

Plus ultra Frank Olaf Wagner

▶ To cite this version:

Frank Olaf Wagner. Plus ultra. 2012. hal-00656792v1

HAL Id: hal-00656792 https://hal.science/hal-00656792v1

Preprint submitted on 5 Jan 2012 (v1), last revised 21 Mar 2014 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

FRANK O. WAGNER

ABSTRACT. We develop some basic simplicity-theoretic facts for quasi-finitary ultraimaginaries, i.e. classes of finite tuples modulo \emptyset -invariant equivalence relations, in a supersimple theory. We also show that they are geometrically eliminable in a weak sense: If e is an ultraimaginary definable over a tupe a with $SU(a) < \omega^{\alpha+1}$, then e is eliminable up to rank $< \omega^a l pha$.

1. INTRODUCTION

This paper arose out of an attempt to understand and generalize [2, Proposition 1.10 and Lemma 1.11]. In doing so, we realized that certain stability-theoretic phenomena were best explained using ultraimaginaries. Although Ben Yaacov [1] has shown that no satisfactory independence theory can exist for all ultraimaginaries, as there are problems both with the finite character and with the extension axiom for independence, at least finite character can be salvaged if one restricts to quasi-finitary ultraimaginaries in a supersimple theory. This enables us to recover certain tools from simplicity theory, even though, due to the lack of extension, canonical bases are not available.

2. Ultraimaginaries

Definition 2.1. An *ultraimaginary* is the class a_E of a tuple a under an \emptyset -invariant equivalence relation E.

Clearly, we may assume that a is a countable tuple.

Definition 2.2. An ultraimaginary a_E is *definable* over a set A if any automorphism of the monster model fixing A stabilises the E-class of a. It is *bounded* over A if the orbit of a under the group of automorphisms

Date: 5 January 2012.

²⁰⁰⁰ Mathematics Subject Classification. 03C45.

Key words and phrases. stable; simple; internal; analysable.

of the monster model which fix A is contained in boundedly many Eclasses. A *representative* of an ultraimaginary e is any tuple a such that e is definable over a.

Remark 2.3. As usual, if $E_A(x, y)$ is an A-invariant equivalence relation, one considers the \emptyset -invariant relation E(xX, yY) given by

$$(X = Y \land X \equiv A \land E_X(x, y)) \lor (X = Y \land x = y).$$

This is an equivalence relation, and $(aA)_E$ is interdefinable over A with a_{E_A} .

Remark 2.4. As any \emptyset -invariant relation, E is given by a union of types over \emptyset .

Ultraimaginaries arise quite naturally in stability and simplicity theory.

Example. Let $p_A \in S(A)$ be a regular type. For $A', A'' \models \operatorname{tp}(A)$ put E(A', A'') if $p_{A'} \not\perp p_{A''}$. Then E is an \emptyset -invariant equivalence relation, and A_E codes the non-orthogonality class of p_A .

Contrary to the case of hyperimaginaries (classes modulo type-definable equivalence relations) or even almost hyperimaginaries (ultraimaginaries which are interbounded with a hyperimaginary), the work with ultraimaginaries requires caution, as we lose compactness when we consider them as some kind of elements in our structure. For two ultraimaginaries a and b in a simple theory we define $a \perp b$ if they have representatives which are independent. This notion has to be handled with care, as not all of the usual properties hold.

Example. [1] Let E be the \emptyset -invariant equivalence relation on infinite sequences which holds if they differ on only finitely many elements. Consider a sequence $I = (a_i : i < \omega)$ of elements such that no finite subtuple is bounded over the remaining elements. Then every finite tuple $\bar{a} \in I$ can be moved to a disjoint conjugate over I_E , but I cannot. Similarly, if I is a Morley sequence in a simple theory, then $\bar{a} \perp I_E$ for any finite $\bar{a} \in I$, but $I \not\perp I_E$. If I is a sequence of independent realizations of pairwise orthogonal (or even perpendicular) regular types, then I_E is orthogonal (or perpendicular) to any finite subset of them, but not to all of them simultaneously.

Even in the ω -stable context, for classes of finite tuples, the theory is not smooth.

 $\mathbf{2}$

Example. Let T be the theory of a cycle-free graph (forest) of infinite valency, with predicates $P_n(x, y)$ for couples of points of distance n for all $< \omega$. It is easy to see by back-and-forth that T eliminates quantifiers and is ω -stable of rank ω ; the formula $P_n(x, a)$ has rank n over a. Let E be the \emptyset -invariant equivalence relation of being in the same connected component. Then existence of non-forking extensions fails over a_E , as any two points in the connected component of a have some finite distance n, and hence rank n over one another, but rank $\geq k$ over a_E for all $k < \omega$, since a_E is definable over a point of distance k.

The behaviour of Example 2 is inconvenient and signifies that we shall avoid working *over* an ultraimaginary. The behaviour of Example 2 is outright vexatious; we shall restrict the class of ultraimaginaries under consideration in order to preserve the finite character of independence.

Definition 2.5. Let T be simple. An ultraimaginary e is *tame* if for all hyperimaginary A, B we have $e \, \bigcup_A B$ if and only if $e \, \bigcup_A \overline{b}$ for all finite $\overline{b} \in B$. It is *quasi-finitary* if there is hyperimaginary A in bdd(e) and a finite tuple a such that e is bounded over Aa.

The set of all / all tame / all quasi-finite ultraimaginaries definable over A will be denoted by $dcl^u(A) / dcl^{tu}(A) / dcl^{qfu}(A)$, respectively. Similarly, $bdd^u(A) / bdd^{tu}(A) / bdd^{qfu}(A)$ will denote the corresponding bounded closures.

Recall that two tuples a and b have the same Lascar strong type over A, denoted $a \equiv_A^{lstp} b$ or $b \models lstp(a/A)$, if they lie in the same class modulo all A-invariant equivalence relations with only boundedly many classes. This is the finest bounded A-invariant equivalence relation, so $bdd^u(A)$ is bounded by the number of Lascar strong types over A.

Proposition 2.6. The following are equivalent:

- (1) $\operatorname{bdd}^{u}(Aa) \cap \operatorname{bdd}^{u}(Ab) = \operatorname{bdd}^{u}(A).$
- (2) For any $a' \models \text{lstp}(a/A)$ there is $n < \omega$ and a sequence $(a_i, b_i : i \le n)$ such that

$$a_0 = a, \quad b_0 = b, \quad a_n = a'$$

and for each i < n

 $b_{i+1} \models \operatorname{lstp}(b_i/Aa_i) \quad and \quad a_{i+1} \models \operatorname{lstp}(a_i/Ab_{i+1}).$

If a and b are finite, this is also equivalent to $bdd^{qfu}(Aa) \cap bdd^{qfu}(Ab) = bdd^{qfu}(A)$.

Proof: (1) \Rightarrow (2) Suppose $bdd^u(Aa) \cap bdd^u(Ab) = bdd^u(A)$, and define an A-invariant relation on lstp(ab/A) by E(xy, x'y') if there is a sequence $(x_i, y_i : i \leq n)$ such that

$$ab \equiv^{lstp}_A x_0 y_0, \quad x_0 y_0 = xy, \quad x_n y_n = x'y'$$

and for each i < n

$$y_{i+1} \models \operatorname{lstp}(y_i/Ax_i)$$
 and $x_{i+1} \models \operatorname{lstp}(x_i/Ay_{i+1})$.

Clearly E is an equivalence relation. Now if $b' \models \operatorname{lstp}(b/Aa)$, then $\models E(ab, ab')$. Hence $(ab)_E \in \operatorname{bdd}^u(Aa)$. Similarly $(ab)_E \in \operatorname{bdd}^u(Ab)$, whence $(ab_E) \in \operatorname{bdd}^u(A)$. But for any $a' \models \operatorname{lstp}(a/A)$ there is b' with $ab \equiv_A^{lstp} a'b'$. Then $\models E(ab, a'b')$; in particular (2) holds.

(2) \Rightarrow (1) Suppose not, and consider $e \in (bdd^u(Aa) \cap bdd^u(Ab)) \setminus bdd^u(A)$. As $e \notin bdd^u(A)$ there is $a' \models lstp(a/A)$ with $e \notin bdd^u(Aa) \cap bdd^u(Aa')$. Consider a sequence $(a_i, b_i : i \leq n)$ as in (2). Since $b_{i+1} \models lstp(b_i/Aa_i)$ and $a_{i+1} \models lstp(a_i/Ab_{i+1})$ we have

$$bdd^{u}(Aa_{i}) \cap bdd^{u}(Ab_{i}) = bdd^{u}(Aa_{i}) \cap bdd^{u}(Ab_{i+1})$$
$$= bdd^{u}(Aa_{i+1}) \cap bdd^{u}(Ab_{i+1})$$

In particular,

$$e \in \mathrm{bdd}^u(Aa) \cap \mathrm{bdd}^u(Ab) = \mathrm{bdd}^u(Aa_0) \cap \mathrm{bdd}^u(Ab_0)$$
$$\subseteq \mathrm{bdd}(Aa) \cap \mathrm{bdd}^u(Aa'),$$

a contradiction.

The last assertion follows from the fact that for finite ab the ultraimaginary $(ab)_E$ in the proof of $(1) \Rightarrow (2)$ is quasi-finitary. \Box

3. Ultraimaginaries in simple theories

From now on the ambient theory will be simple. Our notation is standard and follows [6]. We shall be working in a sufficiently saturated model of the ambient theory. Tuples are tuples of hyperimaginaries, and closures (definable, algebraic and bounded closures) will include hyperimaginaries.

Remark 3.1. Since in a simple theory Lascar strong type equals Kim-Pillay strong type, we have $bdd^u(A) = dcl^u(bdd(A))$. But of course, as with real and imaginary algebraic closures, $bdd(A) \cap bdd(B) = bdd(\emptyset)$ does not imply $bdd^u(A) \cap bdd^u(B) = bdd^u(\emptyset)$.

We shall first see that ultraimaginary bounded closures of independent sets intersect trivially.

Lemma 3.2. If $A \, \bigcup_B C$, then $\operatorname{bdd}^u(A) \cap \operatorname{bdd}^u(C) \subseteq \operatorname{bdd}^u(B)$.

Proof: Consider $a_E \in bdd^u(A) \cap bdd^u(C)$. We may assume $a \, {\color{black} \downarrow}_{AB} C$, whence $Aa \, {\color{black} \downarrow}_B C$. Let $(a_i : i < \omega)$ be a Morley sequence in lstp(a/BC). Then $E(a_i, a_j)$ for all $i, j < \omega$. But $a_i \, {\color{black} \downarrow}_B a_j$ for $i \neq j$, so $\pi(x, a_j) = tp(a_i/a_j)$ does not fork over B, and neither does $\pi(x, a)$.

Now suppose $a_E \notin \operatorname{bdd}^u(B)$. We can then find a long sequence $(a'_i : i < \alpha)$ of *B*-conjugates of *a* such that $\neg E(a'_i, a'_j)$ for $i \neq j$. By the Erdös-Rado theorem and compactness there is an infinite *B*-indiscernible sequence $(a''_i : i < \omega)$ whose 2-type over *B* is among the 2-types of $(a'_i : i < \alpha)$. In particular $\neg E(a''_i, a''_j)$ for $i \neq j$, and $(\pi(x, a''_i) : i < \omega)$ is 2-inconsistent. Since $a''_0 \models \operatorname{tp}(a/B)$, we see that $\pi(x, a)$ divides over *B*, a contradiction. \Box

Definition 3.3. We shall say that an ultraimaginary e is *independent* over A to B, denoted $e
ightharpoonup_A B$, if it has a representative which is.

Even if not all ultraimaginaries satisfy finite character of independence, transitivity still holds.

Lemma 3.4. Let T be simple, a and b hyperimaginary, and e ultraimaginary. If $a \perp e$ and $b \perp_a e$, then $ab \perp e$.

Proof: Suppose $e = c_E$. By hypothesis there are $c' \equiv c \equiv c''$ with $c_E = c'_E = c''_E$ and $a \perp c'$ as well as $b \perp_a c''$. Consider $c''' \equiv_{ac''} c'$ with $c''' \perp_{ac''} b$. Then $b \perp_a c''c'''$; as $c' \perp a$ implies $c''' \perp a$ we get $c''' \perp ab$, and clearly E(c', c'') yields E(c''', c''), whence $c'''_E = c''_E = e$.

Corollary 3.5. Suppose a_E is an ultraimaginary with $SU(a) < \infty$. Then a_E is tame. In a supersimple theory, quasifinite ultraimaginaries are tame.

Proof: Consider sets A and B. As $SU(a) < \infty$ there is a finite $b \in B$ with $a \, \bigcup_{Ab} B$. So $a_E \, \bigcup_A B$ if and only if $a_E \, \bigcup_A b$ by Lemma 3.4.

If e is quasifinite, $A \subseteq bdd(e)$ and a is a finite tuple with $e \in bdd^u(Aa)$, then for any B, C we have $e \downarrow_B C$ if and only if $A \downarrow_B C$ and $e \downarrow_{AB} C$. The result follows from the previous paragraph, working over A.

In particular, in a supersimple theory quasifinite ultraimaginaries are the correct ones to consider: Due to elimination of hyperimaginaries all parameters consist of imaginaries of ordinal SU-rank; as canonical bases of such imaginaries are finite, we can always reduce to a quasifinite situation.

The following two Propositions tells us how to obtain invariant equivalence relations, and hence ultraimaginaries.

Proposition 3.6. Let T be stable. For algebraically closed A and an \emptyset invariant equivalence relation E on tp(b), consider the relation R(X, Y)given by

$$\exists xy \, [Xx \equiv Yy \equiv Ab \land x \, \bigcup_X Y \land y \, \bigcup_Y X \land E(x,y)].$$

Then R is an \emptyset -invariant equivalence relation.

Proof: Clearly, *R* is Ø-invariant, reflexive and symmetric. So suppose that R(A, A') and R(A', A'') both hold, and let this be witnessed by *b*, *b'* and *b**, *b''*. Let $b_1 \models \operatorname{tp}(b'/A) = \operatorname{tp}(b^*/A')$ with $b' \downarrow_{A'} AA''$. Since *A'* is algebraically closed, $b' \downarrow_{A'} A$ and $b^* \downarrow_{A'} A''$ we have $b_1 \equiv_{AA'} b'$ and $b_1 \equiv_{A'A''} b^*$. Hence there are b_0, b_2 with $bb' \equiv_{AA'} b_0 b_1$ and $b^*b'' \equiv_{A'A''} b_1 b_2$. In particular $E(b_0, b_1)$ and $E(b_1, b_2)$ hold, and so does $E(b_0, b_2)$. Moreover, we may assume $b_0 \downarrow_{AA'b_1} A''$ and $b_2 \downarrow_{A'A''b_1} A'$. Now $b_1 \downarrow_{A'} AA''$ implies $b_0 \downarrow_{AA'} A''$ and $b_2 \downarrow_{A'A''} A$. Then $b_0 \downarrow_A A'$ and $b_2 \downarrow_{A''} A'$ imply $b_0 \downarrow_A A''$ and $b_2 \downarrow_{A''} A$, whence R(A, A'') holds. So *R* is transitive. □

Proposition 3.7. Let T be simple. Suppose R is an \emptyset -invariant, reflexive, symmetric and generically transitive relation on lstp(a), i.e. for $a_1, a_2, a_3 \models lstp(a)$ with $a_1 \perp_{a_2} a_3$ and $R(a_1, a_2)$ and $R(a_2, a_3)$ we also have $R(a_1, a_3)$. Let E be the transitive closure of R, and suppose $a_E \in bdd^u(\emptyset)$. Suppose further that p is a regular type such that $SU_p(a)$ is finite. Then there is $a' \perp_{cl_p(\emptyset)} a$ with R(a, a').

Proof: Let $a' \equiv^{lstp} a$ with $a' \perp a$. Then $a_E = a'_E$, so there is $n < \omega$ and a chain $a = a_0, a_1, \ldots, a_n = a'$ such that $R(a_i, a_{i+1})$ holds for all i < n. Put $a'_0 = a_0$, and for 0 < i < n let

$$a'_i \equiv^{lstp}_{a_i} a'_{i-1}$$
 with $a'_i \, \bigcup_{a_i} a_{i+1}$.

Claim. $bdd^u(a'_i) \cap bdd^u(a_{i+1}) \subseteq bdd^u(a_0).$

Proof of Claim: For i = 0 this is trivial. For i > 0, as $a'_i \equiv^{lstp}_{a_i} a'_{i-1}$ and $bdd^u(a_i) = dcl^u(bdd(a_i))$, we get

 $bdd^u(a'_i) \cap bdd^u(a_i) = bdd^u(a'_{i-1}) \cap bdd^u(a_i).$

Next, $a'_i igsquarepsilon_{a_i} a_{i+1}$ implies

$$bdd^u(a'_ia_i) \cap bdd^u(a_ia_{i+1}) = bdd^u(a_i)$$

 $\mathbf{6}$

by Lemma 3.2. Hence inductively

$$bdd^{u}(a'_{i}) \cap bdd^{u}(a_{i+1}) \subseteq bdd^{u}(a'_{i}) \cap bdd^{u}(a_{i})$$
$$= bdd^{u}(a'_{i-1}) \cap bdd^{u}(a_{i})$$
$$\subseteq bdd^{u}(a_{0}). \quad \Box$$

Now by generic transitivity and induction, $R(a'_i, a_{i+1})$ holds for all i < in. In particular $R(a'_{n-1}, a_n)$ holds, and by Lemma 3.2

$$bdd^{u}(a'_{n-1}) \cap bdd^{u}(a_{n}) \subseteq bdd^{u}(a_{0}) \cap bdd^{u}(a_{n}) = bdd^{u}(\emptyset).$$

Choose a'' with $R(a'', a_n)$ such that $SU_p(a''/a_n)$ is maximal possible. We may choose it such that $a''
ightarrow a_n a'_{n-1}$. Then

$$\operatorname{bdd}^{u}(a'') \cap \operatorname{bdd}^{u}(a'_{n-1}) \subseteq \operatorname{bdd}^{u}(a_{n}) \cap \operatorname{bdd}^{u}(a'_{n-1}) = \operatorname{bdd}^{u}(\emptyset)$$

and

$$SU_p(a''/a'_{n-1}) \ge SU_p(a''/a'_{n-1}a_n) = SU_p(a''/a_n)$$

Put $\pi(x, y) = \operatorname{tp}(a'', a'_{n-1})$. Then for $a_1 a_2 \models \pi$ we have $R(a_1, a_2)$, $bdd^u(a_1) \cap bdd^u(a_2) = bdd^u(\emptyset)$ and $SU_p(a_1/a_2)$ is maximal possible among couples satisfying R. Note that

$$SU_p(a_2/a_1) = SU_p(a_1a_2) - SU_p(a_1) = SU_p(a_1a_2) - SU_p(a_2) = SU_p(a_1/a_2),$$

so this is also maximal.

Choose $a_3
ightarrow_{a_2} a_1$ with $a_3 \equiv_{a_2}^{lstp} a_1$. By generic transitivity $R(a_1, a_3)$ holds. Moreover,

$$SU_p(a_3/a_1) \ge SU_p(a_3/a_1a_2) = SU_p(a_3/a_2),$$

so equality holds. Similarly,

$$SU_p(a_1/a_3) = SU_p(a_1/a_2a_3) = SU_p(a_1/a_2).$$

For a set A let

$$cl_p(A) = \{a : SU_p(a/A) = 0\}$$

 $\operatorname{cl}_p(A) = \{a : SU_p(a/A) = 0\}$ denote the *p*-closure of *A*. Then $SU_p(a_i/a_j) = SU_p(a_i/a_ja_k)$ for $\{i, j, k\} =$ $\{1, 2, 3\}$ means that

$$\operatorname{cl}_p(a_i) \underset{\operatorname{cl}_p(a_j)}{\cup} \operatorname{cl}_p(a_k).$$

In particular,

$$\operatorname{cl}_p(a_i) \cap \operatorname{cl}_p(a_k) = \operatorname{cl}_p(a_1) \cap \operatorname{cl}_p(a_2) \cap \operatorname{cl}_p(a_3).$$

Let $b = \operatorname{cl}_p(a_1) \cap \operatorname{cl}_p(a_2) \cap \operatorname{bdd}(a_1a_2)$. Then $\operatorname{cl}_p(a_1) \cap \operatorname{cl}_p(a_2) = \operatorname{cl}_p(b)$ by [3, Lemma 3.18]. Let F(x, y) be the \emptyset -invariant equivalence relation on lstp(b) given by $cl_p(x) = cl_p(y)$. As b_F is fixed by the $bdd(a_2)$ automorphism moving a_1 to a_3 and $a_1
ightarrow a_2$, we get $b_F \in \text{bdd}^u(a_2)$

by Lemma 3.2. Similarly, considering an $a'_3 \, \bigsqcup_{a_1} a_2$ with $a'_3 \equiv_{a_1}^{lstp} a_2$ we obtain $b_F \in \text{bdd}^u(a_1)$, whence

$$b_F \in \mathrm{bdd}^u(a_1) \cap \mathrm{bdd}^u(a_2) = \mathrm{bdd}^u(\emptyset).$$

So if $b' \perp b$ satisfies lstp(b), then $b'_F = b_F$ and $cl_p(b') = cl_p(b) = cl_p(\emptyset)$. But now

$$\operatorname{Cb}(a_3/\operatorname{cl}_p(a_1)\operatorname{cl}_p(a_2)) \subseteq \operatorname{cl}_p(a_1) \cap \operatorname{cl}_p(a_2) = \operatorname{cl}_p(b) = \operatorname{cl}_p(\emptyset),$$

so $a_3
ightarrow _{\operatorname{cl}_p(\emptyset)} a_2$, as required.

Remark 3.8. We cannot generalize [6, Lemma 3.3.1] and strengthen Proposition 3.7 to say that if R is \emptyset -invariant, reflexive, symmetric and generically transitive on a Lascar strong type, then the transitive closure E of R equals the 2-step iteration of R. Consider on the forest of Example 2 the relation R(a, b) which holds if 3 divides the distance between a and b. This is generically transitive, as for a'
onega a'' the distance between a' and a'' is the sum of the distances between a'and a and between a and a''. However, two points of distance 2 are easily seen to be R^2 -related, so the transitive closure E of R is just the relation of being in the same connected component. But no two points of distance 1 are R^2 -related.

Definition 3.9. We shall say that an ultraimaginary e is $(almost) \Sigma$ internal, or is Σ -analysable, if it has a representative which is. Similarly, we shall say that e has finite or ordinal rank over some set A if it has a representative which does. Finally, e is orthogonal over A to some type p if for all $B \bigcup_A e$ such that p is over B and for any realization $b \models p|B$ we have $e \bigcup_A Bb$.

Remark 3.10. This definition does not imply that we define the notion of an analysis of an ultraimaginary, or the rank of an ultraimaginary. Moreover, e orthogonal to p over A does not imply that e has a representative which is orthogonal to p.

Let Σ be an \emptyset -invariant family of partial types, and recall that the first Σ -level of a over A is the set

 $\ell_1^{\Sigma}(a/A) = \{ b \in \text{bdd}(aA) : \text{tp}(b/A) \text{ is almost } \Sigma \text{-internal} \}.$

Lemma 3.11. If $c = \ell_1^{\Sigma}(b)$ and $\operatorname{tp}(c'/A)$ is almost Σ -internal, where $A \perp b$, then $b \perp_c Ac'$.

Proof: $\operatorname{Cb}(Acc'/b)$ is definable over a Morley sequence in $\operatorname{lstp}(Acc'/b)$ and thus almost Σ -internal, as $A \perp b$. So $\operatorname{Cb}(Acc'/b) \subseteq c$ by definition.

Proposition 3.12. Let T be simple. Suppose b_E is an ultraimaginary non-orthogonal to some regular type p, and $SU_p(\ell_1^p(b)) < \omega$. Then there is almost p-internal $e \in bdd^u(b_E) \setminus bdd^u(\emptyset)$. Moreover, $e \in bdd^u(\ell_1^p(b))$.

Proof: Let $c = \ell_1^p(b)$. Define an \emptyset -invariant relation R on $\operatorname{tp}(c)$ by

$$R(c',c'') \quad \Leftrightarrow \quad \exists b'b'' \ b'c' \equiv b''c'' \equiv bc \wedge E(b',b'').$$

This is reflexive and symmetric; moreover for $c' \, {\color{black} \, }_{c''} c'''$ with $\models R(c', c'')$ and $\models R(c'', c''')$ we can find b', b'', b^*, b''' with

$$b'c' \equiv b''c'' \equiv b^*c'' \equiv b'''c'''$$

and $\models E(b', b'')$ and $\models E(b^*, b''')$. Since c'' is boundedly closed, $b'' \equiv_{c''}^{lstp} b^*$, and $b'' \downarrow_{c''} c'$ and $b^* \downarrow_{c''} c'''$ by Lemma 3.11. By the Independence Theorem we can assume $b'' = b^*$, whence E(b', b''') holds and $\models R(c', c''')$. So R is generically transitive; let F be its transitive closure. The class c_F is clearly almost p-internal. Moreover, if $\models E(b', b)$ and $b'c' \equiv bc$, then $\models F(c', c)$, so c_F is bounded over b_E .

Finally, suppose $c_F \in bdd(\emptyset)$. By Proposition 3.7 there is $c' \, {\downarrow}_{cl_p(\emptyset)} c$ with $\models R(c',c)$. Hence there are b', b^* with $b'c' \equiv b^*c \equiv bc$ and $\models E(b',b^*)$. Applying a *c*-automorphism (and moving c'), we may assume $b = b^*$. Let $A \, {\downarrow} \, bcb'c'$ be some parameters and a some realizations of p over A with $a \, {\not\!\!\!\!/}_A b_E$; we may assume $b'c' \, {\downarrow}_{bc} Aa$. Then $b \, {\downarrow}_{Ac} a$ by Lemma 3.11, whence $b'c' \, {\downarrow}_{Ac} a$ and $b'c' \, {\downarrow}_c Aa$. Thus $b'c' \, {\downarrow}_{cl_p(c)} Aa$. Now $c' \, {\downarrow}_{cl_p(\emptyset)} c$ yields $c' \, {\downarrow}_{cl_p(\emptyset)} \, cl_p(c)$, and hence $c' \, {\downarrow}_{cl_p(\emptyset)} Aa$. As $a \, {\downarrow}_A \, cl_p(\emptyset)$ we get $a \, {\downarrow}_A c'$. Now $b' \, {\downarrow}_{Ac'} a$ by Lemma 3.11, whence $b' \, {\downarrow}_A a$. As $b_E = b'_E$ we obtain $a \, {\downarrow}_A b_E$, a contradiction. \Box

Corollary 3.13. Let T be supersimple, and e be a quasifinitary ultraimaginary. Suppose $\operatorname{tp}(e/B)$ is non-orthogonal to some regular type p. Then there is an almost p-internal $e' \in \operatorname{bdd}^{qfu}(Be) \setminus \operatorname{bdd}^{qfu}(B)$, of finite SU_p -rank over B.

Proof: Let $A \subseteq bdd(e)$ be hyperimaginary and a a finite tuple such that $e \in bdd^u(Aa)$. If tp(A/B) is non-foreign to p, we are done by [6, Proposition 3.4.12]. But if tp(A/B) is foreign to p, then $\ell_1^p(aA/B) \bigcup_B A$, so $\ell_1^p(aA/B) = \ell_1^p(a/AB)$. Since $\ell_1^p(a/AB)$ is p-simple over AB, we get

$$SU_p(\ell_1^p(aA/B)/B) = SU_p(\ell_1^p(a/AB)/AB) = w_p(\ell_1^p(a/AB)/AB),$$

which is finite by supersimplicity.

By Proposition 3.12 applied over B there is an almost p-internal hyperimaginary $e_0 \in \text{bdd}^u(Be) \setminus \text{bdd}^u(B)$; moreover $e_0 \in \text{bdd}^u(\ell_1^p(aA/B))$.

By supersimplicity, there is a finite $b \in A$ with $a \perp_{Bb\ell_1^p(aA/B)} A$. As $A \perp_{Bb} \ell_1^p(aA/B)$, we get $A \perp_{Bb} a\ell_1^p(aA/B)$, whence $A \perp_{Bba} \ell_1^p(aA/B)$. Thus

$$\ell_1^p(aA/B) = \ell_1^p(ab/B) \subseteq \text{bdd}(abB)$$

and $e' = e_0 B$ is quasifinite of finite SU_p -rank over B.

Remark 3.14. For hyperimaginary e in a simple theory, the proof of Corollary 3.13 uses a canonical base over e. As we cannot consider types over ultraimaginaries, this does not make sense in our context.

Proposition 3.15. Let T be supersimple. If $AB \perp D$ and $bdd^{qfu}(A) \cap bdd^{qfu}(B) = bdd^{qfu}(\emptyset)$, then $bdd^{qfu}(AD) \cap bdd^{qfu}(BD) = bdd^{qfu}(D)$.

Proof: We may assume that A, B and D are boundedly closed. Consider

 $e \in (\mathrm{bdd}^{qfu}(AD) \cap \mathrm{bdd}^{qfu}(BD)) \setminus \mathrm{bdd}^{qfu}(D).$

Let p be a regular type of least SU-rank non-orthogonal to e over D. By Corollary 3.13 we may assume that e is almost p-internal of finite SU_p -rank over D. Suppose $C \subseteq bdd(e)$ is hyperimaginary. Then

 $C \subseteq \mathrm{bdd}(AD) \cap \mathrm{bdd}(BD) = D$

by [4, Fact 2.4]; replacing e by eD we may assume $D \in dcl(e)$. If c is finite with $e \in bdd(Dc)$, there is finite $a \in A$ with $c extstyle _{aD}A$, and $e \in bdd^{qfu}(aD)$ by Lemma 3.2. Similarly, if c' is almost p-internal of finite SU_p -rank over D with $e \in bdd^{qfu}(c'D)$, then a' = Cb(c'D/a) is almost p-internal of finite SU_p -rank, since D extstyle a and $a' \in bdd(a)$. Moreover, $c' extstyle _{a'D} a$ implies $e \in bdd^{qfu}(a'D)$. So we may assume that A = bdd(a') and $SU_p(A) < \omega$.

Let $(A_i : i < \omega)$ be a Morley sequence in lstp(A/BD) with $A_0 = A$, and put $B' = bdd(A_1A_2)$. Then B' is almost *p*-internal of finite SU_p -rank. Since $e \in bdd^{qfu}(BD)$ we have $e \in bdd^{qfu}(A_iD)$ for all $i < \omega$. Let e' be the set of B'D-conjugates of e, again a quasifinite ultraimaginary. Since any B'D-conjugate of e is again in

$$\mathrm{bdd}^{qfu}(A_1D)\cap\mathrm{bdd}^{qfu}(A_2D) = \mathrm{bdd}^{qfu}(BD)\cap\mathrm{bdd}^{qfu}(A_1D) = \mathrm{bdd}^{qfu}(BD)\cap\mathrm{bdd}^{qfu}(AD)$$

we have $e' \in \mathrm{dcl}^{qfu}(B'D)\cap\mathrm{bdd}^{qfu}(AD)$. Moreover, $B' \downarrow_{BD} A$, whence
 $B' \downarrow_B A$ and

$$\operatorname{bdd}^{qfu}(A) \cap \operatorname{bdd}^{qfu}(B') \subseteq \operatorname{bdd}^{qfu}(A) \cap \operatorname{bdd}^{qfu}(B) = \operatorname{bdd}^{qfu}(\emptyset).$$

Choose $A' \equiv_{AD}^{lstp} B'$ with $A' \bigcup_{AD} B'$. Then $e \in \operatorname{dcl}^{qfu}(A'D) \cap \operatorname{dcl}^{qfu}(B'D)$. Furthermore, $A' \bigcup_{A} D$, whence $A' \bigcup_{A} B'$ and

$$\mathrm{bdd}^{qfu}(A') \cap \mathrm{bdd}^{qfu}(B') \subseteq \mathrm{bdd}^{qfu}(A) \cap \mathrm{bdd}^{qfu}(B') = \mathrm{bdd}^{qfu}(\emptyset).$$

We may assume $e' = (A'D)_E$ for some \emptyset -invariant equivalence relation E. Define a \emptyset -invariant reflexive and symmetric relation R on lstp(A') by

$$R(X,Y) \Leftrightarrow \exists Z \ [XZ \equiv YZ \equiv A'D \land Z \ \bigcup \ XY \land E(XZ,YZ)].$$

By the independence theorem, for $A_1
ightarrow A_2$ A_3 with $R(A_1, A_2)$ and $R(A_2, A_3)$ we have $R(A_1, A_3)$. Hence R is generically transitive; let E' be the transitive closure of R. Clearly $A'_{E'}$ is quasifinite.

Next, consider $A'' \equiv_{B'} A'$ with $A'' \downarrow_{B'} A'$. By the independence theorem there is D' with $A'D \equiv_{B'} A'D' \equiv_{B'} A''D'$ and $D' \downarrow_{B'} A'A''$. Then $D' \downarrow B'$, whence $D' \downarrow A'A''$ and $(A'D')_E = (A''D')_E \in \operatorname{dcl}^{qfu}(B'D')$. Therefore E'(A', A'') holds and $A'_{E'} \in \operatorname{dcl}^{qfu}(B')$. Thus

$$A'_{E'} \in \operatorname{dcl}^{qfu}(A') \cap \operatorname{dcl}^{qfu}(B') \subseteq \operatorname{bdd}^{qfu}(\emptyset).$$

By Proposition 3.7 there is $A'' \, {\rm black}_{{\rm cl}_p(\emptyset)} A'$ with R(A', A''). Let D' witness R(A', A''). Then $D' \equiv_{A'} D$, so we may assume D' = D. Since ${\rm cl}_p(D) \, {\rm black}_p(A'A'')$ and ${\rm cl}_p(A') \, {\rm black}_{{\rm cl}_p(\emptyset)} \, {\rm cl}_p(A'')$ we obtain

$$\operatorname{cl}_p(A') \underset{\operatorname{cl}_p(\emptyset)}{\sqcup} \operatorname{cl}_p(A'') \operatorname{cl}_p(D)$$

and hence $A' \perp_{\operatorname{cl}_p(D)} A''$. But now

$$e' = (A'D)_E = (A''D)_E \in \operatorname{dcl}^{qfu}(AD) \cap \operatorname{dcl}^{qfu}(A'D) \subseteq \operatorname{bdd}^{qfu}(\operatorname{cl}_p(D))$$

by Lemma 3.2. Since e' is orthogonal over D to $cl_p(D)$ by minimality of SU(p), we have $e' \in bdd^{qfu}(D)$, and $e \in bdd^{qfu}(e') \subseteq bdd^{qfu}(D)$. \Box

Remark 3.16. Again, the proof of the hyperimaginary analogue of Proposition 3.15 for simple theories uses canonical bases and does not generalize.

4. Elimination of ultraimaginaries

On cannot avoid the non-tame ultraimaginaries of Example 2 which do not satisfy finite character and hence cannot be eliminated. We thus content ourselves with the elimination of quasi-finitary ultraimaginaries in supersimple theories.

Definition 4.1. Let *e* be ultraimaginary. We shall say that $SU(a/e) < \omega^{\alpha}$ if for all representatives *b* of *e* we have $SU(a/b) < \omega^{\alpha}$. Conversely, $SU(e/a) < \alpha^{\omega}$ if there is a representative *b* with $SU(b/a) < \omega^{\alpha}$.

Remark 4.2. This does not mean that we define the type of a over e or of e over a, nor the value of SU(a/e) or of SU(e/a).

Lemma 4.3. $U(e/a) < \omega^0$ if and only if $e \in bdd^u(a)$, and $U(a/e) < \omega^0$ if and only if $a \in bdd(e)$.

Proof: If b is a representative of e with $SU(b/a) < \omega^0$, then $b \in bdd(a)$, so $e \in bdd^u(a)$. If $e \in bdd^u(a)$, then $e \in dcl^u(bdd(a))$, so b = bdd(a)is a representative of e with $SU(b/a) < \omega^0$.

If $a \notin bdd(e)$, then there are arbitrarily many *e*-conjugates of *a*. Then for any representative *b* of *e* there is some *e*-conjugate *a'* of *a* which is not in bdd(*b*). Let *b'* be the image of *b* under an *e*-automorphism mapping *a'* to *a*. Then *b'* is a representative of *e*, and $SU(a/b') \ge \omega^0$. On the other hand, if $a \in bdd(e)$, then $a \in bdd(b)$ for any representative *b* of *e*, whence $SU(a/b) < \omega^0$.

Definition 4.4. An ultraimaginary e can be α -eliminated if there is a hyperimaginary a with $SU(a/e) < \omega^{\alpha}$ and $SU(e/a) < \omega^{\alpha}$. A theory has α -elimination of ultraimaginaries if all quasi-finitary ultraimaginaries can be α -eliminated.

0-elimination is usually called *geometric* elimination.

Theorem 4.5. If e is ultraimaginary with $SU(e) < \omega^{\alpha+1}$, then e can be α -eliminated. A supersimple theory of finite rank has geometric elimination of quasifinite ultraimaginaries.

Proof: Let a be a tuple of minimal rank such that $e \in bdd^u(a)$. Since $SU(e) < \omega^{\alpha+1}$ we have $SU(a) = \omega^{\alpha}n + \beta$ with $\beta < \omega^{\alpha}$; we shall use induction on n. By [6, Lemma 5.1.7] there is $a_0 \in bdd(a)$ with $SU(a_0) = \beta$ and $SU(a/a_0) = \omega^{\alpha}n$. By [6, Proposition 5.1.12] there is $B \perp_{a_0} a$ containing a_0 and c with $SU(c/B) = \omega^{\alpha}$ and $c \not\perp_B a$. Then $SU(a/Bc) < \omega^{\alpha}n$; by inductive hypothesis there is b such that $SU(e/Bbc) < \omega^{\alpha}$ and $SU(b/Bce) < \omega^{\alpha}$. In particular there is a representative b' of e with $SU(b'/Bbc) < \omega^{\alpha}$, whence

 $SU(b'/Bce) \le SU(b'/Bcb) \oplus SU(b/Bce) < \omega^{\alpha}.$

Replacing b by b' we may thus assume that b is a representative of e. Let $a' = \operatorname{Cb}(Bbc/a)$. Since $Bbc \, {\textstyle \buildrel a'} a$ we get $e \in \operatorname{bdd}^u(a')$ by Lemma 3.2. Hence SU(a') = SU(a) by minimality of rank, and $SU(a/a') < \omega^{\alpha}$ by the Lascar inequalities.

• Case 1: $SU(c/Be) < \omega^{\alpha}$. Then $SU(bc/Be) < \omega^{\alpha}$. Moreover, if $(B_ib_ic_i : i < \omega)$ is a Morley sequence in lstp(Bbc/a) with $B_0b_0c_0 = Bbc$, then $B \downarrow_{a_0} a$ implies that $(B_i : i < \omega) \downarrow_{a_0} a$, whence $(B_i : i < \omega) \downarrow_B a$ and $(B_i : i < \omega) \downarrow_{cl_{\alpha}(B)} cl_{\alpha}(Ba)$. As $SU(bc/Ba) < \omega^{\alpha}$ we get $a \downarrow_{cl_{\alpha}(Bbc)}(B_i : i < \omega)$, and therefore $a \downarrow_{cl_{\alpha}(Bbc)} cl_{\alpha}(b, B_i : i < \omega)$. However, $SU(b_ic_i/B_ie) < \omega^{\alpha}$; as b is a representative of e we get $SU(b_ic_i/B_ib) < \omega^{\alpha}$ for all $i < \omega$, and

$$a' \bigcup_{\operatorname{cl}_{\alpha}(Bb)} (B_i b_i c_i : i < \omega).$$

As $a' \in \operatorname{dcl}(B_i b_i c_i : i < \omega)$, we obtain $a' \in \operatorname{cl}_{\alpha}(Bb)$, so $SU(a/Be) \leq SU(a/a') \oplus SU(a'/Bb) \oplus SU(b/Be) < \omega^{\alpha}$.

Suppose $SU(a/e) \geq \omega^{\alpha}$. Then there is a representative b'' of e with $SU(a/b'') \geq \omega^{\alpha}$. Consider a Morley sequence $(a'_i : i < \alpha)$ in lstp(a/b'') with $a'_0 = a$. Since $a \, {\color{black}{\downarrow}}_{a_0} B$ we may assume that $(a'_i : i < \alpha)$ is indiscernible over B (possibly moving b''). But then $SU(a'_i/Bb'') < \omega^{\alpha}$ for all $i < \alpha$, whence $a'_i \not{\color{black}{\downarrow}}_{b''} B$ for all $i < \alpha$, contradicting boundedness of weight of tp(B/b'').

• Case 2: $SU(c/Be) \ge \omega^{\alpha}$. There is a representative b_0 of e with $SU(c/Bb_0) \ge \omega^{\alpha}$, whence $c \bigsqcup_B b_0$. Choose $b'c' \equiv_{Bb_0} bc$ with $c' \bigsqcup_{Bb_0} a$. Then $c' \bigsqcup_B a$, whence $Bc' \bigsqcup_{a_0} a$, and $SU(b'/Bc'e) < \omega^{\alpha}$. Moreover $SU(a/Bb'c') \ge \omega^{\alpha}$, as otherwise modulo ω^{α}

$$\begin{split} SU(a/B) &\geq SU(bc/B) = SU(b'c'/B) = SU(ab'c'/B) \geq SU(ac'/B) > SU(a/B).\\ \text{Let } (B_i b_i c_i : i < \omega) \text{ be a Morley sequence in } \operatorname{lstp}(Bb'c'/a) \text{ with } \\ B_0 b_0 c_0 &= Bb'c', \text{ and } a' = \operatorname{Cb}(Bb'c'/a). \text{ Then } a' \in \operatorname{dcl}(B_i b_i c_i : i < \omega).\\ \text{Now } SU(b_i/B_i c_i e) < \omega^{\alpha}, \text{ whence } SU(b_i/B_i c_i Bb'c') < \\ \omega^{\alpha}. \text{ As } Bc' \bigsqcup_{a_0} a, \text{ we get } (B_i c_i : i < \omega) \bigsqcup_{a_0} a. \text{ So } (B_i c_i : i < \omega) \\ \bigcup_{cl_{\alpha}(Bc')} cl_{\alpha}(Bc'a), \text{ whence } cl_{\alpha}(Bb'c', B_i c_i : i < \omega) \\ \bigcup_{cl_{\alpha}(Bb'c')} a \\ \text{and } (B_i b_i c_i : i < \omega) \\ \bigcup_{cl_{\alpha}(Bb'c')} a. \text{ It follows that } a' \in cl_{\alpha}(Bb'c') \cap \\ \text{bdd}(a); \text{ since } SU(a/Bb'c') \geq \omega^{\alpha} \text{ we get } SU(a) \geq SU(a') + \omega^{\alpha}.\\ \text{However, } Bb'c' \\ \bigsqcup_{a'} a \text{ implies } e \in \text{bdd}^u(a_0) \text{ by Lemma 3.2, contradicting minimality of } SU(a). \\ \end{split}$$

5. Decomposition

In this section Σ will be an \emptyset -invariant family of partial types.

Lemma 5.1. (1) Suppose $a \square b$. If $c \bigsqcup a$ and $c \bigsqcup b$, then $a \square_c b$. (2) Suppose $a \square_c b$. If $c \bigsqcup ab$ then $a \square b$.

(3) Suppose $a \sqsubseteq_c b$. If tp(a) and tp(b) are foreign to tp(c), then $a \bigsqcup b$.

Proof:

- (1) Consider any d with $d \not\perp_c a$. Then $cd \not\perp a$, whence $cd \not\perp b$. Now $b \perp c$ implies $b \not\perp_c d$. The converse follows by symmetry.
- (2) Consider any d with $d \not \perp a$. Clearly we may assume $d \perp_{ab} c$, whence $abd \perp c$. Since $a \perp c$ we get $d \not \perp_c a$, whence $d \not \perp_c b$ and $cd \not \perp b$. But $c \perp_d b$, so $d \not \perp b$; the converse follows by symmetry.
- (3) Consider any d with $d \not \perp a$. Since $a \perp c$ we get $d \not \perp_c a$, whence $d \not \perp_c b$ and $cd \not \perp b$. If $b \perp d$, then $b \perp_d c$ by foreigness, whence $b \perp cd$, a contradiction. So $b \not \perp d$; the converse follows by symmetry. \Box

Here are two versions of [2, Lemma 1.11].

Proposition 5.2. Let A, B, a, b be such that $bdd^u(Aa) \cap bdd^u(Bb) = bdd^u(\emptyset)$, and a and b are domination-equivalent over AB. Suppose AB is Σ -analysable, and tp(a/A) and tp(b/B) are foreign to Σ . Then $a \in bdd(A)$ and $b \in bdd(B)$.

Proof: Suppose otherwise. Put $A_0 = \operatorname{Cb}(A/a)$. Then A_0 is Σ -analysable, so $a \, {\textstyle igstymes}_A A_0$. It follows that $A_0 = \operatorname{bdd}(A) \cap \operatorname{bdd}(a)$; similarly for $B_0 = \operatorname{Cb}(b/B)$ we get $B_0 = \operatorname{bdd}(B) \cap \operatorname{bdd}(b)$. Lemma 5.1(3) yields that a and b are domination-equivalent over A_0B_0 . We may thus assume that AB is quasi-finitary.

Define an \emptyset -invariant relation E on lstp(Aa) by

$$E(A'a', A''a'') \quad \Leftrightarrow \quad a' \,\underline{\Box}_{A'A''} a''.$$

Clearly, this is reflexive and symmetric. Suppose E(A'a', A''a'') and E(A''a'', A'''a'''). By Lemma 5.1(1)

$$a' \underline{\Box}_{A'A''A'''} a''$$
 and $a'' \underline{\Box}_{A'A''A'''} a'''$,

whence $a' \bigsqcup_{A'A''A'''} a''$. Now $a' \bigsqcup_{A'A'''} a'''$ by Lemma 5.1(3). Thus E(A'a', A'''a''') holds and E is transitive.

Let $A'a' \equiv_{Bb}^{lstp} Aa$ with $A'a' \bigcup_{Bb} Aa$. Again by Lemma 5.1(1)

 $a \bigsqcup_{AA'B} b \bigsqcup_{AA'B} a',$

and $a \square_{AA'} a'$ by Lemma 5.1(3). Thus E(Aa, A'a') holds. But

 $bdd^{u}(Aa) \cap bdd^{u}(A'a') \subseteq bdd^{u}(Aa) \cap bdd^{u}(Bb) = bdd^{u}(\emptyset).$

Hence $(Aa)_E = (A'a')_E \in \operatorname{bdd}^u(\emptyset)$, and there is $A''a'' \, \bigsqcup Aa$ with E(Aa, A''a''). But then $a \bigsqcup_{AA''} a''$ and $a \bigsqcup_{AA''} a''$ yield $a \bigsqcup_{AA'} a$, whence $a \in \operatorname{bdd}(AA')$ and finally $a \in \operatorname{bdd}(A)$ as $a \bigsqcup_A A'$. Similarly, $b \in \operatorname{bdd}(B)$.

Corollary 5.3. Let A, B, a, b be such that $bdd^u(Aa) \cap bdd^u(Bb) = bdd^u(\emptyset)$, and a and b are interbounded over AB. Suppose AB is Σ -analysable. Then Aa and Bb are Σ -analysable.

Proof: Clearly we may assume that $A \subseteq \text{bdd}(Aa)$ and $B \subseteq \text{bdd}(Bb)$ are maximal Σ -analysable subsets. Hence tp(a/A) and tp(b/B) are foreign to Σ . Since a and b are interbounded over AB, they are domination-equivalent, contradicting Proposition 5.2.

Remark 5.4. By Theorem 4.5, if SU(Aa) or SU(Bb) is finite, then $bdd(Aa) \cap bdd(Bb) = bdd(\emptyset)$ implies $bdd^u(Aa) \cap bdd^u(Bb) = bdd^u(\emptyset)$, and we recover [2, Lemma 1.11].

Fact 5.5. [3, Theorem 3.4(3)] Let Σ' be an \emptyset -invariant subfamily of Σ . Suppose $\operatorname{tp}(a)$ is foreign to $\Sigma \setminus \Sigma'$. Then a and $\ell_1^{\Sigma'}(a)$ are domination-equivalent.

Corollary 5.6. Let $A = \operatorname{Cb}(B/A)$ and $B = \operatorname{Cb}(A/B)$, with $\operatorname{bdd}^u(A) \cap \operatorname{bdd}^u(B) = \operatorname{bdd}^u(\emptyset)$. If A is Σ -analysable and Σ' is the subset of one-based partial types in Σ , then A is analysable in $\Sigma \setminus \Sigma'$.

Proof: Let $A' \subseteq A$ and $B' \subseteq B$ be maximally analysable in $\Sigma \setminus \Sigma'$. So $\operatorname{tp}(A/A')$ and $\operatorname{tp}(B/B')$ are foreign to $\Sigma \setminus \Sigma'$.

Suppose for a contradiction that $A \not\subseteq A'$. Then $B \not\subseteq B'$, since A is $\operatorname{tp}(B)$ -internal and not analysable in $\Sigma \setminus \Sigma'$. By Lemma 5.5 the first Σ' -levels $a = \ell_1^{\Sigma'}(A/A')$ and $b = \ell_1^{\Sigma'}(B/B')$ are non-trivial, one-based, and

$$a \bigsqcup_{A'} A$$
 and $b \bigsqcup_{B'} B$.

Hence $a \not \perp_{A'B'} b$ by Lemma 5.1(1). Let $a_0 = \operatorname{Cb}(B'b/A'a)$ and $b_0 = \operatorname{Cb}(A'a/B'b)$. Then $a \not \perp_{A'B'a_0} b$ and $a \not \perp_{A'B'b_0} b$, so

$$\operatorname{bdd}(A'B'a_0) \cap \operatorname{bdd}(A'B'b_0) \supseteq \operatorname{bdd}(A'B'a) \cap \operatorname{bdd}(A'B'b).$$

It follows from one-basedness that

 $bdd(A'B'a_0) = bdd(A'B'b_0) = bdd(A'B'a) \cap bdd(A'B'b).$

We can now apply Corollary 5.3 to see that $a \in bdd(A')$, a contradiction.

References

- Itaï Ben Yaacov. Discouraging Results for Ultraimaginary Independence Theory, J. Symb. Logic 68:846–850, 2003.
- [2] Zoé Chatzidakis. A note on canonical bases and modular types in supersimple theories, preprint, September 2002.
- [3] Daniel Palacín and Frank O. Wagner. Ample thoughts, preprint 2011.
- [4] Anand Pillay. The geometry of forking and groups of finite Morley rank, J. Symb. Logic 60:1251–1259, 1995.
- [5] Anand Pillay. *Geometric stability theory*. Oxford Logic Guides 32. Oxford University Press, Oxford, GB, 1996.
- [6] Frank O. Wagner. Simple Theories. Mathematics and Its Applications 503. Kluwer Academic Publishers, Dordrecht, NL, 2000.
- [7] Frank O. Wagner. Some remarks on one-basedness, J. Symb. Logic 69:34–38, 2004.

UNIVERSITÉ DE LYON; CNRS; UNIVERSITÉ LYON 1; INSTITUT CAMILLE JORDAN UMR5208, 43 BD DU 11 NOVEMBRE 1918, 69622 VILLEURBANNE CEDEX, FRANCE

E-mail address: wagner@math.univ-lyon1.fr