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PLUS ULTRA

FRANK O. WAGNER

Abstract. We define a reasonably well-behaved class of ultra-
imaginaries, i.e. classes modulo invariant equivalence relations, namely
the tame ones, and establish some basic simplicity-theoretic facts.
We also show feeble elimination of supersimple ultraimaginaries: If
e is an ultraimaginary definable over a tuple a with SU(a) < ωα+1,
then e is eliminable up to rank < ω

α. Finally, we prove some uni-
form versions of the weak canonical base property.

1. Introduction

This paper arose out of an attempt to understand and generalize
Chatzidakis’ results on the weak canonical base property [5, Propo-
sition 1.16 and Lemma 1.17]. In doing so, we realized that certain
stability-theoretic phenomena were best explained using ultraimaginar-
ies. It should be noted that ultraimaginaries occur naturally in simplic-
ity theory and were in fact briefly considered in [3] before specializing
to the more restricted class of almost hyperimaginaries. However, they
have faded into oblivion since Ben Yaacov [1] has shown that no satis-
factory independence theory can exist for them, as there are problems
both with the finite character and with the extension axiom for inde-
pendence. Nevertheless, at least finite character can be salvaged if one
restricts to quasi-finitary ultraimaginaries in a supersimple theory, or
more generally to what we called tame ultraimaginaries.

We shall define ultraimaginaries in Section 2 and give various exam-
ples. We also give a first example of a natural general result involving
them, Proposition 2.9, which for a supersimple theory of finite rank
specializes to a theorem of Lascar. In Section 3 we define tame ul-
traimaginaries and recover certain tools from simplicity theory, even
though, due to the lack of extension, canonical bases are not available
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2 FRANK O. WAGNER

in our context. One may thus hope to extend the techniques of this sec-
tion for instance to the superrosy context, where the lack of canonical
bases has been one of the main technical problems.

In Section 4 we prove feeble elimination of ultraimaginaries. In par-
ticular ultraimaginaries of finite rank are interbounded with hyper-
imaginaries. This is used in Section 5 to generalize some of Chatzidakis’
results [5] on the weak canonical base property from sets of finite SU -
rank to arbitrary ordinal SU -rank. It is interesting to compare this
generalization to the coarser [8, Theorem 5.4] which uses α-closure.
We expect that this is a general phenomenon: The use of ultraimagi-
naries allows for a more direct and more refined proof without explicit
use of SU -rank; rank considerations principally intervene via the feeble
elimination result and the technical results of Section 3.

All elements, tuples and parameter sets are hyperimaginary, unless
stated otherwise. For an introduction to simplicity and hyperimagi-
naries, the reader is invited to consult [4] or [11].

2. Ultraimaginaries

Definition 2.1. An ultraimaginary is the class aE of a tuple a under
an ∅-invariant equivalence relation E.

Note that tuples of ultraimaginaires are again ultraimaginary. Al-
ternatively, any tuple of ultraimaginaries is interdefinable with a tuple
of countable ultraimaginaries.

Definition 2.2. An ultraimaginary aE is definable over a set A if any
automorphism of the monster model fixing A stabilises the E-class of a.
It is bounded over A if the orbit of a under the group of automorphisms
of the monster model which fix A is contained in boundedly many E-
classes. A representative of an ultraimaginary e is any tuple a such
that e is definable over a.

Remark 2.3. As usual, if EA(x, y) is an A-invariant equivalence rela-
tion, one considers the ∅-invariant relation E(xX, yY ) given by

(X = Y ∧X ≡ A ∧ EX(x, y)) ∨ (X = Y ∧ x = y).

This is an equivalence relation, and (aA)E is interdefinable over A with
aEA

.

Remark 2.4. As any ∅-invariant relation, E is given by a union of
types over ∅.
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We shall say that two ultraimaginaries have the same (Lascar strong)
type over some set A if they have representatives which do. Clearly,
two ultraimaginaries are conjugate by a (Lascar strong) automorphism
if and only if they have the same (Lascar strong) type over A.

Ultraimaginaries arise quite naturally in stability and simplicity the-
ory.

Example 2.5. Let pA ∈ S(A) be a regular type in a stable theory. For
A′, A′′ |= tp(A) put E(A′, A′′) if pA′ 6⊥ pA′′. Then E is an ∅-invariant
equivalence relation, and AE codes the non-orthogonality class of pA.

The work with ultraimaginaries requires caution, as some basic prop-
erties become problematic.

Example 2.6. [1] Let E be the ∅-invariant equivalence relation on
infinite sequences which holds if they differ only on finitely many el-
ements. Consider a sequence I = (ai : i < ω) of elements such that
no finite subtuple is bounded over the remaining elements. Then every
finite tuple ā ∈ I can be moved to a disjoint conjugate over IE , but I
cannot. Similarly, if I is a Morley sequence in a simple theory, then
ā |⌣ IE for any finite ā ∈ I, but I 6 |⌣ IE . (We call two ultraimaginaries
independent if they have representatives which are.)

Even in the ω-stable context, for classes of finite tuples, the theory
is not smooth.

Example 2.7. Let T be the theory of a cycle-free graph (forest) of in-
finite valency, with predicates Pn(x, y) for couples of points of distance
n for all < ω. It is easy to see by back-and-forth that T eliminates
quantifiers and is ω-stable of rank ω; the formula Pn(x, a) has rank n
over a. Let E be the ∅-invariant equivalence relation of being in the
same connected component. Then existence of non-forking extensions
fails over aE , as any two points in the connected component of a have
some finite distance n, and hence rank n over one another, but rank
≥ k over aE for all k < ω, since aE is definable over any point of
distance at least k.

The same phenomenon can be observed for any type p of rank
SU(p) = ω in a simple theory, with the relation E(x, y) on p which
holds if SU(x/y) < ω and SU(y/x) < ω (actually, one follows from the
other by Lascar’s inequalities).

The behaviour of Example 2.7 is inconvenient and signifies that we
shall avoid working over an ultraimaginary. The behaviour of Example
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2.6 is outright vexatious; we shall restrict the class of ultraimaginaries
under consideration in order to preserve the finite character of inde-
pendence.

Definition 2.8. An ultraimaginary e is quasi-finitary if there is a finite
tuple a such that e is bounded over a.

For hyperimaginary tuples contained in the bounded closure of a fi-
nite set, we shall use quasi-finite rather than quasi-finitary, in order to
emphasize the distinction between usual hyperimaginaries and ultra-
imaginaries. The set of all / all quasi-finitary ultraimaginaries definable
over A will be denoted by dclu(A) / dclqfu(A), respectively. Similarly,
bddu(A) / bddqfu(A) will denote the corresponding bounded closures.

Recall that two tuples a and b have the same Lascar strong type
over A, denoted a ≡lstp

A b or b |= lstp(a/A), if they lie in the same class
modulo all A-invariant equivalence relations with only boundedly many
classes. This is the finest bounded A-invariant equivalence relation, so
bddu(A) is bounded by the number of Lascar strong types over A.

Proposition 2.9. The following are equivalent:

(1) bddu(a) ∩ bddu(b) = bddu(∅).
(2) For any a′ |= lstp(a) there is n < ω and a sequence (aibi : i ≤ n)

such that
a0 = a, b0 = b, an = a′

and for each i < n

bi+1 |= lstp(bi/ai) and ai+1 |= lstp(ai/bi+1).

If a and b are quasi-finite, this is also eqivalent to bddqfu(a)∩bddqfu(b) =
bddqfu(∅).

Proof: (1) ⇒ (2) Suppose bddu(a) ∩ bddu(b) = bddu(∅), and define
an ∅-invariant relation on lstp(ab) by E(xy, x′y′) if there is a sequence
(xiyi : i ≤ n) such that

ab ≡lstp x0y0, x0y0 = xy, xnyn = x′y′

and for each i < n

yi+1 |= lstp(yi/xi) and xi+1 |= lstp(xi/yi+1).

Note that this implies xiyi ≡
lstp ab for all i ≤ n, so E is an equivalence

relation. Now if b′ |= lstp(b/a), then |= E(ab, ab′). Hence (ab)E ∈
bddu(a). Similarly (ab)E ∈ bddu(b), whence (abE) ∈ bddu(∅). But for
any a′ |= lstp(a) there is b′ with ab ≡lstp a′b′. Then |= E(ab, a′b′), in
particular (2) holds.
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(2) ⇒ (1) Suppose not, and consider e ∈ (bddu(a) ∩ bddu(b)) \
bddu(∅). As e /∈ bddu(∅) there is a′ |= lstp(a) with e /∈ bddu(a′).
Consider a sequence (ai, bi : i ≤ n) as in (2). Since bi+1 |= lstp(bi/ai)
and ai+1 |= lstp(ai/bi+1) we have

bddu(ai) ∩ bddu(bi) = bddu(ai) ∩ bddu(bi+1)

= bddu(ai+1) ∩ bddu(bi+1).

In particular,

e ∈ bddu(a) ∩ bddu(b) = bddu(a0) ∩ bddu(b0)

= bddu(an) ∩ bddu(bn) ⊆ bddu(a′),

a contradiction.

The last assertion follows from the fact that for quasi-finite ab the
ultraimaginary (ab)E in the proof of (1) ⇒ (2) is quasi-finitary. �

Using weak elimination of ultraimaginaries proven in Section 4, we
recover a Lemma of Lascar [6] (see also [7, Lemma 2.2]), proved origi-
nally for stable theories of finite Lascar rank.

Corollary 2.10. Let T be a simple theory of finite SU-rank, A a pa-
rameter set and a, b quasi-finite hyperimaginary tuples. The following
are equivalent:

(1) bdd(Aa) ∩ bdd(Ab) = bdd(A).
(2) For any a′ |= lstp(a/A) independent of a over A there are

sequences a = a0, . . . , an = a′ and b = b0, . . . , bn, such that
bi+1 |= lstp(bi/ai) and ai+1 |= lstp(ai/bi+1) for each i < n.

Proof: We add A to the language. By Theorem 4.6 supersimple theories
of finite rank have weak elimination of quasi-finitary ultraimaginaries.
Hence condition (1) is equivalent to bddu(a) ∩ bddu(b) = bddu(∅). So
(1) ⇒ (2) follows from Proposition 2.9; for the converse given arbitrary
a′ |= lstp(a/A) we consider a′′ |= lstp(a/A) with a′′ |⌣A

aa′ and com-

pose the sequence (aibi : i ≤ n) from ab = a0b0 to an = a′′ with the
sequence (aibi : n ≤ i ≤ ℓ) from anbn to aℓ = a′. Hence (2) holds for
arbitrary a′ |= lstp(a/A), so we can again apply Proposition 2.9. �

3. Ultraimaginaries in simple theories

From now on the ambient theory will be simple. Our notation is stan-
dard and follows [11]. We shall be working in a sufficiently saturated
model of the ambient theory. Tuples are tuples of hyperimaginaries,
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and closures (definable, algebraic and bounded closures) will include
hyperimaginaries.

Remark 3.1. Since in a simple theory Lascar strong type equals Kim-
Pillay strong type, we have bddu(A) = dclu(bdd(A)). But of course, as
with real and imaginary algebraic closures, bdd(A)∩bdd(B) = bdd(∅)
does not imply bddu(A)∩bddu(B) = bddu(∅) unless the theory weakly
eliminates ultraimaginaries.

Definition 3.2. We shall say that two ultraimaginaries e and e′ are
independent over A, denoted e |⌣A

e′, if they have representatives which
are.

Remark 3.3. If e or e′ is a sequence of ultraimaginaries, we require
sequences of representatives which are independent. In particular, it is
not clear even for real e′ that an infinite sequence e of ultraimaginaries
is independent of e′ if every finite subsequence is independent of e′.
One should thus avoid to work with infinite tuples of ultraimaginaries.

On the other hand, as we have seen in Example 2.6, if e is a hyper-
imaginary set and e′ a single ultraimaginary, finite character can also
fail. This will give rise to Definition 3.7.

In a simple theory, ultraimaginary independence is clearly symmet-
ric, and satisfies local character and extension (but recall that we only
consider hyperimaginary base sets), since this is inherited from suitable
representatives. As for transitivity, we have the following.

Fact 3.4. [3, Lemma 1.10] Let A, a be hyperimaginary, and e, e′ ultra-
imaginary.

• If e |⌣A
e′e′′ and e′ |⌣A

e′′, then ee′ |⌣A
e′′ and e |⌣A

e′.

• e |⌣A
ae′ if and only if e |⌣A

a and e |⌣Aa
e′.

The Independence Theorem and Boundedness axiom also hold.

Fact 3.5. [3, page 189] Let A be hyperimaginary and e, e′ ultraimagi-
nary with e |⌣A

e′.

• If f, f ′ are ultraimaginary with f |⌣A
e, f ′ |⌣A

e′ and f ≡Lstp
A f ′,

then there is f ′′ |⌣A
ee′ with ef ′′ ≡Lstp

A ef and e′f ′′ ≡Lstp
A e′f ′.

• If e′′ ∈ bddu(Ae) then e′′ |⌣A
e′. Moreover, if e |⌣a

e for every

representative a of an ultraimaginary e′′, then e ∈ bddu(e′′).

Next, ultraimaginary bounded closures of independent sets intersect
trivially.
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Lemma 3.6. If A is hyperimaginary and e, e′ ultraimaginary with
e |⌣A

e′, then bddu(Ae) ∩ bddu(Ae′) = bddu(A).

Proof: Replacing e and e′ by A-independent representatives, we may
assume that e and e′ are hyperimaginary. Consider aE ∈ bddu(Ae) ∩
bddu(Ae′). We may assume a |⌣Ae

e′, whence ae |⌣A
e′. Let (ai : i < ω)

be a Morley sequence in lstp(a/Ae′). Then E(ai, aj) for all i, j < ω.
But ai |⌣A

aj for i 6= j, so π(x, aj) = tp(ai/aj) does not fork over A,

and neither does π(x, a). Note that π(x, y) implies E(x, y).

Now suppose aE /∈ bddu(A). We can then find a long sequence
(a′i : i < α) of A-conjugates of a such that ¬E(a′i, a

′
j) for i 6= j. By

the Erdös-Rado theorem there is an infinite A-indiscernible sequence
(a′′i : i < ω) whose 2-type over A is among the 2-types of (a′i : i <
α). In particular ¬E(a′′i , a

′′
j ) for i 6= j, and (π(x, a′′i ) : i < ω) is 2-

inconsistent. Since a′′0 |= tp(a/A), we see that π(x, a) divides over A, a
contradiction. �

As we have seen in Remark 3.3, finite character may fail for ultra-
imaginaries. The next definition singles out the subclass of ultraimag-
inaries where this does not happen, at least for hyperimaginary sets.

Definition 3.7. Let T be simple. An ultraimaginary e is tame if for all
sets A,B of hyperimaginaries we have e |⌣A

B if and only if e |⌣A
B0

for all finite subsets B0 ⊆ B. It is supersimple if it has a representative
of ordinal SU -rank.

Remark 3.8. A supersimple ultraimaginary in a simple theory is
quasi-finitary; in a supersimple theory the converse holds as well.

Proof: Suppose A is a representative for an ultraimaginary e with
SU(A) < ∞, and let B be a real tuple with A ∈ bdd(B). Let b ∈ B
be a finite subtuple with SU(A/b) minimal; it follows that A |⌣b

B.

Hence A ⊆ bdd(b) and e is bounded over b, so e is quasi-finitary. In a
supersimple theory the converse is obvious. �

We are really interested in the set of tame ultraimaginaries. How-
ever, we do not have a good criterion when an ultraimaginary is tame;
moreover, an ultraimaginary definable over a tame ultraimaginary need
not be tame itself. For instance, the sequence I in Example 2.6 is tame
(since it is real), but IE is not. Clearly, an ultraimaginary definable
(or even bounded) over a quasi-finitary / supersimple ultraimaginary
is itself quasi-finitary / supersimple.

Lemma 3.9. A supersimple ultraimaginary is tame. In particular,
quasi-finitary ultraimaginaries in a supersimple theory are tame.
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Proof: Let e be a supersimple ultraimaginary, and a a representative
with SU(a) < ∞. Consider sets A and B. There is a finite b ∈ B
with a |⌣Ab

B. So e |⌣A
B if and only if e |⌣A

b by Fact 3.4. Thus e is
tame. �

In a supersimple theory quasi-finitary ultraimaginaries are the cor-
rect ones to consider: Due to elimination of hyperimaginaries all pa-
rameters consist of imaginaries of ordinal SU -rank; as canonical bases
of such imaginaries are finite, we can always reduce to a quasi-finitary
situation.

Another kind of tame ultraimaginaries arose in the generalization of
the group configuration theorem to simple theories [2, 3].

Definition 3.10. An invariant equivalence relation E is almost type-
definable if there is a type-definable symmetric and reflexive relation
R finer than E such that any E-class can be covered by boundedly
many R-classes (i.e. sets of the form {x : xRa} for varying a). A
class modulo an almost type-definable equivalence relation is called an
almost hyperimaginary.

Fact 3.11. [3, page 188] Almost hyperimaginaries are tame. In fact,
they satisfy finite character.

The following two Propositions tells us how to obtain invariant equiv-
alence relations, and hence ultraimaginaries.

Proposition 3.12. Let T be stable. For algebraically closed A and
an ∅-invariant equivalence relation E on tp(b), consider the relation
R(X, Y ) given by

∃xy [Xx ≡ Y y ≡ Ab ∧ x |⌣
X

Y ∧ y |⌣
Y

X ∧ E(x, y)].

Then R is an ∅-invariant equivalence relation on tp(A).

Proof: Clearly, R is ∅-invariant, reflexive and symmetric. So suppose
that R(A,A′) and R(A′, A′′) both hold, and let this be witnessed by b, b′

and b∗, b′′. Let b1 |= tp(b′/A′) = tp(b∗/A′) with b1 |⌣A′
AA′′. Since A′

is algebraically closed, b′ |⌣A′
A and b∗ |⌣A′

A′′ we have b1 ≡AA′ b′ and
b1 ≡A′A′′ b∗ by stationarity. Hence there are b0, b2 with bb′ ≡AA′ b0b1 and
b∗b′′ ≡A′A′′ b1b2. In particular E(b0, b1) and E(b1, b2) hold, and so does
E(b0, b2). Moreover, we may assume b0 |⌣AA′b1

A′′ and b2 |⌣A′A′′b1
A′.

Now b1 |⌣A′
AA′′ implies b0 |⌣AA′

A′′ and b2 |⌣A′A′′
A. Then b0 |⌣A

A′

and b2 |⌣A′′
A′ imply b0 |⌣A

A′′ and b2 |⌣A′′
A, whence R(A,A′′) holds.

So R is transitive. �
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Recall that a reflexive and symmetric binary relation R(x, y) on a
partial type π(x) is generically transitive if whenever x, y, z |= π and
x |⌣y

z, then R(x, y) and R(y, z) together imply R(x, z).

For a (regular) type p let SUp denote SU-rank relativized to p (see
[11, Remark 5.1.19]), and for a set A put

clp(A) = {a : SUp(a/A) = 0},

the p-closure of A.

Proposition 3.13. Let T be simple. Suppose R is an ∅-invariant,
reflexive, symmetric and generically transitive relation on lstp(a), and
p is a regular type such that SUp(a) is finite. Let E be the transitive
closure of R, and suppose aE ∈ bddu(clp(∅)). Then there is a′ |⌣clp(∅)

a

with R(a, a′).

Proof: Put c = bdd(a)∩clp(∅). Then a |⌣c
clp(∅), whence aE ∈ bddu(c)

by Lemma 3.6. Let a′ ≡lstp
c a with a′ |⌣c

a. Then aE = a′E, so there is

n < ω and a chain a = a0, a1, . . . , an = a′ such that R(ai, ai+1) holds
for all i < n. Put a′0 = a0, and for 0 < i < n let

a′i ≡
lstp
ai

a′i−1 with a′i |⌣
ai

ai+1.

Claim. bddu(a′i) ∩ bddu(ai+1) ⊆ bddu(a0).

Proof of Claim: For i = 0 this is trivial. For i > 0, as a′i ≡
lstp
ai

a′i−1 and
bddu(ai) = dclu(bdd(ai)), we get

bddu(a′i) ∩ bddu(ai) = bddu(a′i−1) ∩ bddu(ai).

Next, a′i |⌣ai
ai+1 implies

bddu(a′iai) ∩ bddu(aiai+1) = bddu(ai)

by Lemma 3.6. Hence inductively

bddu(a′i) ∩ bddu(ai+1) ⊆ bddu(a′i) ∩ bddu(ai)

= bddu(a′i−1) ∩ bddu(ai)

⊆ bddu(a0). �

Now by generic transitivity and induction, R(a′i, ai+1) holds for all i <
n. In particular R(a′n−1, an) holds, and by Lemma 3.6

bddu(a′n−1) ∩ bddu(an) ⊆ bddu(a0) ∩ bddu(an) = bddu(c).
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Choose a′′ with R(a′′, a′n−1) such that SUp(a
′′/a′n−1) is maximal possi-

ble. We may choose it such that a′′ |⌣a′n−1

an. Then

bddu(a′′) ∩ bddu(an) ⊆ bddu(an) ∩ bddu(a′n−1) ⊆ bddu(c)

and

SUp(a
′′/an) ≥ SUp(a

′′/a′n−1an) = SUp(a
′′/a′n−1).

Rename a′′an as a1a2, and note that bddu(a1) ∩ bdd(a2) ⊆ bddu(c),
c ⊆ bdd(a2), and SUp(a1/a2) is maximal possible among tuples (x, y)
with R(x, y). Moreover,

SUp(a2/a1) = SUp(a1a2)−SUp(a1) = SUp(a1a2)−SUp(a2) = SUp(a1/a2),

so this is also maximal.

Choose a3 |⌣a2
a1 with a3 ≡lstp

a2
a1. By generic transitivity R(a1, a3)

holds. Moreover,

SUp(a3/a1) ≥ SUp(a3/a1a2) = SUp(a3/a2),

so equality holds. Similarly,

SUp(a1/a3) = SUp(a1/a2a3) = SUp(a1/a2).

Now SUp(ai/aj) = SUp(ai/ajak) for {i, j, k} = {1, 2, 3} means that

clp(ai) |⌣
clp(aj )

clp(ak).

In particular,

clp(ai) ∩ clp(ak) = clp(a1) ∩ clp(a2) ∩ clp(a3).

Let b = clp(a1) ∩ clp(a2) ∩ bdd(a1a2). Then clp(a1) ∩ clp(a2) = clp(b)
by [8, Lemma 3.18]. Let F (x, y) be the ∅-invariant equivalence relation
on lstp(b) given by clp(x) = clp(y). As bF is fixed by the bdd(a2)-
automorphism moving a1 to a3 and a1 |⌣a2

a3, we get bF ∈ bddu(a2)

by Lemma 3.6. Similarly, considering an a′3 |⌣a1
a2 with a′3 ≡

lstp
a1

a2 we

obtain bF ∈ bddu(a1), whence

bF ∈ bddu(a1) ∩ bddu(a2) ⊆ bddu(c).

So if b′ |⌣c
b satisfies lstp(b/c), then b′F = bF and

clp(b
′) = clp(b) = clp(c) = clp(∅).

But now

Cb(a3/clp(a1)clp(a2)) ⊆ clp(a1) ∩ clp(a2) = clp(b) = clp(∅),

so a3 |⌣clp(∅)
a2, as required. �
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Remark 3.14. We cannot generalize [11, Lemma 3.3.1] and strengthen
Proposition 3.13 to say that if R is ∅-invariant, reflexive, symmetric
and generically transitive on a Lascar strong type, then the transitive
closure E ofR equals the 2-step iteration of R. Consider on the forest of
Example 2.7 the relation R(a, b) which holds if 3 divides the distance
between a and b. This is generically transitive, as for a′ |⌣a

a′′ the
distance between a′ and a′′ is the sum of the distances between a′

and a and between a and a′′. However, two points of distance 2 are
easily seen to be R2-related, so the transitive closure E of R is just the
relation of being in the same connected component. But no two points
of distance 1 are R2-related.

From now on, let Σ be an ∅-invariant family of partial types.

Definition 3.15. We shall say that an ultraimaginary e is (almost) Σ-
internal, or is Σ-analysable, if it has a representative which is. Similarly,
e is orthogonal over A to some type p if for all B |⌣A

e such that p is

over B and for any realization b |= p|B we have e |⌣A
Bb.

Remark 3.16. This definition does not imply that we define the notion
of an analysis of an ultraimaginary. Moreover, e orthogonal to p over
A does not imply that e has a representative which is orthogonal to p.
Moreover, orthogonality of e over A to p does not imply orthogonality
to p(ω), unless e is tame.

Definition 3.17. For an ordinal α the α-th Σ-level of a over A is
defined inductively by ℓΣ0 (a/A) = bdd(A), and for α > 0

ℓΣα(a/A) = {b ∈ bdd(aA) : tp(b/
⋃

β<α

ℓβ(a/A)) is almost Σ-internal}.

We shall write ℓΣ∞(a/A) for
⋃

α ℓ
Σ
α(a/A), i.e. the set of all hyperimagi-

naries b ∈ bdd(aA) such that tp(b/A) is Σ-analysable.

Remark 3.18. So a ∈ ℓΣα(a/A) is and only if tp(a/A) is Σ-analysable
in α steps.

Lemma 3.19. If tp(a/A) is Σ-analysable in α steps for some ordinal
α or α = ∞ and A |⌣ b, put c = ℓΣα(b). Then Aa |⌣c

b.

Proof: Cb(Aa/b) is definable over a Morley sequence (Aiai : i < ω) in
lstp(a/b). Then (Ai : i < ω) |⌣ b and tp(ai/Ai) is Σ-analysable in α
steps for all i < ω. Hence Cb(Aa/b) is also Σ-analysable in α steps.
Thus Cb(Aa/b) ⊆ c, and Aa |⌣c

b. �
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Proposition 3.20. Let T be simple. Suppose bE is an ultraimaginary
non-orthogonal to some regular type p, and SUp(ℓ

p
1(b)) < ω. Then there

is an almost p-internal ultraimaginary e ∈ bddu(bE) \ bddu(clp(∅)).
Moreover, e ∈ bddu(ℓp1(b)).

Proof: Let c = ℓp1(b). Define an ∅-invariant relation R on tp(c) by

R(c′, c′′) ⇔ ∃b′b′′ [b′c′ ≡ b′′c′′ ≡ bc ∧ E(b′, b′′)].

This is reflexive and symmetric; moreover for c′ |⌣c′′
c′′′ with R(c′, c′′)

and R(c′′, c′′′) we can find b′, b′′, b∗, b′′′ with

b′c′ ≡ b′′c′′ ≡ b∗c′′ ≡ b′′′c′′′ ≡ bc,

such that E(b′, b′′) and E(b∗, b′′′) hold. Since c′′ is boundedly closed,

b′′ ≡lstp
c′′ b∗; moreover b′′ |⌣c′′

c′ and b∗ |⌣c′′
c′′′ by Lemma 3.19. By

the Independence Theorem we can assume b′′ = b∗, so E(b′, b′′′) and
R(c′, c′′′) hold. Hence R is generically transitive; let F be its transitive
closure. The class cF is clearly almost p-internal. Moreover, if E(b′, b)
holds there is c′ with b′c′ ≡ bc. Thus F (c′, c) holds, so cF is bounded
over bE .

Finally, suppose cF ∈ bddu(clp(∅)). By Proposition 3.13 there is
c′ |⌣clp(∅)

c with R(c′, c). Hence there are b′, b∗ with b′c′ ≡ b∗c ≡ bc and

|= E(b′, b∗). Applying a c-automorphism (and moving c′), we may as-
sume b = b∗. Let A |⌣ b be some parameters and a some realization of p
over A with a 6 |⌣A

bE ; we may assume Aa |⌣b
b′, whence A |⌣ bb′. More-

over b |⌣c
Aa by Lemma 3.19, whence b′ |⌣c

Aa. Thus b′ |⌣clp(c)
Aa.

Now c′ |⌣clp(∅)
c yields c′ |⌣clp(∅)

clp(c), and hence c′ |⌣clp(∅)
Aa. Then

a |⌣A
clp(∅) implies a |⌣A

c′. Now b′ |⌣c′
Aa by Lemma 3.19, whence

b′ |⌣A
a. As bE = b′E we obtain a |⌣A

bE , a contradiction. �

Corollary 3.21. Let e be a supersimple ultraimaginary. Suppose e is
non-orthogonal to some regular type p over some set B. Then there is
an almost p-internal supersimple e′ ∈ bddqfu(Be) \ bddqfu(clp(B)).

Proof: Let a be a representative of e with SU(a) < ∞ and put
b = Cb(a/B). Then SU(b) < ∞, as b is bounded over a finite
initial segment of a Morley sequence in lstp(a/B). Now e |⌣b

B, so

tp(e/b) is non-orthogonal to p. Note that SUp(ℓ
p
1(a/b)/b) is finite by

supersimplicity. By Proposition 3.20 applied over b there is an al-
most p-internal ultraimaginary e′ ∈ bddu(be) \ bddu(clp(b)); moreover
e′ ∈ bddu(ℓp1(a/b)) ⊆ bdd(ab). Thus e′ is supersimple, almost p-internal
over b and thus over B; it is quasi-finitary by Remark 3.8. �
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Remark 3.22. For hyperimaginary e in a simple theory, the proof of
Corollary 3.21 uses the canonical base of some type over e. As we
cannot consider types over ultraimaginaries, this does not make sense
in our context.

Proposition 3.23. Let T be supersimple. If AB |⌣D and bddqfu(A)∩

bddqfu(B) = bddqfu(∅), then bddqfu(AD)∩bddqfu(BD) = bddqfu(D).

Proof: We may assume that A, B and D are boundedly closed. Con-
sider

e ∈ (bddqfu(AD) ∩ bddqfu(BD)) \ bddqfu(D).

Let p be a regular type of least SU -rank non-orthogonal to e over D.
This exists by transitivity since e is tame. By Corollary 3.21 we may
assume that e is almost p-internal of finite SUp-rank over D; let a′ be a
representative which is almost p-internal over D. Put a = Cb(a′D/A).
As a |⌣D we obtain that tp(a) is almost p-internal; note that SU(a) <

∞. Since e |⌣aD
A, Lemma 3.6 implies e ∈ bddqfu(aD). So we may

assume that A = bdd(a) and SUp(A) < ω. Moreover, we may assume
that D = bdd(Cb(aa′/D)) is the bounded closure of a finite set.

Let (Ai : i < ω) be a Morley sequence in lstp(A/BD) with A0 = A,
and put B′ = bdd(A1A2). Then B′ is almost p-internal of finite SUp-

rank. Since e ∈ bddqfu(AD) ∩ bddqfu(BD) we have e ∈ bddqfu(AiD)
for all i < ω. Let e′ be the set of B′D-conjugates of e, again a quasi-
finitary ultraimaginary. Since any B′D-conjugate of e is again in

bddqfu(A1D) ∩ bddqfu(A2D) = bddqfu(BD) ∩ bddqfu(A1D)

= bddqfu(BD) ∩ bddqfu(AD),

we have e′ ∈ dclqfu(B′D)∩bddqfu(AD). Moreover, B′ |⌣BD
A, whence

B′ |⌣B
A and

bddqfu(A) ∩ bddqfu(B′) ⊆ bddqfu(A) ∩ bddqfu(B) = bddqfu(∅).

ChooseA′ ≡lstp
AD B′ withA′ |⌣AD

B′. Then e′ ∈ dclqfu(A′D)∩dclqfu(B′D).

Furthermore,D |⌣B
A impliesD |⌣B

AB′; asD |⌣B we getD |⌣ABB′.

Therefore D |⌣A
B′, whence A′ |⌣A

B′ and

bddqfu(A′) ∩ bddqfu(B′) ⊆ bddqfu(A) ∩ bddqfu(B′) = bddqfu(∅).

We may assume e′ = (A′D)E for some ∅-invariant equivalence relation
E. Define a ∅-invariant reflexive and symmetric relation R on lstp(A′)
by

R(X, Y ) ⇔ ∃Z [XZ ≡ Y Z ≡ A′D ∧ Z |⌣XY ∧ E(XZ, Y Z)].
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By the independence theorem, if A1 |⌣A2

A3 such that R(A1, A2) and

R(A2, A3) hold, we have R(A1, A3). Hence R is generically transitive;
let E ′ be the transitive closure of R. Clearly A′

E′ is quasi-finitary.

Next, consider A′′ ≡B′ A′ with A′′ |⌣B′
A′. By the independence the-

orem there isD′ with A′D ≡B′ A′D′ ≡B′ A′′D′ and D′ |⌣B′
A′A′′. Then

D′ |⌣B′, whence D′ |⌣A′A′′ and (A′D′)E = (A′′D′)E ∈ dclqfu(B′D′).

Therefore E ′(A′, A′′) holds and A′
E′ ∈ dclqfu(B′). Thus

A′
E′ ∈ dclqfu(A′) ∩ dclqfu(B′) ⊆ bddqfu(∅).

By Proposition 3.13 there is A′′ |⌣clp(∅)
A′ with R(A′, A′′). Let D′ wit-

ness R(A′, A′′). Then D′ ≡A′ D, so we may assume D′ = D. Since
clp(D) |⌣clp(∅)

clp(A
′A′′) and clp(A

′) |⌣clp(∅)
clp(A

′′) we obtain

clp(A
′) |⌣

clp(∅)

clp(A
′′)clp(D)

and hence A′ |⌣clp(D)
A′′. But now

e′ = (A′D)E = (A′′D)E ∈ dclqfu(A′D)∩ dclqfu(A′′D) ⊆ bddqfu(clp(D))

by Lemma 3.6. Since e ∈ bddqfu(e′), this contradicts non-orthogonality
of e to p over D. �

Remark 3.24. Again, the proof of the hyperimaginary analogue of
Proposition 3.23 for simple theories uses canonical bases and does not
generalize.

4. Elimination of ultraimaginaries

On cannot avoid the non-tame ultraimaginaries of Example 2.6 which
do not satisfy finite character and hence cannot be eliminated. Simi-
larly, on a type of rank ω we cannot eliminate the relation of having
mutually finite rank over each other (Example 2.7), since the rank
over a class modulo such a relation is not defined. We thus content
ourselves with elimination of supersimple ultraimaginaries in a simple
theory (and in particular of quasi-finitary ultraimaginaries in a super-
simple theory) up to rank of lower order of magnitude. This seems to
be optimal, given the examples cited.

Definition 4.1. Let e be ultraimaginary. We shall say that SU(a/e) <
ωα if for all representatives b of e we have SU(a/b) < ωα. Conversely,
SU(e/a) < ωα if there is a representative b with SU(b/a) < ωα.
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Remark 4.2. This does not mean that we define the value of SU(a/e)
or of SU(e/a). In fact, one might define

SU(e/a) = min{SU(b/a) : b a representative of e},

but this suggests a precision I am not sure exists.

Lemma 4.3. Let e be ultraimaginary. SU(e/a) < ω0 if and only if
e ∈ bddu(a), and SU(a/e) < ω0 if and only if a ∈ bdd(e).

Proof: If b is a representative of e with SU(b/a) < ω0, then b ∈ bdd(a),
so e ∈ bddu(a). If e ∈ bddu(a), then e ∈ dclu(bdd(a)), so b = bdd(a)
is a representative of e with SU(b/a) < ω0.

If a /∈ bdd(e), then there are arbitrarily many e-conjugates of a.
Then for any representative b of e there is some e-conjugate a′ of a which
is not in bdd(b). Let b′ be the image of b under an e-automorphism
mapping a′ to a. Then b′ is a representative of e, and SU(a/b′) ≥ ω0.
On the other hand, if a ∈ bdd(e), then a ∈ bdd(b) for any representa-
tive b of e, whence SU(a/b) < ω0. �

Definition 4.4. An ultraimaginary e can be α-eliminated if there is a
representative a with SU(a/e) < ωα. A supersimple theory has feeble
elimination of ultraimaginaries if for all ordinals α, all quasi-finitary
ultraimaginaries of rank < ωα+1 can be α-eliminated.

Remark 4.5. 0-elimination is usually called weak elimination; in the
presence of imaginaries this equals full elimination. I do not know
what the definition of feeble elimination of ultraimaginaries should be
in general for simple theories — but then their whole theory is much
more problematic.

Theorem 4.6. If e is ultraimaginary with SU(e) < ωα+1, then e can
be α-eliminated. A supersimple theory has feeble elimination of ul-
traimaginaries; a supersimple theory of finite rank has elimination of
quasi-finitary ultraimaginaries.

Proof: Let a be a representative of e of minimal rank. Since SU(e) <
ωα+1 we have SU(a) < ωα+1. Suppose SU(a/e) ≥ ωα. Then there is
some representative b of e with SU(a/b) ≥ ωα; we choose it such that

SU(a/b) ≥ ωα · n for some maximal n ≥ 1. Consider a′ ≡lstp
b a with

a′ |⌣b
a. Since e ∈ dclu(b) we have e ∈ dclu(a′). By maximality of n,

SU(a/a′) < ωα · (n+ 1) = SU(a/b) + ωα = SU(a/a′b) + ωα.

Hence, if
clα(A) = {c : SU(c/A) < ωα}
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denotes the α-closure of A, we have

a |⌣
clα(a′)

clα(b).

On the other hand, a |⌣b
a′ implies

a |⌣
clα(b)

clα(a
′),

so

c = Cb(a/clα(b)clα(a
′)) ⊆ clα(b) ∩ clα(a

′).

Then a |⌣c
b, so e ∈ bddu(c) by Lemma 3.6. On the other hand,

SU(c/a′) < ωα, and SU(a′/c) ≥ SU(a′/cb) ≥ ωα since SU(a′/b) ≥ ωα

and SU(c/b) < ωα. It follows that

SU(a) = SU(a′) ≥ SU(c) + ωα.

In particular bdd(c) is a representative for e of lower rank, a contra-
diction. �

Remark 4.7. Let p be a regular type (or type of weight 1). Then
two realizations a and b of p are independent if and only if bddqfu(a)∩
bddqfu(b) = bddqfu(∅): One direction is Lemma 3.6, the other follows
from the observation that dependence is an invariant equivalence re-
lation on realizations of p. However, this does not hold for all types:
By elimination of quasifinite ultraimaginaries, it is in particular false
in non one-based theories of finite rank.

5. Decomposition

In this section we shall give ultraimaginary proofs of some of Chatzi-
dakis’ results from [5] around the weak canonical base property, and
suitable generalisations to the supersimple case. Σ will be an ∅-invariant
family of partial types in a simple theory.

Recall that a and b are domination-equivalent over A, denoted a�Ab,
if for any c we have c |⌣A

a ⇔ c |⌣A
b. The following lemma is folklore,

but we give a proof for completeness.

Lemma 5.1. (1) Suppose a� b. If c |⌣ a and c |⌣ b, then a�c b.
(2) Suppose a�c b. If c |⌣ ab then a� b.
(3) Suppose a �c b. If tp(a) and tp(b) are foreign to tp(c), then

a� b.

Proof:
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(1) Consider any d with d 6 |⌣c
a. Then cd 6 |⌣ a, whence cd 6 |⌣ b. Now

b |⌣ c implies b 6 |⌣c
d. The converse follows by symmetry.

(2) Consider any d with d 6 |⌣ a. Clearly we may assume d |⌣ab
c,

whence abd |⌣ c. Since a |⌣ c we get d 6 |⌣c
a, whence d 6 |⌣c

b and

cd 6 |⌣ b. But c |⌣d
b, so d 6 |⌣ b; the converse follows by symmetry.

(3) Consider any d with d 6 |⌣ a. Since a |⌣ c we get d 6 |⌣c
a, whence

d 6 |⌣c
b and cd 6 |⌣ b. If b |⌣ d, then b |⌣d

c by foreigness, whence

b |⌣ cd, a contradiction. So b 6 |⌣ d; the converse follows by sym-
metry. �

Proposition 5.2. Let A,B, a, b be (hyperimaginary) sets, such that
a is quasi-finite, bddqfu(Aa) ∩ bddqfu(Bb) = bddqfu(∅), and a and
b are domination-equivalent over AB. Suppose bdd(A) = ℓΣα(Aa) and
bdd(B) = ℓΣα(Bb) for some ordinal α > 0 or α = ∞. Then a ∈ bdd(A)
and b ∈ bdd(B).

Proof: Suppose otherwise. Put A0 = ℓΣα(a) and B0 = ℓΣα(b); note that
A0 = bdd(A) ∩ bdd(a) and B0 = bdd(B) ∩ bdd(b). Then tp(a/A0)
and tp(b/B0) are foreign to tp(AB) by Lemma 3.19. Lemma 5.1(3)
yields that a and b are domination-equivalent over A0B0. We may thus
assume that Aa is quasi-finite.

Define an ∅-invariant relation E on lstp(Aa) by

E(A′a′, A′′a′′) ⇔ a′ �A′A′′ a′′.

Clearly, this is reflexive and symmetric. Suppose E(A′a′, A′′a′′) and
E(A′′a′′, A′′′a′′′). By Lemma 5.1(1)

a′ �A′A′′A′′′ a′′ and a′′ �A′A′′A′′′ a′′′,

whence a′ �A′A′′A′′′ a′′′. Now a′ �A′A′′′ a′′′ by Lemma 5.1(3). Thus
E(A′a′, A′′′a′′′) holds and E is transitive.

Let A′a′ ≡lstp
Bb Aa with A′a′ |⌣Bb

Aa. Again by Lemma 5.1(1)

a�AA′B b�AA′B a′,

and a�AA′ a′ by Lemma 5.1(3). Thus E(Aa,A′a′) holds. But

bddqfu(Aa) ∩ bddqfu(A′a′) ⊆ bddqfu(Aa) ∩ bddqfu(Bb) = bddqfu(∅).

Hence (Aa)E = (A′a′)E ∈ bddqfu(∅), and there is A′′a′′ |⌣Aa with
E(Aa,A′′a′′). But then a �AA′′ a′′ and a |⌣AA′′

a′′ yield a |⌣AA′′
a,

whence a ∈ bdd(AA′′) and finally a ∈ bdd(A) as a |⌣A
A′′. Similarly,

b ∈ bdd(B). �
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Corollary 5.3. Let A,B, a, b be (hyperimaginary) sets, such that a is
quasi-finite, bddqfu(Aa) ∩ bddqfu(Bb) = bddqfu(∅), and a and b are
interbounded over AB. Suppose AB is Σ-analysable in α steps, for
some ordinal α or α = ∞. Then Aa and Bb are Σ-analysable in α
steps.

Proof: Clearly we may assume that A = ℓΣα(Aa) and B = ℓΣα(Bb). Since
a and b are interbounded over AB, they are domination-equivalent. So
a ∈ bdd(A) and b ∈ bdd(B) by Proposition 5.2. �

Remark 5.4. By Theorem 4.6, if SU(Aa) or SU(Bb) is finite, then
bdd(Aa) ∩ bdd(Bb) = bdd(∅) implies bddqfu(Aa) ∩ bddqfu(Bb) =
bddqfu(∅), and we recover [5, Lemma 1.17 and Lemma 1.24], putting
α = 1 and α = ∞.

Fact 5.5. [8, Theorem 3.4(3)] Let Σ′ be an ∅-invariant subfamily of Σ.
Suppose tp(a) is Σ-analysable, but foreign to Σ\Σ′. Then a and ℓΣ

′

1 (a)
are domination-equivalent.

Corollary 5.6. Let A ⊆ bdd(Cb(B/A)) consist of quasi-finite hyper-
imaginaries, with bddqfu(A) ∩ bddqfu(B) = bddqfu(∅). If A is Σ-
analysable and Σ′ is the subset of one-based partial types in Σ, then A
is analysable in Σ \ Σ′.

Proof: Suppose A is not analysable in Σ \ Σ′. For every finite tuple
ā ∈ A put cā = Cb(B/ā), and let C =

⋃
{cā : ā ∈ A}. Then A |⌣C

B,

as for any ā ∈ A and C-indiscernible sequence (Bi : i < ω) in tp(B/C)
the set {π(x̄, Bi) : i < ω} is consistent, where π(x̄, B) = tp(ā/B),
since π(x̄, B) does not fork over cā ⊆ C. So A ⊆ bdd(C); as A is
not analysable in Σ \ Σ′, neither is C, and there is ā ∈ A such that
c = cā is not analysable in Σ \ Σ′. Clearly c ⊆ bdd(ā) is quasi-finite
and c = Cb(B/c). Replacing A by c we may thus assume that A is
quasi-finite.

Let A′ ⊆ bdd(A) and B′ ⊆ bdd(B) be maximally analysable in
Σ \ Σ′. So tp(A/A′) and tp(B/B′) are foreign to Σ \ Σ′, and A 6⊆ A′.
Since A = Cb(B/A) we get A 6 |⌣A′

B; as A |⌣A′
B′ by foreignness to

Σ \ Σ′, we obtain A 6 |⌣A′B′
B. In particular B 6⊆ B′.

By Fact 5.5 the first Σ′-levels a = ℓΣ
′

1 (A/A′) and b = ℓΣ
′

1 (B/B′) are
non-trivial, one-based, and

a�A′ A and b�B′ B.

Since tp(Aa/A′) is foreign to Σ\Σ′, we have Aa |⌣A′
B′, whence a�A′B′

A by Lemma 5.1(1). Similarly b �A′B′ B. But A 6 |⌣A′B′
B, and thus



PLUS ULTRA 19

a 6 |⌣A′B′
b. Let a0 = bdd(A′a) ∩ bdd(A′B′b) and b0 = bdd(B′b) ∩

bdd(A′B′a). By one-basedness of tp(a/A′) and tp(b/B′),

a |⌣
A′a0

B′b and b |⌣
B′b0

A′a.

Hence
A′B′a |⌣

A′B′a0

b0 and A′B′b |⌣
A′B′b0

a0.

It follows that a0 and b0 are interbounded over A′B′. We can now apply
Corollary 5.3 to see that a0 is analysable in Σ \ Σ′, whence a0 ∈ A′.
But then a |⌣A′B′

b, a contradiction. �

Remark 5.7. In a theory of finite SU -rank, due to weak elimination
of quasi-finitary ultraimaginaries, we obtain that for any A,B

tp(Cb(A/B)/bdd(A) ∩ bdd(B))

is analysable in the collection of non one-based types of SU -rank 1.

Remark 5.8. Without the quasi-finite hypothesis in Proposition 5.2,
Corollary 5.3 and Corollary 5.6, the conclusions still hold if we assume
that the full ultraimaginary bounded closures intersect trivially.

The following Theorem generalizes [5, Proposition 1.16] to super-
simple theories of infinite rank, at the price of demanding that the
quasifinite ultraimaginary bounded closures intersect trivially, rather
than just the bounded closures. The proof is essentially the same,
but we have to work with ultraimaginaries at key steps. Of course, in
finite rank this is equivalent, due to elimination of quasifinite hyper-
imaginaries; moreover, the families Σi in the Theorem are just different
orthogonality classes of regular types of rank 1.

Definition 5.9. Two ∅-invariant families Σ and Σ′ are perpendicular if
no realization of a type in Σ can fork with a realisation of a type in Σ′.

Example 5.10. If p and p′ are two orthogonal types of SU -rank 1
non-orthogonal to ∅ (or whose ∅-conjugates remain orthogonal), then
the families of ∅-conjugates of p and of p′ are perpendicular.

Theorem 5.11. Let T be supersimple. Suppose A ⊆ bdd(Cb(B/A))
and B ⊆ bdd(Cb(A/B)), with bddqfu(A)∩bddqfu(B) = bddqfu(∅). Let
(Σi : i ∈ I) be a family of pairwise perpendicular ∅-invariant families
of partial types such that A is analysable in

⋃
i∈I Σi. For i ∈ I let Ai

and Bi be the maximal Σi-analysable subset of bdd(A) and bdd(B),
respectively. Then A ⊆ bdd(Ai : i < α) and B ⊆ bdd(Bi : i < α);
moreover Ai = bdd(Cb(Bi/A)) and Bi = bdd(Cb(Ai/B)). If Σi is
one-based, then Ai = Bi = bdd(∅).
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Remark 5.12. If C |⌣AB, then bddqfu(A) ∩ bddqfu(B) = bddqfu(∅)

implies bddqfu(AC)∩bddqfu(BC) = bddqfu(C) by Lemma 3.23. Hence
Theorem 5.11 applies over C; this can serve to refine the decomposition.

Proof: Since Cb(Ai/B) is tp(Ai)-analysable and hence Σi-analysable,
we have Cb(Ai/B) ⊆ Bi; similarly Cb(Bi/A) ⊆ Ai. As the families in
(Σi : i ∈ I) are perpendicular, we obtain

(Ai : i ∈ I) |⌣
(Bi:i∈I)

B and (Bi : i ∈ I) |⌣
(Ai:i∈I)

A.

Suppose A ⊆ bdd(Ai : i ∈ I). Then B = Cb(A/B) ⊆ bdd(Bi : i ∈ I);
moreover

bdd(A) = bdd(Cb(B/A)) = bdd(Cb(Bi/A) : i ∈ I)

= bdd(Cb(Bi/Ai) : i ∈ I) ⊆ bdd(Ai : i ∈ I) = bdd(A)

again by perpendicularily. Hence bdd(Cb(Bi/Ai)) = Ai, and similarly
bdd(Cb(Ai/Bi)) = Bi. But if Σi is one-based, then

Bi = bdd(Cb(Ai/Bi)) ⊆ bdd(Ai) ∩ bdd(Bi) = bdd(∅) ;

similarly Ai = bdd(∅).

Put Ā = bdd(Ai : i ∈ I) and B̄ = bdd(Bi : i ∈ I). It remains to
show that A ⊆ Ā. So suppose not. As in the proof of Corollary 5.6 put
cā = Cb(B/ā) for every finite tuple ā ∈ A, and let C =

⋃
{cā : ā ∈ A}.

Then again A |⌣C
B and A ⊆ bdd(C); moreover cā = Cb(B/cā). Since

A is not contained in Ā, neither is C. Hence there is ā ∈ A such
that c = cā /∈ Ā. As the maximal Σi-analysable subset of bdd(c) is
equal to bdd(c)∩Ai we may replace A by c and thus assume that A is
quasi-finite. Similarly, we may assume that B is quasi-finite.

Since A = Cb(B/A) 6⊆ Ā, we have A 6 |⌣Ā
B; as A |⌣Ā

B̄ we obtain

A 6 |⌣ĀB̄
B. Let (bj : j < α) be an analysis of B over B̄ such that for

every j < α the type tp(bj/B̄, bℓ : ℓ < j) is Σij -analysable for some

ij ∈ I. Let k be minimal with A 6 |⌣ĀB̄
(bj : j ≤ k). Then A |⌣Ā

B̄, (bj :

j < k) and Cb(B̄, (bj : j ≤ k)/A) is almost Σik-internal over Ā. Put

A′ = ℓ
Σik

1 (A/Ā) and B′ = ℓ
Σik

1 (B/B̄). Then A′ 6⊆ Ā, and Cb(A′/B) ⊆
B′ since Ā |⌣B̄

B. Similarly Cb(B′/A) ⊆ A′. Moreover A′ 6 |⌣ĀB̄
B,

whence A′ 6 |⌣ĀB̄
B′. Replacing A by Cb(B′/A) = Cb(B′/A′) and B by

Cb(A′/B) = Cb(A′/B′) we may assume that tp(A/Ā) and tp(B/B̄)
are both almost Σk-internal (where we write k instead of ik for ease of
notation).

Claim. bddqfu(ABk) ∩ bddqfu(B) = bddqfu(Bk).
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Proof of Claim: Suppose not. As B is analysable in
⋃

i∈I Σi, Corollary
3.21 yields some i ∈ I and

d ∈ (bddqfu(ABk) ∩ bddqfu(B)) \ bddqfu(Bk)

such that d is almost Σi-internal over Bk; since tp(B/Bk) is foreign
to Σk we have i 6= k. Hence A |⌣ĀBk

d, whence d ∈ bddqfu(ĀBk) by

Lemma 3.6. But Ā = bdd(Ai : i ∈ I) and d |⌣AiBk
Ā by almost Σi-

internality of d over Bk, whence d ∈ bddqfu(AiBk). If Bkd |⌣Ai, then

d |⌣Bk
Ai and d ∈ bddqfuBk by Lemma 3.6, contradicting the choice of

d. Therefore Bkd 6 |⌣Ai; by Corollary 3.21 there is almost Σi-internal

d′ ∈ bddqfu(Bkd) \ bdd
qfu(∅).

Note that d′ ∈ bddqfu(AiBk)∩bdd
qfu(B). But then d′Ai |⌣Bk, whence

d′ |⌣Ai
Bk and

d′ ∈ bddqfu(Ai) ∩ bddqfu(B) = bddqfu(∅),

a contradiction. �

Claim. We may assume Bk = bdd(∅).

Proof of Claim: Put A′ = Cb(B/ABk). Then Bk ⊂ A′ = Cb(B/A′),
and bdd(A′)qfu ∩ bdd(B)qfu = bddqfu(Bk). If B′ = Cb(A′/B) =
Cb(A′/B′), then A′ |⌣B′

B and A |⌣A′
B yield B |⌣B′

A by transitivity,

since B′ ⊆ bdd(B). Thus B ⊂ bdd(B′). We add Bk to the language;
note that Bk 6= bdd(∅) implies B 6 |⌣Bk, whence SU(B′/Bk) < SU(B).
By induction it is thus sufficient to show that A′, B′ is still a counterex-
ample over Bk.

So suppose not, and let bdd(A′) = bdd(A′
i : i ∈ I) and bdd(B′) =

bdd(B′
i : i ∈ I) be decompositions, where A′

i and B′
i are maximally Σi-

analysable over Bk in bdd(A′) and bdd(B′), respectively. So B′
k is Σk-

analysable, whence B′
k = Bk ⊆ B̄ by maximality. Since B ⊆ bdd(B′)

is almost Σk-internal over B̄ and (B′
i : i 6= k) is foreign to Σk, we get

B |⌣B̄
(B′

i : i 6= k), whence B ⊂ B̄, a contradiction. �

By symmetry, we may also assume Ak = bdd(∅).

Put B′ = Cb(B/AB̄). Then B̄ ⊆ bdd(B′), and since B is almost
Σk-internal over B̄, so is B′. If A′ = Cb(B′/A), then B′ |⌣A′

A and

A |⌣B′
B yield A |⌣A′

B, since A′ ⊆ bdd(A). Thus A ⊆ bdd(A′). Put

B′′ = Cb(A/B′) = Cb(A/B′′). Then

B′′ ⊆ bdd(B′) ⊆ bdd(AB̄),
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and B′′ is almost Σk-internal over B̄. Moreover, A |⌣B′′
B′ implies

A ⊆ bdd(Cb(B′/A)) ⊆ bdd(Cb(B′′/A)).

Claim. bddqfu(A′) ∩ bddqfu(B′′) = bddqfu(∅).

Proof of Claim: Suppose not. By Corollary 3.21 there is i ∈ I and

d ∈ (bddqfu(A′) ∩ bddqfu(B′′)) \ bddqfu(∅)

which is almost Σi-internal; since A
′ is foreign to Σk we have i 6= k. As

B′′ is almost Σk-internal over B̄ we have d |⌣B̄
B′′, whence

d ∈ bddqfu(A′) ∩ bddqfu(B̄) ⊆ bddqfu(A) ∩ bddqfu(B) = bddqfu(∅),

a contradiction. �

Thus A′, B′′ is another counterexample; by induction on SU(AB) we
may assume bdd(A′B′′) = bdd(AB). But then

B ⊂ bdd(A′B′′) ⊆ bdd(AB′) ⊆ bdd(AB̄).

By symmetry A ⊂ bdd(BĀ). Since ĀB̄ are analysable in
⋃

i 6=k Σi, so

are A and B by Corollary 5.3. But tp(A/Ā) is almost Σk-internal,
whence foreign to

⋃
i 6=k Σi, yielding the final contradiction. �

Remark 5.13. In the finite rank context, it is easy to achieve the
hypothesis of Theorem 5.11, as it suffices work over bdd(A)∩ bdd(B).
In general, however, if

bddqfu(A) ∩ bddqfu(B) ) bddqfu(bdd(A) ∩ bdd(B)),

there is no hyperimaginary set C with

bddqfu(A) ∩ bddqfu(B) = bddqfu(C),

as this equality implies bdd(C) = bdd(A) ∩ bdd(B). Thus, we can-
not work over bddqfu(A) ∩ bddqfu(B), which is not eliminable. Feeble
elimination nevertheless yields

bddqfu(A) ∩ bddqfu(B) ⊂ bddqfu(clα(A) ∩ clα(B))

if SU(A/bdd(A)∩bdd(B)) < ωα+1, so we can work over α-closed sets,
as is done in [8, Theorem 5.4].

Corollary 5.14. Let T be supersimple, and Σ1 and Σ2 two perpendic-
ular ∅-invariant families of partial types. Suppose a is quasi-finite,
tp(a) is analysable in Σ1 ∪ Σ2 and tp(a/A) is Σ1-analysable, with
bddqfu(a) ∩ bddqfu(A) = bddqfu(∅). Then tp(a) is Σ1-analysable.
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Proof: Clearly we may assume that A = Cb(a/A). If a′ = Cb(A/a),
then A is interbounded with Cb(a′/A). Moreover, as tp(a/a′) is Σ1-
analysable, tp(a′) is Σ1-analysable if and only if tp(a) is. So we may
assume in addition that a = Cb(A/a).

By Theorem 5.11 we have

bdd(a) = bdd(ℓΣ1

∞ (a), ℓΣ2

∞ (a)).

Hence tp(ℓΣ2

∞ (a)/A) is Σ1-analysable. By perpendicularity,

ℓΣ2

∞ (a) ∈ bdd(A) ∩ bdd(a) = bdd(∅).

Hence a ∈ ℓΣ1

∞ (a) is Σ1-analysable. �

For SU(a) finite, this specialises to [5, Proposition 1.20]
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[3] Itäı Ben Yaacov, Ivan Tomasic and Frank O. Wagner. Constructing an almost

hyperdefinable group, J. Math. Logic 4(2):181–212, 2005.
[4] Enrique Casanovas. Simple Theories and Hyperimaginaries, Lecture Notes in

Logic 39. Cambridge University Press, Cambridge, GB, 2011.
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