same notations as in Section 2.2) we hayéz) = \aeT*t andW(®) given by (24) (of which
derivative is easily available), which, plugged in (25)sigayields the Laplace transform of the corresponding
hitting time 7" jointly to the overshoot and undershoot distribution.

We now state a famous lemma that links distributiorijfto the cumulative distribution function @f, for all
b>0:

Lemma 2.1 We have for alb andt > 0, P(D; > b) = P(T}, < t).

Proof: This is a simple consequence from e.g. Lemma 3.5 p.74 of Eppti [19]that implies tha&(D; > b) =
P (supg<,<; Ds > b) Which in turn is equal t&®(T;, < ¢). i

3 Last-passage time as failure time

We letL, andL; be the last passage times of proceddes ¢ > 0} and{Dy, ¢ > 0} below levelb defined as
Ly :=sup{0 <wu| D, <b} and L; :=sup{0<u| D <b}

which are well defined as procesqd3;, t > 0} and{ D}, t > 0} satisfylim;, ;oo D¢ = limy_, 400 D} = +00.
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3.1 General case

Let us introduce the following bivariate measuteandZ{ on [0, +-00)2 through their double Laplace transforms

i —as—Bz _ p(a)*ﬂ i —as—Bx77 _ 1
/0 /0 e U(ds,dz)f7@_@D(ﬁ),Vﬂ>p(Q), /0 /0 e U(ds,dx)ip(a)_i_ﬁ,Vﬂ,a(Zz;

Expressions (26) may be found in Expressions (12) and (1)]pér p.154 and p.170 in Chapter 6 of [19] (note
that the latter reference considers spectrally negativegsses, hence roles farandi/ are swapped therein).
Furthermore, from (26) of [7] one has ttidi(dzx) := fs°:°0 e~%U(ds, dx) has the expression

Us(dz) = e P2 dy, (27)

hencel/s ([0, +00)) = 1/p(3). In the same spirit, we defirig; (dz) := [° e~%U(ds, dx). (26) then reads that

2o e Py (da) = 2255 for all B > p(5). We then have the following identity, that will be of intetéater

on.

Lemma 3.1 One has

’

Us(dx) = [—p(O)W O (z) + W (2)]da. (28)
Proof: From (15) we get the following

/ e Uy (dx) = —p(é)/ e_'@”“'W(‘S)(x)dx—i—/ Be PeW O (z)da (29)
=0 0 0

wheres > p(d). We recall from Remark 2.3 that’(®) (0) = 0. As to behaviour att-cc of the scale function,
we have, thanks to Lemma 8.4 p.222 of [19], relatidit?) (z) = =W ° 2 (z), for anyc € R such that

0 —eplc) >0, where!°~#7() is a scale function defined under a different probability suea. By picking
¢ = p(d) then one getd — vp(c) = 0 and

WO () = erOr W) () (30)
(see e.g. Second Remark p.32 of [25] for this identity as altetails on this other probability measure). At

the end of Proof of Corollary 8.9 p.227 of [19], it is shownttfhﬁ;g) (+o0) = ﬁ(oﬂ wherepp ,5)(q) =
D,p(3)
ep(q+p(d)) —¢p(p(d)) = vp(q+ p(8)) — 0, hence

W (+00) = < 4o0. (31)

¢p(p(9))
Thus in view of i (9)(0) = 0, (30) and (31), and sing& > p(¢), the following integration by parts makes sense:

oo

/ Be P2 W) (2)da = —eiﬁxW(‘s)(x)} +/ eiBIW(‘S)/(J:)dx:()—i—/ e PrWw O (p)dz, (32)
0

0 0 0

remembering thal’’ (%) is indeed differentiable by Remark 2.2. Comparing Laplaaegforms (29) and (32), we
then obtain (28). |

Let us also note that, according to Definition 6.4 p.142 of [1%e fact thaiz > 0 entails thaD is regular for
sets(—o0,0) and (0, +o00) (in particular, Theorem 6.5 p.142 of [19] applies here). What in mind, and since
{Ds, t > 0} is spectrally positive and drifts te¢-co, we may recall the following important recent result from
Kyprianouet al [21].

Theorem 3.1 (Corollary 2 of Kyprianou, Pardo and Rivero [21] Let us define

o0

D_ := inf D,, D, =inf D;, G :=sup{s>0|D;— D, =0},
u>0 t<s

Qt = érg Dy, l_?>t = inf{s > t| Ds — _D>t =0}.
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Then distribution of G, D, QLb — Ly, Ly, QLb —b,b— Dy,_, Dy, —b) is given by the following identity for
t,b,bv>0,s>r>0,0<y<b+v,w>u>0:
PG, € dr, =D, € dv, 1_)>Lb —Lyedt, Ly €ds, QLb —bedu,b—Dyp,_ €dy, Dg, —b € du]
= Us([0, +00)) " U(dr, dv)UU(ds — r, b+ v — dy)U(dt,w — du)Q(dw + y), (33)

wherells([0, +00)) ' = p(0) from (27).

Itis clear that distribution of Ly, b— Dy, —, Dy, —b) may be theoretically obtained from this theorem. In fact, ou
goal is to propose expressions of this distribution thay @mtolves quantities that were determined in Section 2.1,
e.g. scale functions, which we saw can be available in mangtins, as opposed to meastiresndl{ appearing

in (33) which, as seen in (26), are available only throughbdi®liaplace transforms. More precisely, we have the
following results.

Theorem 3.2 We have for alt > 0 anda € R,

P(L, < ) /b T RB[DW (a — b) f, (a)da (34)

P(Ly >t, D €da) = [1—E[D1]W(a—0b)]fp,(a)da (35)

wherefp, (.) is density of rv.D; and W (.) = W) (.) defined in (15) withd = 0. Besides, for alb > 0, and for
b >y >0,w > 0, the Laplace transform df;, jointly to density of the under and overshoot is given by

Ele YLy, b, ey, D1, —bedw)] = [eﬂﬁ”“w% ~ WO (b —y)| dy.[1 — e "O"]Q(dw +y). (36)
b b ¢ (p(3))

Let us compare results given in Theorem 3.2 with existingsdnethe literature concerning last passage times
of Lévy processes. References [11] and [5] give distrimgiof respectively last exit times and last exit times
before an exponentially distributed time, in terms of theiplace transform, for a similar class of Lévy processes;
however Theorem 3.2 is more adapted here as it directly diveslf jointly to the density of the overshoot, thus
avoiding an inverse Laplace transform. As said before, ligatsadvantage of Formula (36) over (33) is that it
only involves the scale function.

Proof: Let us start by showing (34) and (35). Let> 0. By definition of L, we note that for alla > b
event[L, < t, D; € da] is equal to[D; € da, {D,} will not hit level b anymore aftet]. Hence using the Markov

property:
P [Lb <t,D; € da] = P, [T() = +OO] P [Dt € da]

whereP,_; [Ty = +o0] is the probability that proceqdd:, t > 0} starting froma — b will never hit0 and is given
e.g. through Formula (4) p.19 of [20] B, s, [Th = +oc] = E[D1]W (a —b) andP [D; € da] = fp,(a)da where
fp, is the density of r.vD, andW(.) = W9 (.) in (15). By integrating: from b to -+co one gets (34). Equation
(35) stems from the basic equal®y L, > ¢, D; € da) = P(D; € da) — P(Ly, < t, D; € da).

We now turn to (36), and use Theorem 3.1 to this end. Since binFtheorem we have

E[eingH{beLb7€dy, DLbbedw}] = / eiésP[Lb S dSa b— DLb— € dy7 DLb —-be dw]7
s=0

and in view of (33), one just needs to compute the followirtggnal:

/ J J J e PG, €dr, —D_ € dv, Dr, — Ly € dt, Ly € ds,
v=0/t=0/s>r>0/u=0
Dy

, —b€du,b— Dy, _ €dy, DLb—bedw]

%
/ Q/ U(dr, dv)e % U(ds — r,b+v — dy). / U(dt,w—du).Q(dw—i—y), (37)
>r>0
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which we strive to do now. The first integral in the righthaidésof (37) verifies,

/ 0/ U(dr,dv)e % U(ds — b+ v — dy)
s>r>0

Q/ drdv/ “5U(ds — 1, b+ v — dy)

Q/ U(dr, dv)e™"Us(b + v — dy)

5(dv) (WO (b +v = y) = p@OW D (b+v—y)| dy

-/
- L
- /i/fo e U (dr, dv) {W@’(b Fo—y) = pO)WO(b+v— y)} dy byLemma 3.1
/
/

ey WO (bt v —y) - pOW D (b+v—y)| dy by (27). (38)

Relation (30) yields that=*®*W (b — y + v) = e/@C=IW ) (b — y + v) which, from (31), tends to
er(9)(b—y) asv — +oo. This justifies the following integration by parts:

1
©p(p(9))

/ e POV (b4 v — y)dv = [e*PWW(‘”(b +v— y)] - + / p(8)e POV O (b 4 v — y)dv
v=0 v=0 v=0

1 oo
_ 0 L g, +/ p(6)e PO W) (b4 v — y)dv, (39)
oty T ) ey

which, inserted in (38), yields the following simplificatio

e - 1
U(dr, dv)e™U(ds — r,b+ v — dy) = [ep(‘;)(by)i — WO (b —1y)| dy. (40)
/ ﬂ/s>'r>() ¢ (p(3))

The second integral in the righthandside of (37) verifies

/ U(dt,w —du) = / Uo(w — du)

u=0 Jt=0 u=0

/ e POw=w) gy, by (27)
u=0

- ﬁ [1— emeOw], (41)
Plugging (40) and (41) into (37) yields (36). ]

3.2 Examples
We consider here some examples from those studied preyiandlifor which last-passage time is relevant.

Brownian motion with positive drift  In the case wheré&'; = ut, u > 0 andD; = G; + 0By = ut + 0B, we
have

E[Di] = g,
2
W(a—0b) = WO(q—b)=Zena=0/o"giny (—bu) from (23)
i
1 2 2
— —(a—pt)?/(20°)
a = e 5
o) = T

which, plugged in (34) and (35), yields expression of thetodf P[L, < t] as well as its cdf jointly to density of
D;. Note that by deriving this expression of the cdf one obtafier some calculation the following density by

(b—pt)?
,LL e Z‘i

L,
V2t

which agrees with the already known density of the last gpssiane of a Brownian motion with drift, see e.g.
Expression (1.12) p.2 of [26].

Pﬁl@ S dﬂ =
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Perturbed gamma process In the case wher¢G;, ¢ > 0} is a gamma process with shape parametand

scale paramete; densities of7; ando B; are given byfg, (u) = 7152;) Ez,/g andf,p, (u) = \/gﬁe—uz/(%z‘f).

We also recall that functio# (J, =) defined in Proposition 2.4 has expression given in (18) whracteristics of
the gamma perturbed process being given by (21). Hence &dataulation yields

E[D1]

af,
a—b

W(a—-0b) = / e POV (5, y)dy,
0

1 too 2 /(902
_ _ at—1,_—u/§ —(a—u)*/(20°t)
a) = * foB,(a) = U e e du,
fp,(a) fe, * fon.(a) - thr(at)gat/

—a?/(202 0
LT sl )y,

oV 2wt (at)€t
—a?/(20%t) rt+o0 1.2 1 (202
e _ 1 —sx*— e——2a)x
= —J\/Zo‘tl/ xtleT2 2<’ﬁ<5 )dx, z = u/(oV1),
oV 2wt (at)€et (oY) 0 /(ovD)
_ @V () (Lﬂ - L)
V2D ()€t § o/t
wherel'(s) = [;° e **"ldt, s > 0, is the gamma function and,Dz) = &~ eh Sy Jo e 2gmrlde, p < 0,

is the parabollc cylinder function (see (9.241.2) p.106/A.@f). These expressmns plugged in (35) and (36), yield
expression of the cdf af; jointly to density of D; as well as the Laplace transform bf jointly to density of the
over and undershoot.

Perturbed compound Poisson process with phase-type distiited jumps  In the case wheréG,, t > 0} isa
compound Poisson process with phase-type distributedguhparameters as in Section 2.2, we have, using same
notations as in that section that density of shocks is equ#ht) = ae*Tt (see Theorem 1.5(b) p.218 of [2])and

E[D;] = —aT™'1,
W(a—b) = 2L > Ao __Si0 [op(0)(a=b) _ e*fiﬁ(a*b)} from (24) withd = 0,
000 p(0) + &0
> K
fo.(a) = Z;)foBt *p () (a)e_kt%

wheref, g, (u) = m/l_e*“Q/(Q"zt). These expressions, plugged in (35)and (36), yield exjumess the cdf of

27t
Ly jointly to density of D, as well as the Laplace transform bf jointly to density of the over and undershoot.

3.3 Reflected processes

As for the previous section dealing with first-passage time,consider the last-passage time for the reflected
version of perturbed increasing Lévy process.

Theorem 3.3 The Laplace transform df; is given by

E e % | = E[D OOW' —b)p(d, a)d
5] = B(D] [ W(a=0)o(6.0)da
where we recall thap(§, a) = E[e~Ta] = ¢,,(d,a) withw = 1.

Proof: We start similarly as in the proof of Theorem 3.2 and IEt an independent r.v. follow-
ing an £(0). Event[L; < T,D} € da] is equal to[D}. € da, {D}} will not hit level b anymore aftef’].
Since reflected proces§D;, ¢t > 0} behaves like the non reflected procelsB;, ¢ > 0} on event
[{ Dz} will not hit level b anymore aftefl’] for ¢t > T', we have, for alk. > b, and using the Markov property,

P[L; <T,Di €da] = P, [Ty =+oo]P[Di € da (42)
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whereP,_; [Ty = +o0] is the probability that procedsD;, ¢ > 0} starting froma — b will never hit0 and has
expressiorE[D;]W (a — b), as observed in Proof of Theorem 3.2. SifE€z) = 0 onz < 0, we have by Fubini
theorem (and sinc#/(.) is a differentiable function by Remark 2.2),

elet] = [Tl <TDiedd = BDI [ W-vPD€dd
a=b a=b
= E[D{]E[W (D} — b)]

= E[Dl]E |:/ W’(a — b)]I{D;>a}da
a=b
= E[Dl]/ W'(a — b)P[D} > alda.
a=b

From Lemma 2.1, we have th&®8{D} > a] = P[T, < T] which is equal to(d,a), asT follows an £(9)
distribution. This yields the result. a

Again we emphasize that(é,a) = E[e~7<] is available in practice either through series (14) in Psijzm
2.2, or through (17) in Proposition 2.3. Also note that probTheorem 3.3 implicitly yields the following side
result.

Proposition 3.1 LetT" be an independeist(d) distributed r.v. Then for alk > b we have

P[L; > T, D} € da] = —[1 — E[D1]W(a — b)]%qﬁ(é, a)da. (43)

Proof: As in showing (35), we use the fact tHB{tL; > T, D% € da] = P[D} € da] —P[L} < T, D} € da] as
well as (42) to derive thadP[L; > T, D € da] = [1 — E[D:1]W(a — b)|P[D}. € da]. To obtain (43) we just
need to prove that r.vD}. admits a density given b§[D%*. € da]/da = f%(b(é, a). Indeed Lemma 2.1 yields
thatP[D% > a] = P[T, < T] = E[e~%Ta] = ¢(4,a), thus what remains to prove is thBfe27=] = ¢(J,a)
is differentiable with respect ta. This can be seen thanks to the convenient expression (a&Fyigids that
differentiability property since functiofi’ (%) is a differentiable function by Remark 2.2 (atid®) is obviously
differentiable by (16)). ]

4 A maintenance policy

We now as an application consider the maintenance strategpyrided in Barker and Newby [4]. Degradation of
a certain component is modelled according to a pro¢e§s ¢ > 0}. We suppose that, without maintenance,
{X:, t > 0} is a perturbed process with same parametefdas ¢ > 0}and that failure occurs at the last passage
time L; of level b of the degradation process.

Let us then consider the following maintenance rule. Thepament is inspected at timég;),—; ».... such that
inter inspection time verifie§; 1 —U; = m(Xy,+), wherem(.) is some nonincreasing function. Lét R — R
be some "maintenance function". On inspection at tifmeone of the following actions is undertaken:

o either the system did not fail in intervell;_, U;], in which case preventive maintenance occurs and degra-
dation process evolves likeD;, ¢ > 0} with initial condition Dy = d(x) up until timeU;;1, wherez is
degradation state at insteliif—; in other words one ha¥y, = d(Xy,-),

e or the system failed in intervdl;_,, U;] in which case it is repaired and degradation process staeis,a
i.e. evolves like{ D;, t > 0} with initial condition Dy = 0.

We will suppose in this section that functidfl) is differentiable fromR to R and bijective. Note that these two
assumptions are not too stringent and can be relaxed, irhvdaise expressions of distributions computed in this
section would only be more complicated.

We then define r.vI as the first inspection after which system is reset, i.e.

I = inf{i € N| failure occurred iNU;_1, U;]}.
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This means thal™ := U; is a regeneration time for the degradation process. Prdcésst > 0} then behaves
like independent copies dfD;, t > 0} in intervals(U,;, U;+1] with possibly different initial states. Figure 1
shows a sample path ¢fX;, ¢ > 0}, with failure in interval(Us, Us]and thus starting anew at tini&; with
Xy, = 0. Note that proces§X;, ¢t > 0} thus constructed is cadlag and such that, given its stateyahstantly,
{X¢, t > Uy} isindependent fromd X;, ¢ € [0; Uy)}, i.e. from its history beforé/,.. This can be written as

[Xt, t> Uk‘ X,, s € [0, Uk]} [Xt, t> Uk‘ XUk]

Xy

idle time A*

-—

¢ failure

Fig. 1: Sample path of degradation procgss;, ¢ > 0}, with failure in (Us, Us].

We also introduce the idle tim&* which is the unavailability period of time during which coorgent is down
until next scheduled inspection:
A* . =T* — Hy € [O,U[ — Ujfl]

where H,, is the failure time of the component and then necessarily ielU;_1,U;]. We are interested in
quantities involving (possibly joined) distributions 6f7*, A* as well as the state of the degradation process at
inspection times. For this purpose we introduce the folfmyquantities:

o A(z,dy) :=P[Ly > m(x), d(Dp,(y)) € dy| Do = z] the distribution of the degradation process on inspec-
tion after maintenance jointly to the fact that there wasailufe before inspection, given that degradation
process starts at,

e C(y) := P[Ly < m(y)| Do = y], the probability that failure occurred before next insp@ttgiven that
degradation process startgjat

o Cp(y,2) :==Pm(y) — Ly > z| m(y) > L, Do = y], z € [0, m(y)], the survival function of the idle time
given that degradation process startg.at

These three quantities are easily obtained:

Proposition 4.1 We have the following expressions

Cw) = [ EDIW@- b+ D (a)a
C02) = G | DW= b4 oy —-la)da
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Proof: We recall that we supposed th#t) is a one to one differentiable function out of practicalixpression
for A(z, dy) simply comes from (35) with = m(z) and a simple change of variable= d~!(y)and remarking
that last hitting time of leved of procesg D;, t > 0} with Dy = z is the same in distribution as that of level «
of process D, t > 0} with Dy = 0. Expression foC(y) is obtained from (34) witht = m(y) andb :=b —y
because of process starting frgmFinally expression fo€,.(y, z) comes from the fact that

_ Plm(y) — Ly > 2| Dy =y]  Plm(y) — Ly > z| Do = y]
O = By > Lo Do =3 o)

and using (34) witl" = m(y) — z andb := b — y to obtain expression &[m(y) — Ly > z| Dy = y]. a

We may now state main results of this section that concerntiigs of interest introduced at the beginning of
the section.

Theorem 4.1 Distribution of I jointly to the state of the degradation process just aftspiction and preventive
maintenance is given by

P[I =1, XU1 S dyl, ey X'UF1 S dyi—l] = A(O,dyl) X A(yl,dyg) X ... X A(yi_g,dyi_l) X C(yi—l)- (44)

Distribution of the idle time jointly td and the state of the degradation process just after inspeehd preventive
maintenance is given by

P[A* >z, I = i, XU1+ S dyl, ceny )(Uii1 S dyifl] = A(O,dyl)xA(yl,dyg)x...xA(yi,g,dyi,l)xcr(yi,l,z).
(45)

Proof: The first probability is obtained by writing it in the forih [ﬂ}::llEk N Fl} where

E, = [no failure in(Uy—1; Ug], d(Xv,) € dyk}

F;

[failure in(U;—1; Ui]} .

Since evolution of procesk; in ¢ € [U;, U;+1) given Xy, is independent fronX, ¢t € [0, U;), we may write that
probability in the following form

i—1
P[I = 7;5 XU1 S dyla ceey XUi71 S dyifl] = H ]P)[Ek| XU;V,1 = yk*l] X P[E| XUi,l = yi*l]
k=1

and conclude by the fact that by the stationary incremerggnty we hav@®[Ex| Xv, _, = yr—1] = A(yk—1, dyx)
andP[F;| Xy, , = yi—1] = C(yi—1) in order to obtain (44). (45) is derived by similar arguments a

Note that Theorem 4.1 yields other interesting quantitieer example the expected time before reparation
jointly to the number of inspections/maintenances is ol@dithanks to (44) by

lz fly)
k=1

A(O,dyl) X A(yl,dy2> X ... X A(yi,Q,dyifl) X C(yi,1>.

E[T"Tu=y] = / |

(Y1,esyi—1)ERIT

Remark 4.1 (Case of the reflected procesd} is possible to adapt the previous setting to the reflectedgss
{D}, t > 0} and constructed a reflected degradation procgss’, ¢ > 0} with inspection and maintenance by
considering exponentially distributed inter-inspecttonesU, . ; — U; of which conditional distribution giveXy,

is £(1/m(Xy,)). instead of deterministic times, wherg(.) is the same function as in the non reflected caseand
again featuring a maintenance functidfl). Results from Theorem 3.3 as well as equality (43) would gishilar
expressions fod(z, dy), C(y) for exponentially distributed horizonand an equivalenTbeorem 4.1 for such an
inspection strategy could be obtained.
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