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We consider a wide class of increasing Lévy processes perturbed by an independent Brownian motion as a degradation model. Such family contains almost all classical degradation models considered in the literature. Classically failure time associated to such model is defined as the hitting time or the first-passage time of a fixed level. Since sample paths are not in general increasing, we consider also the last-passage time as the failure time following a recent work by Barker and Newby [4]. We address here the problem of determining the distribution of the first-passage time and of the last-passage time. In the last section we consider a maintenance policy for such models.

Introduction and Model

For several decades, degradation data have been more and more used to understand ageing of a device, instead of only failure data. The most widely used stochastic processes for degradation models belong to the class of Lévy processes. More precisely, the three main models are the following ones: (a) Brownian motion with (positive) drift; (b) gamma processes; (c) compound Poisson processes. More generally we consider a broad class of Lévy processes corresponding to subordinators perturbed by an independent Brownian motion: ∀t ≥ 0 , D t = G t + σB t where {G t , t ≥ 0} is a subordinator, i.e. a Lévy process with non decreasing sample paths. Since jumps of {D t , t ≥ 0} are issued from {G t , t ≥ 0} and are positive, we recall that we say that {D t , t ≥ 0} is spectrally positive. This process can be characterized in terms of Lévy exponents:

∀u ∈ R, exp(tφ D (u)) = E[e iuDt ] = exp(tφ G (u)) exp(tφ B (u)) = exp(tφ G (u)) exp(- 1 2 tu 2 σ 2 ) φ G (u) = iμu + R\{0} [e iux -1 -iuxI [-1,1] (x)]Q(dx)
Exponent φ B is associated to the Brownian motion and φ G to G t , which is in all generality a jump process. It follows that the Lévy measure of {D t , t ≥ 0} is the same as that of {G t , t ≥ 0} that we will denote by ν D (dx) = Q(dx). Furthermore we will suppose that measure Q(.) admits a density with respect to the Lebesgue measure, i.e. that Q(dx) = q(x)dx for some density q(.). In the following we will also need

ϕ D (u) = φ D (iu) = ϕ G (u) + 1 2 u 2 σ 2 ,
i.e. ϕ D (u) is such that E[e -uDt ] = e tϕD (u) . We recall, since {G t , t ≥ 0} is a subordinator, that may write in this case ϕ D (u) in the following way

ϕ D (u) = -µu + ∞ 0 [e -ux -1]Q(dx) + 1 2 u 2 σ 2 ,
for some µ ≥ 0. We consider in this paper several approaches for modelling degradation of a device and its failure time. Failure time can traditionally be derived from a degradation model by considering the first hitting time T b of a critical level b > 0. The first-passage time distribution has been already derived for the particular case of two sub-models. In the case of Brownian motion with drift (corresponding to G t = µt, µ > 0), it is the well-known inverse Gaussian distribution, see [START_REF] Folks | The inverse Gaussian distribution and its statistical application -A review[END_REF] for instance. For the pure gamma process (i.e. σ = 0 and {G t , t ≥ 0} is a gamma process), it has been studied by Park and Padgett [START_REF] Park | Accelerated degradation models for failure based on geometric Brownian motion and gamma processes[END_REF]. Moreover they proposed an approximation for the cumulative distribution function of the hitting time based on Birnbaum-Saunders and inverse Gaussian distributions.

Recently a new approach to define the failure time was proposed by Barker and Newby [START_REF] Barker | Optimal non-periodic inspection for a multivariate degradation model[END_REF] that consists in considering the last passage time of degradation process {D t , t ≥ 0} above b. As explained in that paper, this is motivated by the fact that, even if {D t , t ≥ 0} reaches and goes beyond b, resulting in a temporarily "degraded" state of the device, it can still always recover by getting back below b provided this was not the last passage time through b. On the other hand, if this is the last passage time then no recovery is possible afterwards and we may then consider it as a "real" failure time. Of course, this discussion about modelling failure time by the first or last passage time becomes irrelevant whenever process {D t , t ≥ 0} has non decreasing paths (which is not the case e.g. of the Brownian motion) since in that case both quantities coincide.

In this paper we then investigate these quantities for a rather wide class of so-called perturbed process. In Section 2 we provide the Laplace transform of the first passage time T b with penalty function involving the corresponding under and overshoot of the process. We then confront this approach to related recent existing results on such passage times distributions in the general theory of Lévy processes, that introduces the notion of so-called scale functions. The case of several sub-models is reviewed (or revisited) : in these cases the probability distribution function (pdf) and/or the cumulative distribution function (cdf) can be computed explicitly, or at least numerically. In conclusion of this section we propose an alternative degradation process that takes into account the fact that the process cannot be in theory negative and suggests that {D t , t ≥ 0} be reflected at zero. In that setting we use the aforementioned recent results in the theory of Lévy and reflected Lévy processes to obtain the joint distribution of the first passage time jointly to the overshoot distribution. In Section 3 we study the case where failure time corresponds to the last passage time L b above b and derive its distribution in the non reflected and reflected case. Finally we consider in Section 4 a maintenance policy problem inspired by [START_REF] Barker | Optimal non-periodic inspection for a multivariate degradation model[END_REF] and derive distribution of related quantities.

To conclude this introduction, we make precise where in the present paper previously published results are reviewed and what is actually novel. Proposition 2.2 in Section 2.1 is new, but its proof is similar to the one corresponding to proof of Remark 4.1 as well as Expressions (4.4) and (4.5) of Garrido and Morales [START_REF] Garrido | On the expected discounted penalty function for Lévy risk processes[END_REF]. Section 2.3 recalls facts (with short proofs) previously established in the literature that are useful later on. On the other hand and to the best of our knowledge, Theorems 3.2 and 3.3 in Section 3 concerning last passage times may be linked to Chiu and Yin [START_REF] Chiu | Passage times for a spectrally negative Lévy process with applications to risk theory[END_REF], Baurdoux [START_REF] Baurdoux | Last exit before an exponential time for spectrally negative Lévy processes[END_REF] and recent paper Kyprianou et al. [START_REF] Kyprianou | Exact and asymptotic n-tuple laws at first and last passage[END_REF] but are otherwise genuinely new. Similarly Section 4 deals with determining reliability quantities features unheard-of results.

First-passage time as failure time

We consider here the hitting time distribution of a fixed level b > 0 by the perturbed process {D t , t ≥ 0}:

T b = inf {t ≥ 0 ; D t ≥ b}
which we remind is a.s. finite. We study below the distribution of (T b , D T b -, D T b ) by determining the following quantity

φ w (δ, b) = E(e -δT b w(D T b -, D T b )) (1) 
where δ ≥ 0 and w(., .) is an arbitrary continuous bounded function that will be referred to as penalty function.

In the following we will drop the subscript when there is no ambiguity on w(., .) and then write φ(δ, b) instead of φ w (δ, b). We then determine (1) in the general case and then illustrate our results to sub-models, some of which distribution of T b has already been obtained.

General case

We are interested in the case where process {G t , t ≥ 0} is general. To this end, we use a well known technique that consists in approaching the jump part process in {G t , t ≥ 0} by a compound Poisson processes which, as said in the Introduction, is similar to the one used in [START_REF] Garrido | On the expected discounted penalty function for Lévy risk processes[END_REF] (for more details see Appendix A.1 in [START_REF] Garrido | On the expected discounted penalty function for Lévy risk processes[END_REF]). More precisely this process can be pointwise approximated by a sequence of compound Poisson processes ((S(t, n)) t≥0 ) n∈N such that:

1. (S(t, n)) n∈N is increasing for all t ≥ 0, 2. µt + lim n→∞ S(t, n) = G t for all t ≥ 0,

3. for all n, (S(t, n)) t≥0 has intensity λ n and jump size with c.d.f. P n (x) with

λ n = Q(1/n) (2) 
P n (x) = Q(1/n) -Q(x) Q(1/n) I {x≥1/n} (3) 
where

Q(x) := Q([x, +∞)). Note that Q defines measure such that Q(dx) = -Q(dx).
Note that this approach is particularly interesting when 

λ n = Q(1/n) -→ Q(0) = Q([0, +∞)) = +∞ as n → ∞, i.e.
T n b ց T b , n → ∞, a.s., (4) 
where T n b is the hitting time of level b of the truncated process {D n t , t ≥ 0} defined by D n t = S(t, n) + σB t for any t ≥ 0 and any n ∈ N. We remind that T n b is also a.s. finite. In fact T n b may be described as a ruin time (i.e. the first hitting time of 0 of a stochastic process) in the following way:

T n b = inf{t ≥ 0 ; b -µt -S(t, n) + σB t < 0}
and we are interested in the Laplace transform φ n (δ

) := E(e -δT n b w(D n T n b -, D n T n b
)) of T n b with penalty function w(., .) for all δ ≥ 0. Let ρ n = ρ n (δ) be the positive solution to the following equation:

λ n ∞ 0 e -ρnx dP n (x) = λ n + δ - σ 2 2 ρ 2 n + µρ n (5) 
that we will call generalized Lundberg equation. We start by showing convergence of ρ n as n → ∞.

Proposition 2.1 ρ n converges as n → ∞ to the unique solution ρ > 0 to the following generalized Lundberg equation:

δ - σ 2 2 ρ 2 = ϕ G (ρ) ⇐⇒ δ = ϕ D (ρ) (6) 
Proof: Thanks to Expressions (2) and (3) of λ n and c.d.f. P n , we may rewrite (5) in the following way

∞ 1/n e -ρnx Q(dx) = Q(1/n) + δ - σ 2 2 ρ 2 n + µρ n ⇐⇒ ∞ 1/n e -ρnx Q(dx) = ∞ 1/n Q(dx) + δ - σ 2 2 ρ 2 n + µρ n ⇐⇒ δ - σ 2 2 ρ 2 n + µρ n + ∞ 1/n 1 -e -ρnx Q(dx) = 0.
Thus ρ n is the only positive solution to equation

f n (z) = 0 where f n (z) := δ-σ 2 2 z 2 +µz+ ∞ 1/n (1 -e -zx ) Q(dx). Let us note that (f n ) n∈N increasingly converges pointwise towards f (z) = δ - σ 2 2 z 2 + µz + ∞ 0 1 -e -zx Q(dx) = δ -ϕ D (z),
so that ρ n converges increasingly towards ρ * := sup n∈N ρ n . Besides one can verify that f (z) = 0 admits an unique solution on (0, +∞), which is solution ρ to Equation [START_REF] Bertoin | Lévy processes[END_REF]. Thus ρ * is less than or equal to solution ρ and we prove that we in fact have equality ρ * = ρ which is achieved by showing that f (ρ * ) = 0. Indeed, using inequality 0 ≤ 1e -zx ≤ zx for all z, x ≥ 0 and since f n (ρ n ) = 0, we have

|f (ρ * )| = |f (ρ * ) -f n (ρ n )| ≤ |f (ρ * ) -f (ρ n )| + |f (ρ n ) -f n (ρ n )| ≤ |f (ρ * ) -f (ρ n )| + 1/n 0 1 -e -ρnx Q(dx) ≤ |f (ρ * ) -f (ρ n )| + ρ n 1/n 0 xQ(dx) ≤ |f (ρ * ) -f (ρ n )| + ρ 1/n 0 xQ(dx) since ρ n ≤ ρ * ≤ ρ. ( 7 
)
We recall that the fact that {G t , t ≥ 0} is a subordinator (a non decreasing Lévy process) implies that ∞ 0 (1 ∧ x)Q(dx) < +∞ (see e.g. (2) p.72 of [START_REF] Bertoin | Lévy processes[END_REF]), hence 1/n 0 xQ(dx) -→ 0. Remembering that f is a continuous function, this implies that [START_REF] Biffis | On a generalization of the Gerber-Shiu function to path-dependent penalties[END_REF] tends to zero as n → +∞, hence f (ρ * ) = 0.

2

The Laplace transform φ n (δ) with penalty function w(., .) of T n b is given through the following which is a particular case of Theorem 2 of [START_REF] Tsai | A generalized defective renewal equation for the surplus process perturbed by diffusion[END_REF] adapted to our context: Theorem 2.1 Let w(., .) be a bounded continuous function and define

ω n (x) = ∞ x w(x, y -x)dP n (y). Then b → φ n (δ, b) := E(e -δT n b w(D n T n b -, D n T n b
)) satisfies the renewal equation

φ n (δ, b) = φ n (δ, •) ⋆ g n (δ, •)(b) + h n (δ, b) (8) 
where functions g n (•, •) and h n (•, •) are defined by

g n (δ, y) = 2λ n σ 2 y 0 e -[-2µ/σ 2 +ρn(δ)](y-s) ∞ s e -ρn(δ)(x-s) dP n (x)ds (9) 
h n (δ, y) = e -[-2µ/σ 2 +ρn(δ)]y + 2λ n σ 2 y 0 e -[-2µ/σ 2 +ρn(δ)](y-s) ∞ s e -ρn(δ)(x-s) ω n (x)dxds. ( 10 
)
Proof: With notations of [START_REF] Tsai | A generalized defective renewal equation for the surplus process perturbed by diffusion[END_REF], we have g n (δ, y) expressed as in (1.10) therein with b := b(δ) = -2µ/σ 2 + ρ n (δ), λ := λ n , P (•) := P n (•) and D = σ 2 /2. Still with notations of [START_REF] Tsai | A generalized defective renewal equation for the surplus process perturbed by diffusion[END_REF], and in Theorem 2 therein, we see that function y → h n (δ, y) is the sum of e -[-2µ/σ 2 +ρn(δ)]y and some function g w (•) defined in Expression (2.8) of [START_REF] Tsai | A generalized defective renewal equation for the surplus process perturbed by diffusion[END_REF] that depends on ω n . It is easy to verify that this function is the last term on the right-handside of (10). 2

Passing on the limit n → +∞ in Theorem 2.1 yields the following renewal equation for function (1):

Proposition 2.2 Let ω(x) := ∞ x w(x, y -x)Q(dy). Function φ(δ, •) = φ w (δ, •) satisfies the renewal equation φ(δ, b) = φ(δ, •) ⋆ g(δ, •)(b) + h(δ, b) (11) 
where functions g(•, •) and h(•, •) are defined by

g(δ, y) = 2 σ 2 y 0 e -[-2µ/σ 2 +ρ(δ)](y-s) ∞ s e -ρ(δ)(x-s) Q(dx)ds (12) h(δ, y) = e -[-2µ/σ 2 +ρ(δ)]y + 2 σ 2 y 0 e -[-2µ/σ 2 +ρ(δ)](y-s) ∞ s e -ρ(δ)(x-s) ω(x)dxds. ( 13 
)
Hence φ(δ, b) is given by the Pollaczek-Kinchine like formula

φ(δ, b) = ∞ k=0 g ⋆k (δ, .) ⋆ h(δ, .)(δ, b). ( 14 
)
Note that ( 14) is analogous to Expression (4.2) in [START_REF] Garrido | On the expected discounted penalty function for Lévy risk processes[END_REF].

Proof: Let us prove that λ n ω n converges to ω. This is easily seen by remembering that λ n = Q(1/n) and thus that, by (3),

λ n ω n (x) = - ∞ x w(x, y -x)I {y≥1/n} d Q(y)
which converges to the desired expression, remembering that -d Q(y) = dQ(y). Convergence of h n to h follows from [START_REF] Chhikara | The inverse Gaussian distribution as a lifetime model[END_REF]. In the same way, λ n ∞ s e -ρn(δ)(x-s) dP n (x) converges to ∞ s e -ρ(δ)(x-s) Q(dx), yielding convergence of g n to g thanks to [START_REF] Chan | Smoothness of scale functions for spectrally negative Lévy processes[END_REF]. 2

As announced in the Introduction, it is also possible to use the theory of Lévy processes to propose a different approach for determining the joint distribution of the hitting time T b jointly to the state of D T b , using scale functions. More precisely, we have the following proposition from e.g. Kyprianou and Palmowski [START_REF] Kyprianou | A martingale review of some fluctuation theory for spectrally negative Lévy processes[END_REF]:

Proposition 2.3 (Theorem 1 (4) [20])

Let us define for all δ ≥ 0 the scale function W (δ) , through its Laplace transform, and

Z (δ) by ∞ 0 e -λx W (δ) (x)dx = 1 ϕ D (λ) -δ , λ > ρ(δ) (15) 
Z (δ) (x) = 1 + δ x 0 W (δ) (y)dy, ( 16 
)
where we recall that ρ(δ) is solution to the Lundberg equation ϕ D (λ) = δ. Then from Expression (4) p.19 of [START_REF] Kyprianou | A martingale review of some fluctuation theory for spectrally negative Lévy processes[END_REF] one has that

E[e -δT b ] = Z (δ) (b) - δ ρ(δ) W (δ) (b). (17) 
Just to be clear on notations, we emphasize that [START_REF] Kyprianou | A martingale review of some fluctuation theory for spectrally negative Lévy processes[END_REF] deals with spectrally negative processes. To apply it here (hence to obtain Expressions ( 15), ( 16) and ( 17)), we thus need to consider hitting time of 0 of process Dt := -D t starting from D0 = b. In particular, Laplace exponent ψ(.) of Dt as defined in Expression ( 2) of [START_REF] Kyprianou | A martingale review of some fluctuation theory for spectrally negative Lévy processes[END_REF] by E[e λ Dt ] = e tψ(λ) does coincide with function ϕ D (.), and Φ(δ) = sup{λ ≥ 0| ψ(λ) = δ}, also defined in [START_REF] Kyprianou | A martingale review of some fluctuation theory for spectrally negative Lévy processes[END_REF], coincides with ρ(δ).

Remark 2.2 (scale function regularity)

A necessary condition for function W (δ) defined in the Proposition 2.3 to be differentiable is that {D t , t ≥ 0} has unbounded variation, which is the case here since it has a Gaussian component (i.e. σ > 0). In fact it is shown in [START_REF] Chan | Smoothness of scale functions for spectrally negative Lévy processes[END_REF] the stronger fact that σ > 0 implies that W (δ) is twice differentiable.

Remark 2.3 (boundary value of scale function)

Still in the present case where process {D t , t ≥ 0} has unbounded variation, we have that W (δ) (0) = 0 by Lemma 8.6 p.222 of [START_REF] Kyprianou | Introductory lectures on fluctuations of Lévy processes with applications[END_REF].

As a complement to [START_REF] Gradshteyn | Tables of integrals, seriesand products[END_REF], it is interesting to note that Remark 3 of [START_REF] Kyprianou | A martingale review of some fluctuation theory for spectrally negative Lévy processes[END_REF] gives an explicit expression of the joint Laplace transform of (T b , D T b ).

The approach in Proposition 2.3 has however a cost, which is that a Laplace Transform inversion of ( 15) is required to obtain the scale function. However recent results have been found concerning expression of W (δ) in particular cases, see Hubalek and Kyprianou [START_REF] Hubalek | Old and New Examples of Scale Functions for Spectrally Negative Lévy Processes[END_REF] as well as Egami and Yamazaki [START_REF] Egami | On scale functions of spectrally negative Lévy processes with phase-type jumps[END_REF] in the case where {G t , t ≥ 0} is a compound Poisson process with jumps following phase-type distribution. In fact the following result combines both approaches given in Propositions 2.2 and 2.3, and theoretically gives a closed form expression of scale function W (δ) of any spectrally positive Lévy process: Proposition 2.4 Scale function W (δ) uniquely defined by Laplace transform [START_REF] Folks | The inverse Gaussian distribution and its statistical application -A review[END_REF] satisfies the following first order differential equation

W (δ) ′ (x) -ρ(δ)W (δ) (x) = - ρ(δ) δ ∞ k=0 g ⋆k (δ, .) ⋆ h ′ (δ, .)(δ, x) := H(δ, x) (18) 
where g(δ, .) is given by ( 12) and h ′ (δ, .) is derivative of h(δ, .) given in ( 13) with w ≡ 1, i.e.

h ′ (δ, y) = -[-2µ/σ 2 + ρ(δ)]e -[-2µ/σ 2 +ρ(δ)]y + 2 σ 2 ∞ y e -[-2µ/σ 2 +ρ(δ)](x-y) Q(x)dx -[-2µ/σ 2 + ρ(δ)] 2 σ 2 y 0 e -[-2µ/σ 2 +ρ(δ)](y-s) ∞ s e -ρ(δ)(x-s) Q(x)dxds. ( 19 
)
Thus W (δ) (x) has the following explicit expression

W (δ) (x) = x 0 e -ρ(δ)(x-y) H(δ, y)dy. (20) 
Proof: Differential equation ( 18) simply comes from ( 17) that one differentiates with respect to b (which is possible since W (δ) is differentiable in light of Remark 2.2), using expression E[e -δT b ] = φ w (δ, b) where penalty function w(.) is identically equal to 1, and finally using Expression [START_REF] Egami | On scale functions of spectrally negative Lévy processes with phase-type jumps[END_REF]. Note that differentiation of ( 14) is done by using the well known property of derivation of convoluted functions

(f ⋆ g) ′ = f ′ ⋆ g = f ⋆ g ′ , explaining why H(δ, .)
features derivative of function h(δ, .).

Since by Remark 2.3 one has that W (δ) (0) = 0, Equation ( 20) is then obtained by solving the standard first order differential equation [START_REF] Hubalek | Old and New Examples of Scale Functions for Spectrally Negative Lévy Processes[END_REF]. 2

Note however that Formula (20) requires to compute the infinite series appearing in [START_REF] Hubalek | Old and New Examples of Scale Functions for Spectrally Negative Lévy Processes[END_REF], which in practice may not be handy. However, since such scale functions are important in the theory of Lévy processes (in particular, these functions will be useful in Sections 2.3 and 3 for determining quantities related to first passage times of reflected processes and last passage times), any expression can be considered as welcome.

Remark 2. [START_REF] Barker | Optimal non-periodic inspection for a multivariate degradation model[END_REF] Asymptotic behaviour of T b as b → +∞ may be obtained through Roynette et al [START_REF] Roynette | Asymptotic behavior of the hitting time, overshoot and undershoot for some Lévy processes[END_REF]. More precisely, it was proved that

(T b + b/ϕ ′ D (0))/ √ b converges in distribution to an N (0, -ϕ ′′ D (0)/ϕ ′ D (0) 3 ) distribution.
One can also compute from [START_REF] Roynette | Asymptotic behavior of the hitting time, overshoot and undershoot for some Lévy processes[END_REF] 

asymptotic behaviour of triplet T b + b/ϕ ′ D (0))/ √ b, D T b -b, b -D T b -
that we did not include here but that involve technical expressions.

Examples

We illustrate the previous study with examples and review some famous examples related to degradation models.

Pure gamma process Here we assume that σ = 0 and that {G t , t ≥ 0} is a gamma process with shape parameter α and scale parameter ξ. We recall that its Lévy exponent and Lévy measure are given by

ϕ G (u) = ϕ D (u) = -α log(1 + u/ξ) ν D (dx) = Q(dx) = x -1 e -x ξ αdx.
Considering this special case into the generalized Lundberg equation, it follows that this equation has no positive solution. It appears that the presence of the perturbation in the degradation model is important for applying the result obtained by Tsai and Wilmott [START_REF] Tsai | A generalized defective renewal equation for the surplus process perturbed by diffusion[END_REF] as we did in Proposition 2.2. However, in this first special case, the degradation process reduces to a pure stationary gamma process and so {D t , t ≥ 0} has increasing paths. It follows that:

∀t ≥ 0 , P[T b > t] = P[D t < b].
Consequently it is sufficient to study the distribution of D t for any t ≥ 0. 

∀t ≥ 0 , F (t) = Γ(αt, b/ξ) Γ(αt) ,
where Γ(•, •) is the upper incomplete Gamma function. The probability distribution function (pdf) of T b is, for any t ≥ 0:

f (t) = α Ψ(αt) -log b ξ γ(αt, b/ξ) Γ(αt) + α (αt) 2 Γ(αt) b ξ αt 2 F 2 (αt, αt; αt + 1, αt + 1; -b/ξ),
where Ψ is the di-gamma function (or logarithmic derivative of the Gamma function), γ(•, •) = Γ(•) -Γ(•, •) is the lower incomplete Gamma function and 2 F 2 the generalized hypergeometric function of order (2, 2).

It has been proved (see [START_REF] Abdel-Hameed | Degradation processes: an overview. Advances in degradation modelling[END_REF] or Section 5 of [START_REF] Shaked | On the first-passage times of pure jump processes[END_REF] for instance) that T b has an increasing failure rate.

Perturbed gamma Process Statistical inference in a perturbed gamma process has been studied in [START_REF] Bordes | Parametric inference in a perturbed gamma degradation process[END_REF] using only degradation data. However sometimes both degradation data and failure time data are available (see [START_REF] Lehmann | Joint modelling of degradation and failure time data[END_REF] for such problem for a related model). In addition, from parameters estimation (based on degradation data for instance), one can obtain an estimation of the failure time distribution. Hence the distribution of T b can be of interest. In that case, {G t , t ≥ 0} is a gamma process with shape parameter α and scale parameter ξ. We recall that Lévy exponent and Lévy measure of process {D t , t ≥ 0} are then given by y 0 e -ρ(δ)(y-s) ∞ s e -ρ(δ)(x-s) e -x/ξ x dxds, w(., .) being an arbitrary bounded function. Also note that from Remark 2.4 one has thanks to [START_REF] Roynette | Asymptotic behavior of the hitting time, overshoot and undershoot for some Lévy processes[END_REF] the Central Limit Theorem

ϕ D (u) = -α log(1 + u/ξ) + 1 2 u 2 σ 2 ν D (dx) = Q(dx) = x -1 e -x ξ αdx. (21 
T b -ξb/α √ b D -→ N 0, α/ξ 2 + σ 2 α 3 /ξ 3 , b → +∞.
Finally, expression of the scale function is then given by ( 20) with ϕ D (.) and Q(.) defined in [START_REF] Kyprianou | Exact and asymptotic n-tuple laws at first and last passage[END_REF]. This will come in handy in Section 3.

Brownian motion with positive drift

We consider the case where G t = µt, i.e. {D t , t ≥ 0} is a Brownian motion with drift. In such case, the distribution of the hitting time of the constant boundary b is known and is called the inverse Gaussian distribution. Its pdf is given by:

∀t ≥ 0 , f (t) = b √ σ 2 t 3 exp - (b -µt) 2 2tσ 2 .
Proof of this result is generally based on the symmetric principle full-filled by the Brownian motion when µ = 0, or can be showed with martingale methods in the case µ > 0. Alternatively the pdf can be obtained by inverting the Laplace transform of T b :

φ(δ) = E[e -δT b ] = exp - (γ δ -µ)b σ 2 , ( 22 
)
with γ δ = µ 2 + 2δσ 2 . Note that the expression of this Laplace transform is standard and can be found e.g. in Expression (38) p. 212 of [START_REF] Cox | The theory of stochastic processes[END_REF] (see also [START_REF] Abdel-Hameed | Degradation processes: an overview. Advances in degradation modelling[END_REF], page [START_REF] Kyprianou | Introductory lectures on fluctuations of Lévy processes with applications[END_REF]. Also note that ( 22) is compatible with Expression [START_REF] Egami | On scale functions of spectrally negative Lévy processes with phase-type jumps[END_REF]. Indeed in the context of Proposition 2.2 we have here g ≡ 0 and h ≡ 0, thus ( 14) reduces to φ(δ, b) = e -[-2µ/σ 2 +ρ(δ)]y where ρ(δ) satisfies ( 6) ⇐⇒ 0 = σ 2 2 ρ(δ) 2 µρ(δ)δ, giving the exact same expression [START_REF] Lehmann | Joint modelling of degradation and failure time data[END_REF]. Expression of the scale function for this case is then given e.g. p.121 in [START_REF] Hubalek | Old and New Examples of Scale Functions for Spectrally Negative Lévy Processes[END_REF] by

W (δ) (x) = 2 2δσ 2 + µ 2 e -µx/σ 2 sinh x σ 2 2δσ 2 + µ 2 = 2 γ δ e -µx/σ 2 sinh x σ 2 γ δ . (23) 
Note that there seems to be a small mistake in [START_REF] Hubalek | Old and New Examples of Scale Functions for Spectrally Negative Lévy Processes[END_REF] of expression of W (δ) (x) (where there are some µ's instead of µ 2 's), that we corrected here. As proved by Chhikara and Folks [START_REF] Chhikara | The inverse Gaussian distribution as a lifetime model[END_REF], the failure rate of an inverse Gaussian distribution is non-monotone, but it is initially increasing and then decreasing.

Perturbed compound Poisson process with phase-type jumps

Let us suppose that {G t , t ≥ 0} is a compound Poisson process of intensity λ whose jumps are phase-type distributed with representation (m, α, T). Let t := -T1 where 1 is a column vector of which entries are equal to 1's of appropriate dimension (see e.g. Chapter VIII of Asmussen [START_REF] Asmussen | Ruin probabilities. Advanced series on statistical sciences and applied probability[END_REF] for an extensive account on such distributions). In that case ϕ D is given by

ϕ D (u) = 1 2 u 2 σ 2 + λ(α(uI -T) -1 t -1).
Egami and Yamazaki [START_REF] Egami | On scale functions of spectrally negative Lévy processes with phase-type jumps[END_REF] give the expression of the Laplace transform E(e -δT b ) by determining a closed formula for the scale functions W δ and using results in Proposition 2.3. More precisely following [START_REF] Egami | On scale functions of spectrally negative Lévy processes with phase-type jumps[END_REF], let us denote for all δ > 0 the complex solutions

(ξ i,δ ) i (resp. (η i ) i ) of Equation ϕ D (u) = δ (resp. δ/(δ -ϕ D (u)) = 0), u ∈ C.
We suppose that the ξ i,δ 's are distinct roots. We set

I δ := {i| ϕ D (-ξ i,δ ) = δ and ℜ(ξ i,δ ) > 0}, J δ := {i| δ/(δ -ϕ D (-η i )) = 0 and ℜ(η i ) > 0}, ϕ - δ (u) = j∈J δ (u + η j ) j∈J δ η j i∈I δ ξ i,δ i∈I δ (u + ξ i,δ )
.

On page 4 of [START_REF] Egami | On scale functions of spectrally negative Lévy processes with phase-type jumps[END_REF] it is stated that Card(I δ ) = Card(J δ ) + 1 (this results in fact comes from Lemma 1 (1) of [START_REF] Asmussen | Russian and American put options under exponential phase-type Lévy models[END_REF]), so that ϕ - δ (∞) exists and is equal to 0. We then define

(A i,δ ) i∈I δ s.t. ϕ - δ (u) -ϕ - δ (∞) = ϕ - δ (u) = i∈I δ A i,δ ξ i,δ ξ i,δ + u , ̺ δ := i∈I δ A i,δ ξ i,δ .
Then Proposition 2.1 of [START_REF] Egami | On scale functions of spectrally negative Lévy processes with phase-type jumps[END_REF] gives expression of the Laplace transform φ(δ) = E(e -δT b ) = i∈I δ A i,δ e -ξ i,δ (x-a) and Proposition 3.1 of [START_REF] Egami | On scale functions of spectrally negative Lévy processes with phase-type jumps[END_REF] yields the following interesting and useful expression of the scale function

W (δ) (x) = 2 σ 2 ̺ δ i∈I δ A i,δ ξ i,δ ρ(δ) + ξ i,δ e ρ(δ)x -e -ξ i,δ x . (24) 
Furthermore, as pointed out in [START_REF] Egami | On scale functions of spectrally negative Lévy processes with phase-type jumps[END_REF], expressions of W (δ) are more complicated but available when roots ξ i,δ 's have multiplicity m i > 1.

Reflected processes

The previous model may not be too realistic if we consider the Brownian motion as a means of modelling small repairs, as the degradation process {D t , t ≥ 0} may then be negative. An alternative for this is to consider the reflected version of {D t , t ≥ 0} defined in the following way

∀t ≥ 0, D * t := D t -inf 0≤s≤t (D s ∧ 0).
The hitting time distribution T * b of {D * t , t ≥ 0} jointly to the overshoot and undershoot pdf is given by the following theorem Theorem 2.1 Let us suppose that {D t , t ≥ 0} is non monotone, i.e. that σ > 0. Let W (δ) be defined by [START_REF] Folks | The inverse Gaussian distribution and its statistical application -A review[END_REF] where we recall that ρ = ρ(δ) is solution to the Lundberg equation ϕ

D (z) = δ. Then E[e -δT * b I {D * T * b -∈dy, D * T * b ∈dz} ] = ν D (dz -y)r (δ) b (b, y)dy (25) 
where r(δ) b (b, y) :=

W (δ) (b)W (δ) ′ (y) W (δ) ′ (b) -W (δ) (y).
Proof: We apply results from Doney [START_REF] Doney | Some excursion calculations for spectrally one-sided Lévy processes[END_REF] and we write, following notations therein, X t := -D t , so that Lévy measure of {X t , t ≥ 0} is Π(dx) := ν D (-dx)and process Ŷ (t) := sup 0≤s≤t (X s ∨ 0) -X t is equal to D * t . Following terminology of [START_REF] Doney | Some excursion calculations for spectrally one-sided Lévy processes[END_REF], W (δ) is the δ-scale function of {X t , t ≥ 0} and is defined by [START_REF] Folks | The inverse Gaussian distribution and its statistical application -A review[END_REF] with ϕ -D instead of ϕ D . Remark 4 p.14 of [START_REF] Doney | Some excursion calculations for spectrally one-sided Lévy processes[END_REF] gives expression [START_REF] Pistorius | A potential-theoretical review of some exit problems of spectrally negative Lévy processes[END_REF] where r(δ) b is given by Pistorius [START_REF] Pistorius | On exit and ergodicity of the spectrally negative Lévy process reflected at its infinmum[END_REF] (see also Expression (15) in Theorem 1 of [START_REF] Doney | Some excursion calculations for spectrally one-sided Lévy processes[END_REF]) with x := 0 and a := b, noting that function W (δ) is differentiable by Remark 2.2.
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Note again that Theorem 2.1 is especially interesting when function W (δ) admits closed form expressions, as in [START_REF] Hubalek | Old and New Examples of Scale Functions for Spectrally Negative Lévy Processes[END_REF][START_REF] Egami | On scale functions of spectrally negative Lévy processes with phase-type jumps[END_REF]. For example in the case of a perturbed compound Poisson process with phase-type distributed jumps (and using the same notations as in Section 2.2) we have ν D (dz) = λαe Tz t and W (δ) given by (24) (of which derivative is easily available), which, plugged in [START_REF] Pistorius | A potential-theoretical review of some exit problems of spectrally negative Lévy processes[END_REF], easily yields the Laplace transform of the corresponding hitting time T * b jointly to the overshoot and undershoot distribution. We now state a famous lemma that links distribution of D * t to the cumulative distribution function of T b for all b ≥ 0: Proof: This is a simple consequence from e.g. Lemma 3.5 p.74 of Kyprianou [START_REF] Kyprianou | Introductory lectures on fluctuations of Lévy processes with applications[END_REF]that implies that P(D * t > b) = P sup 0≤s≤t D s > b which in turn is equal to P(T b ≤ t). 2

3 Last-passage time as failure time

We let L b and L * b be the last passage times of processes {D t , t ≥ 0} and {D * t , t ≥ 0} below level b defined as

L b := sup{0 ≤ u| D u ≤ b} and L * b := sup{0 ≤ u| D * u ≤ b}
which are well defined as processes {D t , t ≥ 0} and {D * t , t ≥ 0} satisfy lim t→+∞ D t = lim t→+∞ D * t = +∞.

General case

Let us introduce the following bivariate measures U and Û on [0, +∞) 2 through their double Laplace transforms

∞ 0 ∞ 0 e -αs-βx U(ds, dx) = ρ(α) -β α -ϕ D (β) , ∀β > ρ(α), ∞ 0 ∞ 0 e -αs-βx Û (ds, dx) = 1 ρ(α) + β , ∀β, α ≥ 0.
(26) Expressions ( 26) may be found in Expressions ( 12) and ( 13) of [START_REF] Biffis | On a generalization of the Gerber-Shiu function to path-dependent penalties[END_REF], or p.154 and p.170 in Chapter 6 of [START_REF] Kyprianou | Introductory lectures on fluctuations of Lévy processes with applications[END_REF] (note that the latter reference considers spectrally negative processes, hence roles for U and Û are swapped therein). Furthermore, from (26) of [START_REF] Biffis | On a generalization of the Gerber-Shiu function to path-dependent penalties[END_REF] one has that Ûδ (dx) := ∞ s=0 e -δs Û(ds, dx) has the expression

Ûδ (dx) = e -ρ(δ)x dx, (27) 
hence Ûδ ([0, +∞)) = 1/ρ(δ). In the same spirit, we define U δ (dx) := ∞ s=0 e -δs U(ds, dx). ( 26) then reads that ∞ x=0 e -βx U δ (dx) = ρ(δ)-β δ-ϕD(β) for all β > ρ(δ). We then have the following identity, that will be of interest later on.

Lemma 3.1 One has

U δ (dx) = [-ρ(δ)W (δ) (x) + W (δ) ′ (x)]dx. ( 28 
)
Proof: From ( 15) we get the following

∞ x=0 e -βx U δ (dx) = -ρ(δ) ∞ 0 e -βx W (δ) (x)dx + ∞ 0 βe -βx W (δ) (x)dx (29) 
where β > ρ(δ). We recall from Remark 2.3 that W (δ) (0) = 0. As to behaviour at +∞ of the scale function, we have, thanks to Lemma 8. 

W (δ) (x) = e ρ(δ)x W (0) ρ(δ) (x) (30) 
(see e.g. Second Remark p.32 of [START_REF] Pistorius | A potential-theoretical review of some exit problems of spectrally negative Lévy processes[END_REF] for this identity as well as details on this other probability measure). At the end of Proof of Corollary 8.9 p.227 of [START_REF] Kyprianou | Introductory lectures on fluctuations of Lévy processes with applications[END_REF], it is shown that

W (0) ρ(δ) (+∞) = 1 ϕ ′ D,ρ(δ) (0+) where ϕ D,ρ(δ) (q) := ϕ D (q + ρ(δ)) -ϕ D (ρ(δ)) = ϕ D (q + ρ(δ)) -δ, hence W (0) ρ(δ) (+∞) = 1 ϕ ′ D (ρ(δ)) < +∞. ( 31 
)
Thus in view of W (δ) (0) = 0, (30) and (31), and since β > ρ(δ), the following integration by parts makes sense:

∞ 0 βe -βx W (δ) (x)dx = -e -βx W (δ) (x) ∞ 0 + ∞ 0 e -βx W (δ) ′ (x)dx = 0 + ∞ 0 e -βx W (δ) ′ (x)dx, ( 32 
)
remembering that W (δ) is indeed differentiable by Remark 2.2. Comparing Laplace transforms ( 29) and (32), we then obtain [START_REF] Shaked | On the first-passage times of pure jump processes[END_REF]. 2

Let us also note that, according to Definition 6.4 p.142 of [START_REF] Kyprianou | Introductory lectures on fluctuations of Lévy processes with applications[END_REF], the fact that σ > 0 entails that 0 is regular for sets (-∞, 0) and (0, +∞) (in particular, Theorem 6.5 p.142 of [START_REF] Kyprianou | Introductory lectures on fluctuations of Lévy processes with applications[END_REF] applies here). With that in mind, and since {D t , t ≥ 0} is spectrally positive and drifts to +∞, we may recall the following important recent result from Kyprianou et al [START_REF] Kyprianou | Exact and asymptotic n-tuple laws at first and last passage[END_REF]. 

D ∞ := inf u≥0 D u , D s = inf t≤s D s , G ∞ := sup{s ≥ 0| D s -D s = 0}, D -→ t := inf s>t D s , D -→ t := inf{s > t| D s -D -→ t = 0}. Then distribution of (G ∞ , D ∞ , D -→ L b -L b , L b , D -→ L b -b, b -D L b -, D L b -b
) is given by the following identity for t, b, v > 0, s > r > 0, 0 ≤ y < b + v, w ≥ u > 0:

P[G ∞ ∈ dr, -D ∞ ∈ dv, D -→ L b -L b ∈ dt, L b ∈ ds, D -→ L b -b ∈ du, b -D L b -∈ dy, D L b -b ∈ dw] = Ûδ ([0, +∞)) -1 Û(dr, dv)U(ds -r, b + v -dy) Û(dt, w -du)Q(dw + y), ( 33 
)
where Ûδ ([0, +∞)) -1 = ρ(0) from [START_REF] Roynette | Asymptotic behavior of the hitting time, overshoot and undershoot for some Lévy processes[END_REF].

It is clear that distribution of (L b , b -D L b -, D L b -b
) may be theoretically obtained from this theorem. In fact, our goal is to propose expressions of this distribution that only involves quantities that were determined in Section 2.1, e.g. scale functions, which we saw can be available in many situations, as opposed to measures U and Û appearing in (33) which, as seen in ( 26), are available only through double Laplace transforms. More precisely, we have the following results.

Theorem 3.2

We have for all t ≥ 0 and a ∈ R,

P(L b < t) = ∞ b E[D 1 ]W (a -b)f Dt (a)da (34) P(L b ≥ t, D t ∈ da) = [1 -E[D 1 ]W (a -b)]f Dt (a)da ( 35 
)
where f Dt (.) is density of r.v. D t and W (.) = W (δ) (.) defined in [START_REF] Folks | The inverse Gaussian distribution and its statistical application -A review[END_REF] with δ = 0. Besides, for all δ ≥ 0, and for b > y ≥ 0, w > 0, the Laplace transform of L b jointly to density of the under and overshoot is given by

E[e -δL b I {b-DL b -∈dy, DL b -b∈dw} ] = e ρ(δ)(b-y) 1 ϕ ′ D (ρ(δ)) -W (δ) (b -y) dy.[1 -e -ρ(0)w ]Q(dw + y). ( 36 
)
Let us compare results given in Theorem 3.2 with existing ones in the literature concerning last passage times of Lévy processes. References [START_REF] Chiu | Passage times for a spectrally negative Lévy process with applications to risk theory[END_REF] and [START_REF] Baurdoux | Last exit before an exponential time for spectrally negative Lévy processes[END_REF] give distributions of respectively last exit times and last exit times before an exponentially distributed time, in terms of their Laplace transform, for a similar class of Lévy processes; however Theorem 3.2 is more adapted here as it directly gives its cdf jointly to the density of the overshoot, thus avoiding an inverse Laplace transform. As said before, the slight advantage of Formula (36) over (33) is that it only involves the scale function.

Proof: Let us start by showing (34) and (35). Let t > 0. By definition of L b we note that for all a ≥ b event [L b < t, D t ∈ da] is equal to [D t ∈ da, {D s } will not hit level b anymore after t]. Hence using the Markov property:

P [L b < t, D t ∈ da] = P a-b [T 0 = +∞] P [D t ∈ da]
where P a-b [T 0 = +∞] is the probability that process {D t , t ≥ 0} starting from ab will never hit 0 and is given e.g. through Formula (4) p.19 of [START_REF] Kyprianou | A martingale review of some fluctuation theory for spectrally negative Lévy processes[END_REF] by

P a-b [T 0 = +∞] = E[D 1 ]W (a -b) and P [D t ∈ da] = f Dt (a)
da where f Dt is the density of r.v. D t and W (.) = W (0) (.) in [START_REF] Folks | The inverse Gaussian distribution and its statistical application -A review[END_REF]. By integrating a from b to +∞ one gets (34). Equation (35) stems from the basic equality

P(L b ≥ t, D t ∈ da) = P(D t ∈ da) -P(L b < t, D t ∈ da).
We now turn to (36), and use Theorem 3.1 to this end. Since by Fubini theorem we have

E[e -δL b I {b-DL b -∈dy, DL b -b∈dw} ] = ∞ s=0 e -δs P[L b ∈ ds, b -D L b -∈ dy, D L b -b ∈ dw],
and in view of (33), one just needs to compute the following integral:

∞ v=0 ∞ t=0 s>r>0 w u=0 e -δs P[G ∞ ∈ dr, -D ∞ ∈ dv, D -→ L b -L b ∈ dt, L b ∈ ds, D -→ L b -b ∈ du, b -D L b -∈ dy, D L b -b ∈ dw] = ρ(0) ∞ v=0 s>r>0 Û(dr, dv)e -δs U(ds -r, b + v -dy). w u=0 ∞ t=0 Û(dt, w -du).Q(dw + y), (37) 
which we strive to do now. The first integral in the righthandside of (37) verifies,

∞ v=0 s>r>0 Û (dr, dv)e -δs U(ds -r, b + v -dy) = ∞ v=0 ∞ r=0 Û (dr, dv) ∞ s=r e -δs U(ds -r, b + v -dy) = ∞ v=0 ∞ r=0 Û (dr, dv)e -δr U δ (b + v -dy) = ∞ v=0 ∞ r=0 e -δr Û(dr, dv) W (δ) ′ (b + v -y) -ρ(δ)W (δ) (b + v -y) dy by Lemma 3.1 = ∞ v=0 Ûδ (dv) W (δ) ′ (b + v -y) -ρ(δ)W (δ) (b + v -y) dy = ∞ v=0 e -ρ(δ)v dv W (δ) ′ (b + v -y) -ρ(δ)W (δ) (b + v -y)
dy by ( 27). ( 38)

Relation (30) yields that e -ρ(δ)v W (δ) (b -y + v) = e ρ(δ)(b-y) W (0) ρ(δ) (b -y + v) which, from (31), tends to e ρ(δ)(b-y) 1 ϕ ′ D (ρ(δ)) as v → +∞.
This justifies the following integration by parts:

∞ v=0 e -ρ(δ)v W (δ) ′ (b + v -y)dv = e -ρ(δ)v W (δ) (b + v -y) ∞ v=0 + ∞ v=0 ρ(δ)e -ρ(δ)v W (δ) (b + v -y)dv = e ρ(δ)(b-y) 1 ϕ ′ D (ρ(δ)) -W (δ) (b -y) + ∞ v=0 ρ(δ)e -ρ(δ)v W (δ) (b + v -y)dv, (39) 
which, inserted in (38), yields the following simplification

∞ v=0 s>r>0 Û(dr, dv)e -δs U(ds -r, b + v -dy) = e ρ(δ)(b-y) 1 ϕ ′ D (ρ(δ)) -W (δ) (b -y) dy. (40) 
The second integral in the righthandside of (37) verifies

w u=0 ∞ t=0 Û (dt, w -du) = w u=0 Û0 (w -du) = w u=0
e -ρ(0)(w-u) du by ( 27)

= 1 ρ(0) [1 -e -ρ(0)w ]. (41) 
Plugging ( 40) and ( 41) into (37) yields (36). 2

Examples

We consider here some examples from those studied previously and for which last-passage time is relevant.

Brownian motion with positive drift

In the case where G t = µt, µ > 0 and D t = G t + σB t = µt + σB t , we have

E[D 1 ] = µ, W (a -b) = W (0) (a -b) = 2 µ e -µ(a-b)/σ 2 sinh a -b σ 2 µ from (23), f Dt (a) = 1 σ √ 2πt e -(a-µt) 2 /(2σ 2 t) ,
which, plugged in (34) and (35), yields expression of the cdf t → P[L b < t] as well as its cdf jointly to density of D t . Note that by deriving this expression of the cdf one obtains after some calculation the following density for

L b P[L b ∈ dt] = µ √ 2πt e -(b-µt) 2 2t dt,
which agrees with the already known density of the last passage time of a Brownian motion with drift, see e.g. Expression (1.12) p.2 of [START_REF] Profeta | Option prices as probabilities[END_REF].

Perturbed gamma process In the case where {G t , t ≥ 0} is a gamma process with shape parameter α and scale parameter ξ, densities of G t and σB t are given by f Gt (u) = u αt-1

Γ(αt)

e -u/ξ ξ αt and f σBt (u) = 1 σ √ 2πt e -u 2 /(2σ 2 t) . We also recall that function H(δ, x) defined in Proposition 2.4 has expression given in [START_REF] Hubalek | Old and New Examples of Scale Functions for Spectrally Negative Lévy Processes[END_REF] with characteristics of the gamma perturbed process being given by [START_REF] Kyprianou | Exact and asymptotic n-tuple laws at first and last passage[END_REF]. Hence a bit of calculation yields

E[D 1 ] = αξ, W (a -b) = a-b 0 e -ρ(δ)(a-b-y) H(δ, y)dy, f Dt (a) = f Gt ⋆ f σBt (a) = 1 σ √ 2πtΓ(αt)ξ αt +∞ 0 u αt-1 e -u/ξ e -(a-u) 2 /(2σ 2 t) du, = e -a 2 /(2σ 2 t) σ √ 2πtΓ(αt)ξ αt +∞ 0 u αt-1 e -1 2σ 2 t u 2 + 2σ 2 t ξ -2a u du = e -a 2 /(2σ 2 t) σ √ 2πtΓ(αt)ξ αt (σ √ t) αt-1 +∞ 0 x αt-1 e -1 2 x 2 -1 2σ √ t 2σ 2 t ξ -2a x dx, x := u/(σ √ t), = (σ √ t) αt-2 √ 2πΓ(αt)ξ αt e -a 2 2σ 2 t -1 4σ 4 σ 2 t ξ -a 4 D -αt σ √ t ξ - a σ √ t where Γ(s) =
∞ 0 e -t t s-1 dt, s > 0, is the gamma function and D p (z) = e -z 2 /4 Γ(-p) ∞ 0 e -zx-x 2 /2 x -p-1 dx, p < 0, is the parabolic cylinder function (see (9.241.2) p.1064 of [START_REF] Gradshteyn | Tables of integrals, seriesand products[END_REF]). These expressions, plugged in ( 35) and (36), yield expression of the cdf of L b jointly to density of D t as well as the Laplace transform of L b jointly to density of the over and undershoot.

Perturbed compound Poisson process with phase-type distributed jumps

In the case where {G t , t ≥ 0} is a compound Poisson process with phase-type distributed jumps of parameters as in Section 2.2, we have, using same notations as in that section that density of shocks is equal to p(x) = αe xT t (see Theorem 1.5(b) p.218 of [START_REF] Asmussen | Ruin probabilities. Advanced series on statistical sciences and applied probability[END_REF])and

E[D 1 ] = -αT -1 1, W (a -b) = 2 σ 2 ̺ 0 i∈I0 A i,0 ξ i,0 ρ(0) + ξ i,0
e ρ(0)(a-b)e -ξi,0(a-b) from ( 24) with δ = 0,

f Dt (a) = ∞ n=0 f σBt ⋆ p ⋆(n) (a)e -λt (λt) n n!
where f σBt (u) = 1 σ √ 2πt e -u 2 /(2σ 2 t) . These expressions, plugged in (35)and (36), yield expression of the cdf of L b jointly to density of D t as well as the Laplace transform of L b jointly to density of the over and undershoot.

Reflected processes

As for the previous section dealing with first-passage time, we consider the last-passage time for the reflected version of perturbed increasing Lévy process. t , t ≥ 0} behaves like the non reflected process {D t , t ≥ 0} on event [{D * s } will not hit level b anymore after T ] for t ≥ T , we have, for all a > b, and using the Markov property,

P [L * b < T, D * T ∈ da] = P a-b [T 0 = +∞] P [D * T ∈ da] (42) 
where P a-b [T 0 = +∞] is the probability that process {D t , t ≥ 0} starting from ab will never hit 0 and has expression E[D 1 ]W (ab), as observed in Proof of Theorem 3.2. Since W (z) = 0 on z ≤ 0, we have by Fubini theorem (and since W (.) is a differentiable function by Remark 2.2),

E e -δL * b = ∞ a=b P [L * b < T, D * T ∈ da] = E[D 1 ] ∞ a=b W (a -b)P [D * T ∈ da] = E[D 1 ]E[W (D * T -b)] = E[D 1 ]E ∞ a=b W ′ (a -b)I {D * T >a} da = E[D 1 ] ∞ a=b W ′ (a -b)P[D * T > a]da.
From Lemma 2.1, we have that P[D * T > a] = P[T a ≤ T ] which is equal to φ(δ, a), as T follows an E(δ) distribution. This yields the result.
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Again we emphasize that φ(δ, a) = E[e -δTa ] is available in practice either through series ( 14) in Proposition 2.2, or through [START_REF] Gradshteyn | Tables of integrals, seriesand products[END_REF] in Proposition 2.3. Also note that proof of Theorem 3.3 implicitly yields the following side result. Proposition 3.1 Let T be an independent E(δ) distributed r.v. Then for all a ≥ b we have ,a) is differentiable with respect to a. This can be seen thanks to the convenient expression (17) that yields that differentiability property since function W (δ) is a differentiable function by Remark 2.2 (and Z (δ) is obviously differentiable by ( 16)). 2

P[L * b ≥ T, D * T ∈ da] = -[1 -E[D 1 ]W (a -b)] ∂ ∂a φ(δ, a)da. (43) 

A maintenance policy

We now as an application consider the maintenance strategy described in Barker and Newby [START_REF] Barker | Optimal non-periodic inspection for a multivariate degradation model[END_REF]. Degradation of a certain component is modelled according to a process {X t , t ≥ 0}. We suppose that, without maintenance, {X t , t ≥ 0} is a perturbed process with same parameters as {D t , t ≥ 0}and that failure occurs at the last passage time L b of level b of the degradation process.

Let us then consider the following maintenance rule. The component is inspected at times (U i ) i=1,2,... such that inter inspection time verifies U i+1 -U i = m(X Ui+ ), where m(.) is some non increasing function. Let d : R -→ R be some "maintenance function". On inspection at time U i , one of the following actions is undertaken:

• either the system did not fail in interval (U i-1 , U i ], in which case preventive maintenance occurs and degradation process evolves like {D t , t ≥ 0} with initial condition D 0 = d(x) up until time U i+1 , where x is degradation state at instant U i -; in other words one has X Ui = d(X Ui-),

• or the system failed in interval (U i-1 , U i ] in which case it is repaired and degradation process starts anew, i.e. evolves like {D t , t ≥ 0} with initial condition D 0 = 0.

We will suppose in this section that function d(.) is differentiable from R to R and bijective. Note that these two assumptions are not too stringent and can be relaxed, in which case expressions of distributions computed in this section would only be more complicated.

We then define r.v. I as the first inspection after which system is reset, i.e.

I = inf{i ∈ N| failure occurred in (U i-1 , U i ]}.
This means that T * := U I is a regeneration time for the degradation process. Process {X t , t ≥ 0} then behaves like independent copies of {D t , t ≥ 0} in intervals (U i , U i+1 ] with possibly different initial states. Figure 1 shows a sample path of {X t , t ≥ 0}, with failure in interval (U 5 , U 6 ]and thus starting anew at time U 6 with X U6 = 0. Note that process {X t , t ≥ 0} thus constructed is càdlàg and such that, given its state at any instant U k , {X t , t > U k } is independent from {X t , t ∈ [0; U k )}, i.e. from its history before U k . This can be written as We also introduce the idle time ∆ * which is the unavailability period of time during which component is down until next scheduled inspection:

X t , t ≥ U k X s , s ∈ [0, U k ] D = X t , t ≥ U k X U k . b t U1 U2 U3 U4 
∆ * := T * -H b ∈ [0, U I -U I-1 ]
where H b is the failure time of the component and then necessarily lies in [U I-1 , U I ]. We are interested in quantities involving (possibly joined) distributions of I, T * , ∆ * as well as the state of the degradation process at inspection times. For this purpose we introduce the following quantities:

• A(x, dy) := P[L b > m(x), d(D m(x) ) ∈ dy| D 0 = x]
the distribution of the degradation process on inspection after maintenance jointly to the fact that there was no failure before inspection, given that degradation process starts at x, Proof: We recall that we supposed that d(.) is a one to one differentiable function out of practicality. Expression for A(x, dy) simply comes from (35) with t = m(x) and a simple change of variable a = d -1 (y)and remarking that last hitting time of level b of process {D t , t ≥ 0} with D 0 = x is the same in distribution as that of level bx of process {D t , t ≥ 0} with D 0 = 0. Expression for C(y) is obtained from (34) with t = m(y) and b := by because of process starting from y. Finally expression for C r (y, z) comes from the fact that We may now state main results of this section that concern quantities of interest introduced at the beginning of the section. Theorem 4.1 Distribution of I jointly to the state of the degradation process just after inspection and preventive maintenance is given by P[I = i, X U1 ∈ dy 1 , ..., X Ui-1 ∈ dy i-1 ] = A(0, dy 1 ) × A(y 1 , dy 2 ) × ... × A(y i-2 , dy i-1 ) × C(y i-1 ). (44) Distribution of the idle time jointly to I and the state of the degradation process just after inspection and preventive maintenance is given by P[∆ * > z, I = i, X U1+ ∈ dy 1 , ..., X Ui-1 ∈ dy i-1 ] = A(0, dy 1 )×A(y 1 , dy 2 )×...×A(y i-2 , dy i-1 )×C r (y i-1 , z).

(45)

Proof: The first probability is obtained by writing it in the form P ∩ i-1 k=1 E k ∩ F i where

E k = no failure in (U k-1 ; U k ], d(X U k ) ∈ dy k F i = failure in (U i-1 ; U i ] .
Since evolution of process X t in t ∈ [U i , U i+1 ) given X Ui is independent from X t , t ∈ [0, U i ), we may write that probability in the following form

P[I = i, X U1 ∈ dy 1 , ..., X Ui-1 ∈ dy i-1 ] = i-1 k=1 P[E k | X U k-1 = y k-1 ] × P[F i | X Ui-1 = y i-1 ]
and conclude by the fact that by the stationary increment property we have P[E k | X U k-1 = y k-1 ] = A(y k-1 , dy k ) and P[F i | X Ui-1 = y i-1 ] = C(y i-1 ) in order to obtain (44). ( 45) is derived by similar arguments. 2

Note that Theorem 4.1 yields other interesting quantities. For example the expected time before reparation jointly to the number of inspections/maintenances is obtained thanks to (44) by E T * I {I=i} = (y1,...,yi-1)∈R i-1 i-1 k=1 f (y k ) A(0, dy 1 ) × A(y 1 , dy 2 ) × ... × A(y i-2 , dy i-1 ) × C(y i-1 ). Remark 4.1 (Case of the reflected process) It is possible to adapt the previous setting to the reflected process {D * t , t ≥ 0} and constructed a reflected degradation process {X * t , t ≥ 0} with inspection and maintenance by considering exponentially distributed inter-inspection times U i+1 -U i of which conditional distribution given X Ui is E(1/m(X Ui )), instead of deterministic times, where m(.) is the same function as in the non reflected caseand again featuring a maintenance function d(.). Results from Theorem 3.3 as well as equality (43) would yield similar expressions for A(x, dy), C(y) for exponentially distributed horizonand an equivalent of Theorem 4.1 for such an inspection strategy could be obtained.

  The hitting time distribution was already given for instance p.517 of Park and Padgett [23]: Proposition 2.5 (Park and Padgett [23]) The cumulative distribution function (cdf) of T b is:

  ) Thus, Proposition 2.2 gives joint distribution of (T b , D T b -, D T b ) through expression of φ(δ, b) where ω(x) := ∞ x w(x, yx) e -y/ξ y dy and g(δ, y) = 2 σ 2

Lemma 2 . 1

 21 We have for all b and t ≥ 0, P(D * t > b) = P(T b ≤ t).

  4 p.222 of [19], relation W (δ) (x) = e cx W (δ-ϕD(c)) c (x), for any c ∈ R such that δϕ D (c) ≥ 0, where W (δ-ϕD (c)) c is a scale function defined under a different probability measure. By picking c = ρ(δ) then one gets δϕ D (c) = 0 and

Theorem 3 . 1 (

 31 Corollary 2 of Kyprianou, Pardo and Rivero [21]) Let us define

Theorem 3 . 3

 33 The Laplace transform of L * b is given byE e -δL * b = E[D 1 ] ∞ b W ′ (ab)φ(δ,a)da where we recall that φ(δ, a) = E[e -δTa ] = φ w (δ, a) with w ≡ 1. Proof: We start similarly as in the proof of Theorem 3.2 and let T an independent r.v. following an E(δ). Event [L * b < T, D * T ∈ da] is equal to [D * T ∈ da, {D * s } will not hit level b anymore after T ]. Since reflected process {D *

Proof:

  As in showing (35), we use the fact that P[L * b ≥ T, D * T ∈ da] = P[D * T ∈ da] -P [L * b < T, D * T ∈ da] as well as (42) to derive that P[L * b ≥ T, D * T ∈ da] = [1 -E[D 1 ]W (ab)]P[D * T ∈ da]. To obtain (43) we just need to prove that r.v. D * T admits a density given by P[D * T ∈ da]/da = -∂ ∂a φ(δ, a). Indeed Lemma 2.1 yields that P[D * T > a] = P[T a ≤ T ] = E[e -δTa ] = φ(δ, a), thus what remains to prove is that E[e -δTa ] = φ(δ

Fig. 1 :

 1 Fig. 1: Sample path of degradation process {Xt, t ≥ 0}, with failure in (U5, U6].

•Proposition 4 . 1

 41 C(y) := P[L b ≤ m(y)| D 0 = y], the probability that failure occurred before next inspection, given that degradation process starts at y,• C r (y, z) := P[m(y) -L b ≥ z| m(y) ≥ L b , D 0 = y], z ∈ [0, m(y)], the survival function of the idle time given that degradation process starts at y.These three quantities are easily obtained: We have the following expressionsA(x, dy) = [1 -E[D 1 ]W (d -1 (y)b + x)] f m(x) (d -1 (y)) d ′ [d -1 (y)] dy, C(y) = ∞ b-y E[D 1 ]W (ab + y)f m(y) (a)da, C r (y, z) = 1 C(y) ∞ b-y E[D 1 ]W (ab + y)f m(y)-z (a)da.

C

  r (y, z) = P[m(y) -L b ≥ z| D 0 = y] P[m(y) ≥ L b , | D 0 = y] = P[m(y) -L b ≥ z| D 0 = y] C(y) and using (34) with T = m(y)z and b := by to obtain expression of P[m(y) -L b ≥ z| D 0 = y]. 2

  when process has infinitely many jumps on any interval. Intuitively {S(t, n), t ≥ 0} is obtained from {G t , t ≥ 0} by discarding all jumps that are of size less than 1/n. Since {S(t, n), t ≥ 0} increases towards {D

t , t ≥ 0}, we have that