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PLUS ULTRA

FRANK O. WAGNER

Abstract. We develop some basic simplicity-theoretic facts for
quasi-finitary ultraimaginaries, i.e. classes of finite tuples modulo
∅-invariant equivalence relations, in a supersimple theory. We also
show feeble elimination of ultraimaginaries: If e is an ultraimagi-
nary definable over a tuple a with SU(a) < ωα+1, then e is elim-
inable up to rank < ωalpha. Finally, we show some uniform ver-
sions of the weak canonical base property.

1. Introduction

This paper arose out of an attempt to understand and generalize
[2, Proposition 1.14 and Lemma 1.15]. In doing so, we realized that
certain stability-theoretic phenomena were best explained using ultra-
imaginaries. Although Ben Yaacov [1] has shown that no satisfactory
independence theory can exist for all ultraimaginaries, as there are
problems both with the finite character and with the extension axiom
for independence, at least finite character can be salvaged if one re-
stricts to quasi-finitary ultraimaginaries in a supersimple theory. This
enables us to recover certain tools from simplicity theory, even though,
due to the lack of extension, canonical bases are not available.

2. Ultraimaginaries

Definition 2.1. An ultraimaginary is the class aE of a tuple a under
an ∅-invariant equivalence relation E.

Clearly, we may assume that a is a countable tuple.

Definition 2.2. An ultraimaginary aE is definable over a set A if any
automorphism of the monster model fixing A stabilises the E-class of a.
It is bounded over A if the orbit of a under the group of automorphisms
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2 FRANK O. WAGNER

of the monster model which fix A is contained in boundedly many E-
classes. A representative of an ultraimaginary e is any tuple a such
that e is definable over a.

Remark 2.3. As usual, if EA(x, y) is an A-invariant equivalence rela-
tion, one considers the ∅-invariant relation E(xX, yY ) given by

(X = Y ∧X ≡ A ∧ EX(x, y)) ∨ (X = Y ∧ x = y).

This is an equivalence relation, and (aA)E is interdefinable over A with
aEA

.

Remark 2.4. As any ∅-invariant relation, E is given by a union of
types over ∅.

Ultraimaginaries arise quite naturally in stability and simplicity the-
ory.

Example 2.5. Let pA ∈ S(A) be a regular type in a simple theory. For
A′, A′′ |= tp(A) put E(A′, A′′) if pA′ 6⊥ pA′′. Then E is an ∅-invariant
equivalence relation, and AE codes the non-orthogonality class of pA.

The work with ultraimaginaries requires caution: Many basic prop-
erties become problematic, as we shall see below.

Example 2.6. [1] Let E be the ∅-invariant equivalence relation on infi-
nite sequences which holds if they differ only on finitely many elements.
Consider a sequence I = (ai : i < ω) of elements such that no finite
subtuple is bounded over the remaining elements. Then every finite tu-
ple ā ∈ I can be moved to a disjoint conjugate over IE, but I cannot.
Similarly, if I is a Morley sequence in a simple theory, then ā |⌣ IE for
any finite ā ∈ I, but I 6 |⌣ IE. If I is a sequence of independent real-
izations of pairwise orthogonal (or even perpendicular) regular types,
then IE is orthogonal (or perpendicular) to any finite subset of them,
but not to all of them simultaneously. (We call two ultraimaginaries
independent if they have representatives which are.)

Even in the ω-stable context, for classes of finite tuples, the theory
is not smooth.

Example 2.7. Let T be the theory of a cycle-free graph (forest) of in-
finite valency, with predicates Pn(x, y) for couples of points of distance
n for all < ω. It is easy to see by back-and-forth that T eliminates
quantifiers and is ω-stable of rank ω; the formula Pn(x, a) has rank n
over a. Let E be the ∅-invariant equivalence relation of being in the
same connected component. Then existence of non-forking extensions
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fails over aE , as any two points in the connected component of a have
some finite distance n, and hence rank n over one another, but rank
≥ k over aE for all k < ω, since aE is definable over a point of distance
k.

The same behaviour can be observed for any type p of rank SU(p) =
ω in a simple theory, with the relation E(x, y) on p which holds if
SU(x/y) < ω and SU(y/x) < ω (actually, one follows from the other
by Lascar’s inequalities).

The behaviour of Example 2.7 is inconvenient and signifies that we
shall avoid working over an ultraimaginary. The behaviour of Example
2.6 is outright vexatious; we shall restrict the class of ultraimaginaries
under consideration in order to preserve the finite character of inde-
pendence.

Definition 2.8. Let T be simple. An ultraimaginary e is tame if for all
sets A,B of hyperimaginaries we have e |⌣A

B if and only if e |⌣A
B0

for all finite subsets B0 ⊆ B. It is quasi-finitary if there is a finite
tuple a such that e is bounded over a. It is supersimple if it has a
representative of ordinal SU -rank.

Remark 2.9. A supersimple ultraimaginary in a simple theory is
quasi-finitary; in a supersimple theory the converse holds as well.

Proof: Suppose A is a representative for an ultraimaginary e with
SU(A) < ∞, and let B be a real tuple with A ∈ bdd(B). Let b ∈ B be
a finite subtuple with SU(A/b) minimal; it follows that A |⌣ bB. Hence
A ⊆ bdd(b) and e ∈ bddu(b), so e is quasi-finitary. In a supersimple
theory the converse is obvious. �

We are really interested in the set of tame ultraimaginaries. How-
ever, we do not have a good criterion when an ultraimaginary is tame;
moreover, an ultraimaginary definable over a tame ultraimaginary need
not be tame itself. For instance, the sequence I in Example 2.6 is tame
(since it is real), but IE is not. We shall see in Corollary 3.5 that super-
simple ultraimaginaries are tame. Clearly, an ultraimaginary definable
(or even bounded) over a quasi-finitary / supersimple ultraimaginary
is itself quasi-finitary / supersimple.

The set of all / all quasi-finitary ultraimaginaries definable over A
will be denoted by dclu(A) / dclqfu(A), respectively. Similarly, bddu(A)
/ bddqfu(A) will denote the corresponding bounded closures. Recall
that two tuples a and b have the same Lascar strong type over A,
denoted a ≡lstp

A b or b |= lstp(a/A), if they lie in the same class modulo
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all A-invariant equivalence relations with only boundedly many classes.
This is the finest bounded A-invariant equivalence relation, so bddu(A)
is bounded by the number of Lascar strong types over A.

Proposition 2.10. The following are equivalent:

(1) bddu(Aa) ∩ bddu(Ab) = bddu(A).
(2) For any a′ |= lstp(a/A) there is n < ω and a sequence (ai, bi :

i ≤ n) such that

a0 = a, b0 = b, an = a′

and for each i < n

bi+1 |= lstp(bi/Aai) and ai+1 |= lstp(ai/Abi+1).

If a and b are finite, this is also eqivalent to bddqfu(Aa)∩bddqfu(Ab) =
bddqfu(A).

Proof: (1) ⇒ (2) Suppose bddu(Aa) ∩ bddu(Ab) = bddu(A), and de-
fine an A-invariant relation on lstp(ab/A) by E(xy, x′y′) if there is a
sequence (xi, yi : i ≤ n) such that

ab ≡lstp
A x0y0, x0y0 = xy, xnyn = x′y′

and for each i < n

yi+1 |= lstp(yi/Axi) and xi+1 |= lstp(xi/Ayi+1).

Clearly E is an equivalence relation. Now if b′ |= lstp(b/Aa), then
|= E(ab, ab′). Hence (ab)E ∈ bddu(Aa). Similarly (ab)E ∈ bddu(Ab),
whence (abE) ∈ bddu(A). But for any a′ |= lstp(a/A) there is b′ with

ab ≡lstp
A a′b′. Then |= E(ab, a′b′); in particular (2) holds.

(2) ⇒ (1) Suppose not, and consider e ∈ (bddu(Aa) ∩ bddu(Ab)) \
bddu(A). As e /∈ bddu(A) there is a′ |= lstp(a/A) with e /∈ bddu(Aa′).
Consider a sequence (ai, bi : i ≤ n) as in (2). Since bi+1 |= lstp(bi/Aai)
and ai+1 |= lstp(ai/Abi+1) we have

bddu(Aai) ∩ bddu(Abi) = bddu(Aai) ∩ bddu(Abi+1)

= bddu(Aai+1) ∩ bddu(Abi+1).

In particular,

e ∈ bddu(Aa) ∩ bddu(Ab) = bddu(Aa0) ∩ bddu(Ab0)

⊆ bdd(Aa) ∩ bddu(Aa′),

a contradiction.

The last assertion follows from the fact that for finite ab the ultra-
imaginary (ab)E in the proof of (1) ⇒ (2) is quasi-finitary. �
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Remark 2.11. We shall see in Theorem 4.6 that supersimple theories
of finite rank have weak elimination of quasi-finitary ultraimaginaries.
We thus recover a Lemma of Lascar [3] (see also [4, Lemma 2.2]).

3. Ultraimaginaries in simple theories

From now on the ambient theory will be simple. Our notation is
standard and follows [8]. We shall be working in a sufficiently saturated
model of the ambient theory. Tuples are tuples of hyperimaginaries,
and closures (definable, algebraic and bounded closures) will include
hyperimaginaries.

Remark 3.1. Since in a simple theory Lascar strong type equals Kim-
Pillay strong type, we have bddu(A) = dclu(bdd(A)). But of course, as
with real and imaginary algebraic closures, bdd(A)∩bdd(B) = bdd(∅)
does not imply bddu(A) ∩ bddu(B) = bddu(∅).

We shall first see that ultraimaginary bounded closures of indepen-
dent sets intersect trivially.

Lemma 3.2. If A |⌣B
C, then bddu(A) ∩ bddu(C) ⊆ bddu(B).

Proof: Consider aE ∈ bddu(A) ∩ bddu(C). We may assume a |⌣AB
C,

whence Aa |⌣B
C. Let (ai : i < ω) be a Morley sequence in lstp(a/BC).

Then E(ai, aj) for all i, j < ω. But ai |⌣B
aj for i 6= j, so π(x, aj) =

tp(ai/aj) does not fork over B, and neither does π(x, a). Note that
π(x, y) implies E(x, y).

Now suppose aE /∈ bddu(B). We can then find a long sequence
(a′i : i < α) of B-conjugates of a such that ¬E(a′i, a

′
j) for i 6= j. By

the Erdös-Rado theorem there is an infinite B-indiscernible sequence
(a′′i : i < ω) whose 2-type over B is among the 2-types of (a′i : i <
α). In particular ¬E(a′′i , a

′′
j ) for i 6= j, and (π(x, a′′i ) : i < ω) is 2-

inconsistent. Since a′′0 |= tp(a/B), we see that π(x, a) divides over B,
a contradiction. �

Definition 3.3. We shall say that two ultraimaginaries e and e′ are
independent over A, denoted e |⌣A

e′, if they have representatives which

are. (It e′ is hyperimaginary, it will be its own representative.)

Even if not all ultraimaginaries satisfy finite character of indepen-
dence, transitivity still holds.

Lemma 3.4. Let a and b be hyperimaginary, and e ultraimaginary. If
a |⌣ e and b |⌣a

e, then ab |⌣ e.
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Proof: Suppose e = cE. By hypothesis there are c′ ≡ c ≡ c′′ with
cE = c′E = c′′E and a |⌣ c′ as well as b |⌣a

c′′. Consider c′′′ ≡ac′′ c
′ with

c′′′ |⌣ac′′
b. Then b |⌣a

c′′c′′′; as c′ |⌣ a implies c′′′ |⌣ a we get c′′′ |⌣ ab,

and clearly E(c′, c′′) yields E(c′′′, c′′), whence c′′′E = c′′E = e. �

Corollary 3.5. A supersimple ultraimaginary is tame. In particular,
quasi-finitary ultraimaginaries in a supersimple theory are tame.

Proof: Let e be a supersimple ultraimaginary, and a a representative
with SU(a) < ∞. Consider sets A and B. There is a finite b ∈ B with
a |⌣Ab

B. So e |⌣A
B if and only if e |⌣A

b by Lemma 3.4. Thus e is
tame. �

In a supersimple theory quasi-finitary ultraimaginaries are the cor-
rect ones to consider: Due to elimination of hyperimaginaries all pa-
rameters consist of imaginaries of ordinal SU -rank; as canonical bases
of such imaginaries are finite, we can always reduce to a quasi-finitary
situation.

The following two Propositions tells us how to obtain invariant equiv-
alence relations, and hence ultraimaginaries.

Proposition 3.6. Let T be stable. For algebraically closed A and an ∅-
invariant equivalence relation E on tp(b), consider the relation R(X, Y )
given by

∃xy [Xx ≡ Y y ≡ Ab ∧ x |⌣
X

Y ∧ y |⌣
Y

X ∧ E(x, y)].

Then R is an ∅-invariant equivalence relation on tp(A).

Proof: Clearly, R is ∅-invariant, reflexive and symmetric. So suppose
that R(A,A′) and R(A′, A′′) both hold, and let this be witnessed by
b, b′ and b∗, b′′. Let b1 |= tp(b′/A) = tp(b∗/A′) with b1 |⌣A′

AA′′. Since

A′ is algebraically closed, b′ |⌣A′
A and b∗ |⌣A′

A′′ we have b1 ≡AA′

b′ and b1 ≡A′A′′ b∗. Hence there are b0, b2 with bb′ ≡AA′ b0b1 and
b∗b′′ ≡A′A′′ b1b2. In particular E(b0, b1) and E(b1, b2) hold, and so does
E(b0, b2). Moreover, we may assume b0 |⌣AA′b1

A′′ and b2 |⌣A′A′′b1
A′.

Now b1 |⌣A′
AA′′ implies b0 |⌣AA′

A′′ and b2 |⌣A′A′′
A. Then b0 |⌣A

A′

and b2 |⌣A′′
A′ imply b0 |⌣A

A′′ and b2 |⌣A′′
A, whence R(A,A′′) holds.

So R is transitive. �

Recall that a reflexive and symmetric binary relation R(x, y) on a
partial type π(x) is generically transitive if whenever x, y, z |= π, x |⌣y

z

and R(x, y) and R(y, z) both hold, then R(x, z) holds as well.
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Proposition 3.7. Let T be simple. Suppose R is an ∅-invariant, re-
flexive, symmetric and generically transitive relation on lstp(a), and
p is a regular type such that SUp(a) is finite. Let E be the transitive
closure of R, and suppose aE ∈ bddu(clp(∅)). Then there is a′ |⌣clp(∅)

a

with R(a, a′).

Proof: Put c = bdd(a)∩clp(∅). Then a |⌣c
clp(∅), whence aE ∈ bddu(c)

by Lemma 3.2. Let a′ ≡lstp
c a with a′ |⌣c

a. Then aE = a′E, so there is

n < ω and a chain a = a0, a1, . . . , an = a′ such that R(ai, ai+1) holds
for all i < n. Put a′0 = a0, and for 0 < i < n let

a′i ≡
lstp
ai

a′i−1 with a′i |⌣
ai

ai+1.

Claim. bddu(a′i) ∩ bddu(ai+1) ⊆ bddu(a0).

Proof of Claim: For i = 0 this is trivial. For i > 0, as a′i ≡
lstp
ai

a′i−1 and
bddu(ai) = dclu(bdd(ai)), we get

bddu(a′i) ∩ bddu(ai) = bddu(a′i−1) ∩ bddu(ai).

Next, a′i |⌣ai
ai+1 implies

bddu(a′iai) ∩ bddu(aiai+1) = bddu(ai)

by Lemma 3.2. Hence inductively

bddu(a′i) ∩ bddu(ai+1) ⊆ bddu(a′i) ∩ bddu(ai)

= bddu(a′i−1) ∩ bddu(ai)

⊆ bddu(a0). �

Now by generic transitivity and induction, R(a′i, ai+1) holds for all i <
n. In particular R(a′n−1, an) holds, and by Lemma 3.2

bddu(a′n−1) ∩ bddu(an) ⊆ bddu(a0) ∩ bddu(an) = bddu(c).

Choose a′′ with R(a′′, a′n−1) such that SUp(a
′′/a′n−1) is maximal possi-

ble. We may choose it such that a′′ |⌣a′n−1

an. Then

bddu(a′′) ∩ bddu(an) ⊆ bddu(an) ∩ bddu(a′n−1) ⊆ bddu(c)

and
SUp(a

′′/an) ≥ SUp(a
′′/a′n−1an) = SUp(a

′′/a′n−1).

Rename a′′an as a1a2, and note that bddu(a1) ∩ bdd(a2) ⊆ bddu(c),
c ⊆ bdd(a2), and SUp(a1/a2) is maximal possible among tuples (x, y)
with R(x, y). Moreover,

SUp(a2/a1) = SUp(a1a2)−SUp(a1) = SUp(a1a2)−SUp(a2) = SUp(a1/a2),
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so this is also maximal.

Choose a3 |⌣a2
a1 with a3 ≡lstp

a2
a1. By generic transitivity R(a1, a3)

holds. Moreover,

SUp(a3/a1) ≥ SUp(a3/a1a2) = SUp(a3/a2),

so equality holds. Similarly,

SUp(a1/a3) = SUp(a1/a2a3) = SUp(a1/a2).

For a set A let
clp(A) = {a : SUp(a/A) = 0}

denote the p-closure ofA. Then SUp(ai/aj) = SUp(ai/ajak) for {i, j, k} =
{1, 2, 3} means that

clp(ai) |⌣
clp(aj )

clp(ak).

In particular,

clp(ai) ∩ clp(ak) = clp(a1) ∩ clp(a2) ∩ clp(a3).

Let b = clp(a1) ∩ clp(a2) ∩ bdd(a1a2). Then clp(a1) ∩ clp(a2) = clp(b)
by [5, Lemma 3.18]. Let F (x, y) be the ∅-invariant equivalence relation
on lstp(b) given by clp(x) = clp(y). As bF is fixed by the bdd(a2)-
automorphism moving a1 to a3 and a1 |⌣a2

a3, we get bF ∈ bddu(a2)

by Lemma 3.2. Similarly, considering an a′3 |⌣a1
a2 with a′3 ≡

lstp
a1

a2 we

obtain bF ∈ bddu(a1), whence

bF ∈ bddu(a1) ∩ bddu(a2) ⊆ bddu(c).

So if b′ |⌣c
b satisfies lstp(b/c), then b′F = bF and

clp(b
′) = clp(b) = clp(c) = clp(∅).

But now

Cb(a3/clp(a1)clp(a2)) ⊆ clp(a1) ∩ clp(a2) = clp(b) = clp(∅),

so a3 |⌣clp(∅)
a2, as required. �

Remark 3.8. We cannot generalize [8, Lemma 3.3.1] and strengthen
Proposition 3.7 to say that if R is ∅-invariant, reflexive, symmetric
and generically transitive on a Lascar strong type, then the transitive
closure E ofR equals the 2-step iteration of R. Consider on the forest of
Example 2.7 the relation R(a, b) which holds if 3 divides the distance
between a and b. This is generically transitive, as for a′ |⌣a

a′′ the
distance between a′ and a′′ is the sum of the distances between a′

and a and between a and a′′. However, two points of distance 2 are
easily seen to be R2-related, so the transitive closure E of R is just the
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relation of being in the same connected component. But no two points
of distance 1 are R2-related.

Definition 3.9. We shall say that an ultraimaginary e is (almost) Σ-
internal, or is Σ-analysable, if it has a representative which is. Similarly,
e is orthogonal over A to some type p if for all B |⌣A

e such that p is

over B and for any realization b |= p|B we have e |⌣A
Bb.

Remark 3.10. This definition does not imply that we define the notion
of an analysis of an ultraimaginary. Moreover, e orthogonal to p over
A does not imply that e has a representative which is orthogonal to p.

Let Σ be an ∅-invariant family of partial types, and recall that the
first Σ-level of a over A is the set

ℓΣ1 (a/A) = {b ∈ bdd(aA) : tp(b/A) is almost Σ-internal}.

Lemma 3.11. If c = ℓΣ1 (b) and tp(c′/A) is almost Σ-internal, where
A |⌣ b, then b |⌣c

Ac′.

Proof: Cb(Acc′/b) is definable over a Morley sequence in lstp(Acc′/b)
and thus almost Σ-internal, as A |⌣ b. So Cb(Acc′/b) ⊆ c by definition.

�

Proposition 3.12. Let T be simple. Suppose bE is an ultraimaginary
non-orthogonal to some regular type p, and SUp(ℓ

p
1(b)) < ω. Then

there is almost p-internal e ∈ bddu(bE) \ bdd
u(clp(∅)). Moreover, e ∈

bddu(ℓp1(b)).

Proof: Let c = ℓp1(b). Define an ∅-invariant relation R on tp(c) by

R(c′, c′′) ⇔ ∃b′b′′ b′c′ ≡ b′′c′′ ≡ bc ∧ E(b′, b′′).

This is reflexive and symmetric; moreover for c′ |⌣c′′
c′′′ with R(c′, c′′)

and R(c′′, c′′′) we can find b′, b′′, b∗, b′′′ with

b′c′ ≡ b′′c′′ ≡ b∗c′′ ≡ b′′′c′′′ ≡ bc,

such that E(b′, b′′) and E(b∗, b′′′) hold. Since c′′ is boundedly closed,

b′′ ≡lstp
c′′ b∗, and b′′ |⌣c′′

c′ and b∗ |⌣c′′
c′′′ by Lemma 3.11. By the Inde-

pendence Theorem we can assume b′′ = b∗, so E(b′, b′′′) and R(c′, c′′′)
hold. Hence R is generically transitive; let F be its transitive closure.
The class cF is clearly almost p-internal. Moreover, if |= E(b′, b) and
b′c′ ≡ bc, then |= F (c′, c), so cF is bounded over bE .

Finally, suppose cF ∈ bddu(clp(∅)). By Proposition 3.7 there is
c′ |⌣clp(∅)

c with |= R(c′, c). Hence there are b′, b∗ with b′c′ ≡ b∗c ≡ bc
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and |= E(b′, b∗). Applying a c-automorphism (and moving c′), we may
assume b = b∗. Let A |⌣ b be some parameters and a some realiza-
tions of p over A with a 6 |⌣A

bE ; we may assume cb′c′ |⌣b
Aa, whence

A |⌣ bcb′c′. Then b |⌣c
Aa by Lemma 3.11, whence b′c′ |⌣Ac

a and

b′c′ |⌣c
Aa. Thus b′c′ |⌣clp(c)

Aa. Now c′ |⌣clp(∅)
c yields c′ |⌣clp(∅)

clp(c),

and hence c′ |⌣clp(∅)
Aa. As a |⌣A

clp(∅) we get a |⌣A
c′. Now b′ |⌣c′

Aa

by Lemma 3.11, whence b′ |⌣A
a. As bE = b′E we obtain a |⌣A

bE , a
contradiction. �

Corollary 3.13. Let e be a supersimple ultraimaginary. Suppose e is
non-orthogonal to some regular type p over some set B. Then there is
an almost p-internal supersimple e′ ∈ bddqfu(Be) \ bddqfu(clp(B)).

Proof: Let a be a representative of e with SU(a) < ∞ and put
b = Cb(a/B). Then SU(b) < ∞, as b is bounded over a finite
initial segment of a Morley sequence in lstp(a/B). Now e |⌣b

B, so

tp(e/b) is non-orthogonal to p. Note that SUp(ℓ
p
1(a/b)/b) is finite by

supersimplicity. By Proposition 3.12 applied over b there is an al-
most p-internal ultraimaginary e′ ∈ bddu(be) \ bddu(clp(b)); moreover
e′ ∈ bddu(ℓp1(a/b)) ⊆ bdd(ab). Thus e′ is supersimple, almost p-internal
over b and thus over B; it is quasi-finitary by Remark 2.9. �

Remark 3.14. For hyperimaginary e in a simple theory, the proof of
Corollary 3.13 uses the canonical base of some type over e. As we
cannot consider types over ultraimaginaries, this does not make sense
in our context.

Proposition 3.15. Let T be supersimple. If AB |⌣D and bddqfu(A)∩

bddqfu(B) = bddqfu(∅), then bddqfu(AD)∩bddqfu(BD) = bddqfu(D).

Proof: We may assume that A, B and D are boundedly closed. Con-
sider

e ∈ (bddqfu(AD) ∩ bddqfu(BD)) \ bddqfu(D).

Let p be a regular type of least SU -rank non-orthogonal to e over D.
This exists by transitivity since e is tame. By Corollary 3.13 we may
assume that e is almost p-internal of finite SUp-rank over D; let a′ be a
representative which is almost p-internal over D. Put a = Cb(a′D/A).
As a |⌣D we obtain that tp(a) is almost p-internal; note that SU(a) <

∞. Since e |⌣aD
A, Lemma 3.2 implies e ∈ bddqfu(aD). So we may

assume that A = bdd(a) and SUp(A) < ω. Similarly, we may assume
that D = bdd(Cb(aa′/D)) is the bounded closure of a finite set.
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Let (Ai : i < ω) be a Morley sequence in lstp(A/BD) with A0 =
A, and put B′ = bdd(A1A2). Then B′ is almost p-internal of finite
SUp-rank. Since e ∈ bddqfu(BD) we have e ∈ bddqfu(AiD) for all
i < ω. Let e′ be the set of B′D-conjugates of e, again a quasi-finitary
ultraimaginary. Since any B′D-conjugate of e is again in

bddqfu(A1D) ∩ bddqfu(A2D) = bddqfu(BD) ∩ bddqfu(A1D)

= bddqfu(BD) ∩ bddqfu(AD),

we have e′ ∈ dclqfu(B′D)∩bddqfu(AD). Moreover, B′ |⌣BD
A, whence

B′ |⌣B
A and

bddqfu(A) ∩ bddqfu(B′) ⊆ bddqfu(A) ∩ bddqfu(B) = bddqfu(∅).

ChooseA′ ≡lstp
AD B′ withA′ |⌣AD

B′. Then e′ ∈ dclqfu(A′D)∩dclqfu(B′D).

Furthermore,D |⌣B
A impliesD |⌣B

AB′; asD |⌣B we getD |⌣ABB′

and B′ |⌣A
D. Therefore A′ |⌣A

D, whence A′ |⌣A
B′ and

bddqfu(A′) ∩ bddqfu(B′) ⊆ bddqfu(A) ∩ bddqfu(B′) = bddqfu(∅).

We may assume e′ = (A′D)E for some ∅-invariant equivalence relation
E. Define a ∅-invariant reflexive and symmetric relation R on lstp(A′)
by

R(X, Y ) ⇔ ∃Z [XZ ≡ Y Z ≡ A′D ∧ Z |⌣XY ∧ E(XZ, Y Z)].

By the independence theorem, if A1 |⌣A2

A3 such that R(A1, A2) and

R(A2, A3) hold, we have R(A1, A3). Hence R is generically transitive;
let E ′ be the transitive closure of R. Clearly A′

E′ is quasi-finitary.

Next, consider A′′ ≡B′ A′ with A′′ |⌣B′
A′. By the independence the-

orem there isD′ with A′D ≡B′ A′D′ ≡B′ A′′D′ and D′ |⌣B′
A′A′′. Then

D′ |⌣B′, whence D′ |⌣A′A′′ and (A′D′)E = (A′′D′)E ∈ dclqfu(B′D′).

Therefore E ′(A′, A′′) holds and A′
E′ ∈ dclqfu(B′). Thus

A′
E′ ∈ dclqfu(A′) ∩ dclqfu(B′) ⊆ bddqfu(∅).

By Proposition 3.7 there is A′′ |⌣clp(∅)
A′ with R(A′, A′′). Let D′ wit-

ness R(A′, A′′). Then D′ ≡A′ D, so we may assume D′ = D. Since
clp(D) |⌣clp(∅)

clp(A
′A′′) and clp(A

′) |⌣clp(∅)
clp(A

′′) we obtain

clp(A
′) |⌣

clp(∅)

clp(A
′′)clp(D)

and hence A′ |⌣clp(D)
A′′. But now

e′ = (A′D)E = (A′′D)E ∈ dclqfu(A′D)∩ dclqfu(A′′D) ⊆ bddqfu(clp(D))
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by Lemma 3.2. Since e ∈ bddqfu(e′), this contradicts non-orthogonality
of e to p over D. �

Remark 3.16. Again, the proof of the hyperimaginary analogue of
Proposition 3.15 for simple theories uses canonical bases and does not
generalize.

4. Elimination of ultraimaginaries

On cannot avoid the non-tame ultraimaginaries of Example 2.6 which
do not satisfy finite character and hence cannot be eliminated. Simi-
larly, on a type of rank ω we cannot eliminate the relation of having
mutually finite rank over each other (example 2.7), since the rank over a
class modulo such a relation is not defined. We thus content ourselves
with elimination of ultraimaginaries of ordinal SU-rank in a simple
theory (and in particular of quasi-finitary ultraimaginaries in a super-
simple theory) up to rank of lower order of magnitude. This seems to
be optimal, given the examples cited.

Definition 4.1. Let e be ultraimaginary. We shall say that SU(a/e) <
ωα if for all representatives b of e we have SU(a/b) < ωα. Conversely,
SU(e/a) < αω if there is a representative b with SU(b/a) < ωα.

Remark 4.2. This does not mean that we define the value of SU(a/e)
or of SU(e/a). In fact, one might define

SU(e/a) = min{SU(b/a) : b a representative of e},

but this suggests a precision I am not sure exists.

Lemma 4.3. SU(e/a) < ω0 if and only if e ∈ bddu(a), and SU(a/e) <
ω0 if and only if a ∈ bdd(e).

Proof: If b is a representative of e with SU(b/a) < ω0, then b ∈ bdd(a),
so e ∈ bddu(a). If e ∈ bddu(a), then e ∈ dclu(bdd(a)), so b = bdd(a)
is a representative of e with SU(b/a) < ω0.

If a /∈ bdd(e), then there are arbitrarily many e-conjugates of a.
Then for any representative b of e there is some e-conjugate a′ of a which
is not in bdd(b). Let b′ be the image of b under an e-automorphism
mapping a′ to a. Then b′ is a representative of e, and SU(a/b′) ≥ ω0.
On the other hand, if a ∈ bdd(e), then a ∈ bdd(b) for any representa-
tive b of e, whence SU(a/b) < ω0. �

Definition 4.4. An ultraimaginary e can be α-eliminated if there is a
representative a with SU(a/e) < ωα. A supersimple theory has feeble
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elimination of ultraimaginaries if for all ordinals α, all quasi-finitary
ultraimaginaries of rank < ωα+1 can be α-eliminated.

Remark 4.5. 0-elimination is usually called weak elimination; in the
presence of imaginaries this equals full elimination. I do not know
what the definition of feeble elimination of ultraimaginaries should be
in general for simple theories — but then their whole theory is much
more problematic.

Theorem 4.6. If e is ultraimaginary with SU(e) < ωα+1, then e can
be α-eliminated. A supersimple theory has feeble elimination of quasi-
finitary ultraimaginaries; a supersimple theory of finite rank has elim-
ination of quasi-finitary ultraimaginaries.

Proof: Let a be a representative of e of minimal rank. Since SU(e) <
ωα+1 we have SU(a) < ωα+1. Suppose SU(a/e) ≥ ωα. Then there is
some representative b of e with SU(a/b) ≥ ωα; we choose it such that

SU(a/b) ≥ ωα · n for some maximal n ≥ 1. Consider a′ ≡lstp
b a with

a′ |⌣b
a. Since e ∈ dclu(b) we have e ∈ dclu(a′), and

SU(a/a′) ≥ SU(a/a′b) = SU(a/b) ≥ ωα · n.

By maximality of n we get

SU(a/a′) < SU(a/a′b) + ωα.

Hence, if

clα(A) = {c : SU(c/A) < ωα}

denotes the α-closure of A, we have

a |⌣
clα(a′)

clα(b).

On the other hand, a |⌣b
a′ implies

a |⌣
clα(b)

clα(a
′),

so

c = Cb(a/clα(b)clα(a
′)) ⊆ clα(b) ∩ clα(a

′).

Then a |⌣c
b, so e ∈ bddu(c) by Lemma 3.2. On the other hand,

SU(c/a′) < ωα, and SU(a′/c) ≥ SU(a′/cb) ≥ ωα since SU(a′/b) ≥ ωα

and SU(c/b) < ωα. It follows that

SU(a) = SU(a′) ≥ SU(c) + ωα.

In particular bdd(c) is a representative for e of lower rank, a contra-
diction. �
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Remark 4.7. Let p be a regular type (or type of weight 1). Then
two realizations a and b of p are independent if and only if bddqfu(a)∩
bddqfu(b) = bddqfu(∅): One direction is Lemma 3.2, the other follows
from the observation that dependence is an invariant equivalence re-
lation on realizations of p. However, this does not always hold: By
elimination of quasifinite ultraimaginaries, it is in particular false in
non one-based theories of finite rank.

5. Decomposition

In this section Σ will be an ∅-invariant family of partial types in a
simple theory. The following lemma is folklore, but we give a proof for
completeness.

Lemma 5.1. (1) Suppose a� b. If c |⌣ a and c |⌣ b, then a�c b.
(2) Suppose a�c b. If c |⌣ ab then a� b.
(3) Suppose a �c b. If tp(a) and tp(b) are foreign to tp(c), then

a� b.

Proof:

(1) Consider any d with d 6 |⌣c
a. Then cd 6 |⌣ a, whence cd 6 |⌣ b. Now

b |⌣ c implies b 6 |⌣c
d. The converse follows by symmetry.

(2) Consider any d with d 6 |⌣ a. Clearly we may assume d |⌣ab
c,

whence abd |⌣ c. Since a |⌣ c we get d 6 |⌣c
a, whence d 6 |⌣c

b and

cd 6 |⌣ b. But c |⌣d
b, so d 6 |⌣ b; the converse follows by symmetry.

(3) Consider any d with d 6 |⌣ a. Since a |⌣ c we get d 6 |⌣c
a, whence

d 6 |⌣c
b and cd 6 |⌣ b. If b |⌣ d, then b |⌣d

c by foreigness, whence

b |⌣ cd, a contradiction. So b 6 |⌣ d; the converse follows by sym-
metry. �

Here are two versions of [2, Lemma 1.15].

Proposition 5.2. Let A,B, a, b be (hyperimaginary) sets, such that
a is quasi-finitary, bddqfu(Aa) ∩ bddqfu(Bb) = bddqfu(∅), and a and
b are domination-equivalent over AB. Suppose AB is Σ-analysable,
and tp(a/A) and tp(b/B) are foreign to Σ. Then a ∈ bdd(A) and
b ∈ bdd(B).

Proof: Suppose otherwise. Put A0 = Cb(A/a). Then A0 is Σ-analysable,
so a |⌣A

A0. It follows that A0 ⊆ bdd(A)∩bdd(a). Lemma 5.1(3) yields
that a and b are domination-equivalent over A0B. We may thus assume
that Aa is quasi-finitary.
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Define an ∅-invariant relation E on lstp(Aa) by

E(A′a′, A′′a′′) ⇔ a′ �A′A′′ a′′.

Clearly, this is reflexive and symmetric. Suppose E(A′a′, A′′a′′) and
E(A′′a′′, A′′′a′′′). By Lemma 5.1(1)

a′ �A′A′′A′′′ a′′ and a′′ �A′A′′A′′′ a′′′,

whence a′ �A′A′′A′′′ a′′′. Now a′ �A′A′′′ a′′′ by Lemma 5.1(3). Thus
E(A′a′, A′′′a′′′) holds and E is transitive.

Let A′a′ ≡lstp
Bb Aa with A′a′ |⌣Bb

Aa. Again by Lemma 5.1(1)

a�AA′B b�AA′B a′,

and a�AA′ a′ by Lemma 5.1(3). Thus E(Aa,A′a′) holds. But

bddqfu(Aa) ∩ bddqfu(A′a′) ⊆ bddqfu(Aa) ∩ bddqfu(Bb) = bddqfu(∅).

Hence (Aa)E = (A′a′)E ∈ bddqfu(∅), and there is A′′a′′ |⌣Aa with
E(Aa,A′′a′′). But then a �AA′′ a′′ and a |⌣AA′′

a′′ yield a |⌣AA′′
a,

whence a ∈ bdd(AA′′) and finally a ∈ bdd(A) as a |⌣A
A′′. Similarly,

b ∈ bdd(B). �

Remark 5.3. If a is not quasi-finitary, the conclusion still holds if we
assume bddu(Aa) ∩ bddu(Bb) = bddu(∅).

Corollary 5.4. Let A,B, a, b be (hyperimaginary) sets, such that a is
quasi-finitary, bddqfu(Aa) ∩ bddqfu(Bb) = bddqfu(∅), and a and b are
interbounded over AB. Suppose AB is Σ-analysable. Then Aa and Bb
are Σ-analysable.

Proof: Clearly we may assume that A ⊆ bdd(Aa) and B ⊆ bdd(Bb) are
maximal Σ-analysable subsets. Hence tp(a/A) and tp(b/B) are foreign
to Σ. Since a and b are interbounded over AB, they are domination-
equivalent, contradicting Proposition 5.2. �

Remark 5.5. By Theorem 4.6, if SU(Aa) or SU(Bb) is finite, then
bdd(Aa) ∩ bdd(Bb) = bdd(∅) implies bddqfu(Aa) ∩ bddqfu(Bb) =
bddqfu(∅), and we recover [2, Lemma 1.15].

Fact 5.6. [5, Theorem 3.4(3)] Let Σ′ be an ∅-invariant subfamily of Σ.
Suppose tp(a) is Σ-analysable, but foreign to Σ\Σ′. Then a and ℓΣ

′

1 (a)
are domination-equivalent.

Corollary 5.7. Let A ⊆ bdd(Cb(B/A)) consist of quasi-finitary hy-
perimaginaries, with bddqfu(A) ∩ bddqfu(B) = bddqfu(∅). If A is Σ-
analysable and Σ′ is the subset of one-based partial types in Σ, then A
is analysable in Σ \ Σ′.
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Proof: Suppose A is not analysable in Σ \ Σ′. For every finite tuple
ā ∈ A put cā = Cb(B/ā), and let C =

⋃
{cā : ā ∈ A}. Then A |⌣C

B,

as for any ā ∈ A and C-indiscernible sequence (Bi : i < ω) in tp(B/C)
the set {π(x̄, Bi) : i < ω} is consistent, where π(x̄, B) = tp(ā/B),
since π(x̄, B) does not fork over cā ⊆ C. So A ⊆ bdd(C); as A is
not analysable in Σ \ Σ′, neither is C, and there is ā ∈ A such that
c = cā is not analysable in Σ \ Σ′. Clearly c ⊆ bdd(ā) is quasi-finitary
and c = Cb(B/c). Replacing A by c we may thus assume that A is
quasi-finitary.

Let A′ ⊆ bdd(A) and B′ ⊆ bdd(B) be maximally analysable in
Σ \ Σ′. So tp(A/A′) and tp(B/B′) are foreign to Σ \ Σ′, and A 6⊆ A′.
Since A = Cb(B/A) we get A 6 |⌣A′

B; as A |⌣A′
B′ by foreignness to

Σ \ Σ′, we obtain A 6 |⌣A′B′
B. In particular B 6⊆ B′.

By Fact 5.6 the first Σ′-levels a = ℓΣ
′

1 (A/A′) and b = ℓΣ
′

1 (B/B′) are
non-trivial, one-based, and

a�A′ A and b�B′ B.

Since tp(Aa/A′) is foreign to Σ\Σ′, we have Aa |⌣A′
B′, whence a�A′B′

A by Lemma 5.1(1). Similarly b �A′B′ B. But A 6 |⌣A′B′
B, and thus

a 6 |⌣A′B′
b. Let a0 = bdd(A′a) ∩ bdd(A′B′b) and b0 = bdd(B′b) ∩

bdd(A′B′a). By one-basedness of tp(a/A′) and tp(b/B′),

A′a |⌣
a0

A′B′b and B′b |⌣
b0

A′B′a.

Hence
A′B′a |⌣

A′B′a0

b0 and A′B′b |⌣
A′B′b0

a0.

It follows that a0 and b0 are interbounded over A′B′. We can now apply
Corollary 5.4 to see that a0 is analysable in Σ \ Σ′, whence a0 ∈ A′.
But then a |⌣A′B′

b, a contradiction. �

Remark 5.8. In a theory of finite SU -rank, due to weak elimination
of quasi-finitary ultraimaginaries, we obtain that for any A,B

tp(Cb(A/B)/bdd(A) ∩ bdd(B))

is analysable in the collection of non one-based types of SU -rank 1.

The following Theorem generalizes [2, Proposition 1.14] to super-
simple theories of infinite rank, at the price of demanding that the
quasifinite ultraimaginary bounded closures intersect trivially, rather
than just the bounded closures. The proof is essentially the same,
but we have to work with ultraimaginaries at key steps. Of course, in
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finite rank this is equivalent, due to elimination of quasifinite hyper-
imaginaries; moreover, the families Σi in the Theorem are just different
orthogonality classes of regular types of rank 1.

Theorem 5.9. Let T be supersimple. Suppose A ⊆ bdd(Cb(B/A)) and
B ⊆ bdd(Cb(A/B)), with bddqfu(A) ∩ bddqfu(B) = bddqfu(∅). Let
(Σi : i ∈ I) be a family of pairwise perpendicular ∅-invariant families
of partial types such that A is analysable in

⋃
i∈I Σi. For i ∈ I let Ai

and Bi be the maximal Σi-analysable subset of bdd(A) and bdd(B),
respectively. Then A ⊆ bdd(Ai : i < α) and B ⊆ bdd(Bi : i < α);
moreover Ai = bdd(Cb(Bi/A)) and Bi = bdd(Cb(Ai/B)). If Σi is
one-based, then Ai = Bi = bdd(∅).

Remark 5.10. If C |⌣AB, then bddqfu(AC)∩bddqfu(BC) = bddqfu(C)
by Lemma 3.15 and Theorem 5.9 applies over C. This can serve to re-
fine the decomposition.

Proof: Since Cb(Ai/B) is tp(Ai)-analysable and hence Σi-analysable,
we have Cb(Ai/B) ⊆ Bi; similarly Cb(Bi/A) ⊆ Ai. As the families in
(Σi : i ∈ I) are perpendicular, we obtain

(Ai : i ∈ I) |⌣
(Bi:i∈I)

B and (Bi : i ∈ I) |⌣
(Ai:i∈I)

A.

Suppose A ⊆ bdd(Ai : i ∈ I). Then B = Cb(A/B) ⊆ bdd(Bi : i ∈ I);
moreover

bdd(A) = bdd(Cb(B/A)) = bdd(Cb(Bi/A) : i ∈ I)

= bdd(Cb(Bi/Ai) : i ∈ I) ⊆ bdd(Ai : i ∈ I) = bdd(A)

again by perpendicularily. Hence bdd(Cb(Bi/Ai)) = Ai, and similarly
bdd(Cb(Ai/Bi)) = Bi. But if Σi is one-based, then

Bi = bdd(Cb(Ai/Bi)) ⊆ bdd(Ai) ∩ bdd(Bi) = bdd(∅) ;

similarly Ai = bdd(∅).

Put Ā = bdd(Ai : i ∈ I) and B̄ = bdd(Bi : i ∈ I). It remains to
show that A ⊆ Ā. So suppose not. As in the proof of Corollary 5.7 put
cā = Cb(B/ā) for every finite tuple ā ∈ A, and let C =

⋃
{cā : ā ∈ A}.

Then again A |⌣C
B and A ⊆ bdd(C); moreover cā = Cb(B/ā). Since

A is not contained in Ā, neither is C. Hence there is ā ∈ A such
that c = cā /∈ Ā. As the maximal Σi-analysable subset of bdd(c) is
equal to bdd(c)∩Ai we may replace A by c and thus assume that A is
quasi-finitary. Similarly, we may assume that B is quasi-finitary.

Since A = Cb(B/A) 6⊆ Ā, we have A 6 |⌣Ā
B; as A |⌣Ā

B̄ we obtain

A 6 |⌣ĀB̄
B. Let (bj : j < α) be an analysis of B over B̄ such that for
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every j < α the type tp(bj/B̄, bℓ : ℓ < j) is Σij -analysable for some

ij ∈ I. Let k be minimal with A 6 |⌣ĀB̄
(bj : j ≤ k). Then A |⌣Ā

B̄, (bj :

j < k) and Cb(B̄, (bj : j ≤ k)/A) is almost Σik-internal over Ā. Put

A′ = ℓ
Σik

1 (A/Ā) and B′ = ℓ
Σik

1 (B/B̄). Then A′ 6⊆ Ā, and Cb(A′/B) ⊆
B′ since Ā |⌣B̄

B. Similarly Cb(B′/A) ⊆ A′. Moreover A′ 6 |⌣ĀB̄
B,

whence A′ 6 |⌣ĀB̄
B′. Replacing A by Cb(B′/A) = Cb(B′/A′) and B by

Cb(A′/B) = Cb(A′/B′) we may assume that tp(A/Ā) and tp(B/B̄)
are both almost Σk-internal (where we write k instead of ik for ease of
notation).

Claim. bddqfu(ABk) ∩ bddqfu(B) = bddqfu(Bk).

Proof of Claim: Suppose not. As B is analysable in
⋃

i∈I Σi, Corollary
3.13 yields some i ∈ I and

d ∈ (bddqfu(ABk) ∩ bddqfu(B)) \ bddqfu(Bk)

such that d is almost Σi-internal over Bk; since tp(B/Bk) is foreign
to Σk we have i 6= k. Hence A |⌣ĀBk

d, whence d ∈ bddqfu(ĀBk) by

Lemma 3.2. But Ā = bdd(Ai : i ∈ I) and d |⌣BkAi
Ā by almost Σi-

internality of d over Bk, whence d ∈ bddqfu(BkAi). If Bkd |⌣Ai, then

d |⌣Bk
Ai and d ∈ bddqfuBk by Lemma 3.2, contradicting the choice of

d. Therefore Bkd 6 |⌣Ai; by Corollary 3.13 there is almost Σi-internal

d′ ∈ bddqfu(Bkd) \ bdd
qfu(∅).

Note that d′ ∈ bddqfu(AiBk)∩bdd
qfu(B). But then d′Ai |⌣Bk, whence

d′ |⌣Ai
Bk and

d′ ∈ bddqfu(Ai) ∩ bddqfu(B) = bddqfu(∅),

a contradiction. �

Claim. We may assume Bk = bdd(∅).

Proof of Claim: Put A′ = Cb(B/ABk). Then Bk ⊂ A′ = Cb(B/A′),
and bdd(A′)qfu ∩ bdd(B)qfu = bddqfu(Bk). If B′ = Cb(A′/B) =
Cb(A′/B′), then A′ |⌣B′

B and A |⌣A′
B yield B |⌣B′

A by transitivity,

since B′ ⊆ bdd(B). Thus B ⊂ bdd(B′). We add Bk to the language,
and have to show that A′, B′ is still a counterexample over Bk.

So suppose not, and let bdd(A′) = bdd(A′
i : i ∈ I) and bdd(B′) =

bdd(B′
i : i ∈ I) be decompositions, where A′

i and B′
i are maximally Σi-

analysable over Bk in bdd(A′) and bdd(B′), respectively. So B′
k is Σk-

analysable, whence B′
k = Bk ⊆ B̄ by maximality. Since B ⊆ bdd(B′)
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is almost Σk-internal over B̄ and (B′
i : i 6= k) is foreign to Σk, we get

B |⌣B̄
(B′

i : i 6= k), whence B ⊂ B̄, a contradiction. �

By symmetry, we may also assume Ak = bdd(∅).

Put B′ = Cb(B/AB̄). Then B̄ ⊆ bdd(B′), and since B is almost
Σk-internal over B̄, so is B′. If A′ = Cb(B′/A), then B′ |⌣A′

A and

A |⌣B′
B yield A |⌣A′

B, since A′ ⊆ bdd(A). Thus A ⊆ bdd(A′). Put

B′′ = Cb(A/B′) = Cb(A/B′′). Then

B′′ ⊆ bdd(B′) ⊆ bdd(AB̄),

and B′′ is almost Σk-internal over B̄. Moreover, A |⌣B′′
B′ implies

A ⊆ bdd(Cb(B′/A)) ⊆ bdd(Cb(B′′/A)).

Claim. bddqfu(A′) ∩ bddqfu(B′′) = bddqfu(∅).

Proof of Claim: Suppose not. By Corollary 3.13 there is i ∈ I and

d ∈ (bddqfu(A′) ∩ bddqfu(B′′)) \ bddqfu(∅)

which is almost Σi-internal; since B′′ is foreign to Σk we have i 6= k.
As B′′ is almost Σk-internal over B̄ we have

d ∈ bddqfu(B̄) ∩ bddqfu(A′) ⊆ bddqfu(A) ∩ bddqfu(B) = bddqfu(∅),

a contradiction. �

Thus A′, B′′ is another counterexample; by induction on SU(AB) we
may assume bdd(A′B′′) = bdd(AB). But then

B ⊂ bdd(A′B′′) ⊆ bdd(AB′) ⊆ bdd(AB̄).

By symmetry A ⊂ bdd(BĀ). Since ĀB̄ are analysable in
⋃

i 6=k Σi, so

are A and B by Corollary 5.4. But tp(A/Ā) is almost Σk-internal,
whence foreign to

⋃
i 6=k Σi, yielding the final contradiction. �

Remark 5.11. In the finite rank context, it is easy to achieve the
hypothesis of Theorem 5.9, as it suffices work over bdd(A) ∩ bdd(B).
In general, however, since bddqfu(A) ∩ bddqfu(B) = bddqfuC implies
bdd(C) = bdd(A) ∩ bdd(B). Thus, if

bddqfu(A) ∩ bddqfu(B) ) bddqfu(bdd(A) ∩ bdd(B)),

we do not authorize ourselves to work over bddqfu(A) ∩ bddqfu(B),
which is not eliminable. Feeble elimination nevertheless yields

bddqfu(A) ∩ bddqfu(B) ⊂ bddqfu(clα(A) ∩ clα(B))

if SU(A/bdd(A)∩bdd(B)) < ωα+1, so we can work over α-closed sets,
as is done in [5, Theorem 5.4].
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[2] Zoé Chatzidakis. A note on canonical bases and modular types in supersimple

theories, preprint, September 2002, revised December 2011. arXiv 1201.0134
[3] Daniel Lascar. Sous groupes dautomorphismes dune structure saturée. In: Logic

Colloquium ‘82, Stud. Logic Found. Math., vol. 112, North-Holland, Amster-
dam, 1984, pp. 123134.

[4] Rahim Moosa and Anand Pillay. On canonical bases and internality criteria,
Ill. J. Math. 52:901–917, 2008.
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