Plus ultra

Frank Olaf Wagner

To cite this version:

Frank Olaf Wagner. Plus ultra. 2012. hal-00656792v1

HAL Id: hal-00656792
 https://hal.science/hal-00656792v1
 Preprint submitted on 5 Jan 2012 (v1), last revised 21 Mar 2014 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

PLUS ULTRA

FRANK O. WAGNER

Abstract

We develop some basic simplicity-theoretic facts for quasi-finitary ultraimaginaries, i.e. classes of finite tuples modulo \emptyset-invariant equivalence relations, in a supersimple theory. We also show that they are geometrically eliminable in a weak sense: If e is an ultraimaginary definable over a tupe a with $S U(a)<\omega^{\alpha+1}$, then e is eliminable up to rank $<\omega^{a} l p h a$.

1. Introduction

This paper arose out of an attempt to understand and generalize [2, Proposition 1.10 and Lemma 1.11]. In doing so, we realized that certain stability-theoretic phenomena were best explained using ultraimaginaries. Although Ben Yaacov [1] has shown that no satisfactory independence theory can exist for all ultraimaginaries, as there are problems both with the finite character and with the extension axiom for independence, at least finite character can be salvaged if one restricts to quasi-finitary ultraimaginaries in a supersimple theory. This enables us to recover certain tools from simplicity theory, even though, due to the lack of extension, canonical bases are not available.

2. Ultraimaginaries

Definition 2.1. An ultraimaginary is the class a_{E} of a tuple a under an \emptyset-invariant equivalence relation E.

Clearly, we may assume that a is a countable tuple.
Definition 2.2. An ultraimaginary a_{E} is definable over a set A if any automorphism of the monster model fixing A stabilises the E-class of a. It is bounded over A if the orbit of a under the group of automorphisms

[^0]of the monster model which fix A is contained in boundedly many E classes. A representative of an ultraimaginary e is any tuple a such that e is definable over a.

Remark 2.3. As usual, if $E_{A}(x, y)$ is an A-invariant equivalence relation, one considers the \emptyset-invariant relation $E(x X, y Y)$ given by

$$
\left(X=Y \wedge X \equiv A \wedge E_{X}(x, y)\right) \vee(X=Y \wedge x=y) .
$$

This is an equivalence relation, and $(a A)_{E}$ is interdefinable over A with $a_{E_{A}}$.

Remark 2.4. As any \emptyset-invariant relation, E is given by a union of types over \emptyset.

Ultraimaginaries arise quite naturally in stability and simplicity theory.

Example. Let $p_{A} \in S(A)$ be a regular type. For $A^{\prime}, A^{\prime \prime} \models \operatorname{tp}(A)$ put $E\left(A^{\prime}, A^{\prime \prime}\right)$ if $p_{A^{\prime}} \not \perp p_{A^{\prime \prime}}$. Then E is an \emptyset-invariant equivalence relation, and A_{E} codes the non-orthogonality class of p_{A}.

Contrary to the case of hyperimaginaries (classes modulo type-definable equivalence relations) or even almost hyperimaginaries (ultraimaginaries which are interbounded with a hyperimaginary), the work with ultraimaginaries requires caution, as we lose compactness when we consider them as some kind of elements in our structure. For two ultraimaginaries a and b in a simple theory we define $a \downarrow b$ if they have representatives which are independent. This notion has to be handled with care, as not all of the usual properties hold.

Example. [1] Let E be the \emptyset-invariant equivalence relation on infinite sequences which holds if they differ on only finitely many elements. Consider a sequence $I=\left(a_{i}: i<\omega\right)$ of elements such that no finite subtuple is bounded over the remaining elements. Then every finite tuple $\bar{a} \in I$ can be moved to a disjoint conjugate over I_{E}, but I cannot. Similarly, if I is a Morley sequence in a simple theory, then $\bar{a} \downarrow I_{E}$ for any finite $\bar{a} \in I$, but $I \npreceq I_{E}$. If I is a sequence of independent realizations of pairwise orthogonal (or even perpendicular) regular types, then I_{E} is orthogonal (or perpendicular) to any finite subset of them, but not to all of them simultaneously.

Even in the ω-stable context, for classes of finite tuples, the theory is not smooth.

Example. Let T be the theory of a cycle-free graph (forest) of infinite valency, with predicates $P_{n}(x, y)$ for couples of points of distance n for all $<\omega$. It is easy to see by back-and-forth that T eliminates quantifiers and is ω-stable of rank ω; the formula $P_{n}(x, a)$ has rank n over a. Let E be the \emptyset-invariant equivalence relation of being in the same connected component. Then existence of non-forking extensions fails over a_{E}, as any two points in the connected component of a have some finite distance n, and hence rank n over one another, but rank $\geq k$ over a_{E} for all $k<\omega$, since a_{E} is definable over a point of distance k.

The behaviour of Example 2 is inconvenient and signifies that we shall avoid working over an ultraimaginary. The behaviour of Example 2 is outright vexatious; we shall restrict the class of ultraimaginaries under consideration in order to preserve the finite character of independence.

Definition 2.5. Let T be simple. An ultraimaginary e is tame if for all hyperimaginary A, B we have $e \downarrow_{A} B$ if and only if $e \downarrow_{A} \bar{b}$ for all finite $\bar{b} \in B$. It is quasi-finitary if there is hyperimaginary A in $\operatorname{bdd}(e)$ and a finite tuple a such that e is bounded over $A a$.

The set of all / all tame / all quasi-finite ultraimaginaries definable over A will be denoted by $\operatorname{dcl}^{u}(A) / \operatorname{dcl}^{t u}(A) / \operatorname{dcl}^{q f u}(A)$, respectively. Similarly, $\operatorname{bdd}^{u}(A) / \operatorname{bdd}^{t u}(A) / \operatorname{bdd}^{q f u}(A)$ will denote the corresponding bounded closures.

Recall that two tuples a and b have the same Lascar strong type over A, denoted $a \equiv_{A}^{l s t p} b$ or $b \models \operatorname{lstp}(a / A)$, if they lie in the same class modulo all A-invariant equivalence relations with only boundedly many classes. This is the finest bounded A-invariant equivalence relation, so $\operatorname{bdd}^{u}(A)$ is bounded by the number of Lascar strong types over A.

Proposition 2.6. The following are equivalent:
(1) $\operatorname{bdd}^{u}(A a) \cap \operatorname{bdd}^{u}(A b)=\operatorname{bdd}^{u}(A)$.
(2) For any $a^{\prime} \models \operatorname{lstp}(a / A)$ there is $n<\omega$ and a sequence (a_{i}, b_{i} : $i \leq n)$ such that

$$
a_{0}=a, \quad b_{0}=b, \quad a_{n}=a^{\prime}
$$

and for each $i<n$

$$
b_{i+1} \models \operatorname{lstp}\left(b_{i} / A a_{i}\right) \quad \text { and } \quad a_{i+1} \models \operatorname{lstp}\left(a_{i} / A b_{i+1}\right) .
$$

If a and b are finite, this is also eqivalent to $\operatorname{bdd}^{q f u}(A a) \cap \operatorname{bdd}^{q f u}(A b)=$ $\operatorname{bdd}^{q f u}(A)$.

Proof: (1) \Rightarrow (2) Suppose $\operatorname{bdd}^{u}(A a) \cap \operatorname{bdd}^{u}(A b)=\operatorname{bdd}^{u}(A)$, and define an A-invariant relation on $\operatorname{lstp}(a b / A)$ by $E\left(x y, x^{\prime} y^{\prime}\right)$ if there is a sequence ($x_{i}, y_{i}: i \leq n$) such that

$$
a b \equiv \equiv_{A}^{l s t p} x_{0} y_{0}, \quad x_{0} y_{0}=x y, \quad x_{n} y_{n}=x^{\prime} y^{\prime}
$$

and for each $i<n$

$$
y_{i+1} \models \operatorname{lstp}\left(y_{i} / A x_{i}\right) \quad \text { and } \quad x_{i+1} \models \operatorname{lstp}\left(x_{i} / A y_{i+1}\right) .
$$

Clearly E is an equivalence relation. Now if $b^{\prime} \models \operatorname{lstp}(b / A a)$, then $\vDash E\left(a b, a b^{\prime}\right)$. Hence $(a b)_{E} \in \operatorname{bdd}^{u}(A a)$. Similarly $(a b)_{E} \in \operatorname{bdd}^{u}(A b)$, whence $\left(a b_{E}\right) \in \operatorname{bdd}^{u}(A)$. But for any $a^{\prime} \models \operatorname{lstp}(a / A)$ there is b^{\prime} with $a b \equiv \equiv_{A}^{l s t p} a^{\prime} b^{\prime}$. Then $\models E\left(a b, a^{\prime} b^{\prime}\right)$; in particular (2) holds.
$(2) \Rightarrow$ (1) Suppose not, and consider $e \in\left(\operatorname{bdd}^{u}(A a) \cap \operatorname{bdd}^{u}(A b)\right) \backslash$ $\operatorname{bdd}^{u}(A)$. As $e \notin \operatorname{bdd}^{u}(A)$ there is $a^{\prime} \models \operatorname{lstp}(a / A)$ with $e \notin \operatorname{bdd}^{u}(A a) \cap$ $\operatorname{bdd}^{u}\left(A a^{\prime}\right)$. Consider a sequence $\left(a_{i}, b_{i}: i \leq n\right)$ as in (2). Since $b_{i+1} \models$ $\operatorname{lstp}\left(b_{i} / A a_{i}\right)$ and $a_{i+1} \models \operatorname{lstp}\left(a_{i} / A b_{i+1}\right)$ we have

$$
\begin{aligned}
\operatorname{bdd}^{u}\left(A a_{i}\right) \cap \operatorname{bdd}^{u}\left(A b_{i}\right) & =\operatorname{bdd}^{u}\left(A a_{i}\right) \cap \operatorname{bdd}^{u}\left(A b_{i+1}\right) \\
& =\operatorname{bdd}^{u}\left(A a_{i+1}\right) \cap \operatorname{bdd}^{u}\left(A b_{i+1}\right) .
\end{aligned}
$$

In particular,

$$
\begin{aligned}
e \in \operatorname{bdd}^{u}(A a) \cap \operatorname{bdd}^{u}(A b) & =\operatorname{bdd}^{u}\left(A a_{0}\right) \cap \operatorname{bdd}^{u}\left(A b_{0}\right) \\
& \subseteq \operatorname{bdd}(A a) \cap \operatorname{bdd}^{u}\left(A a^{\prime}\right),
\end{aligned}
$$

a contradiction.
The last assertion follows from the fact that for finite $a b$ the ultraimaginary $(a b)_{E}$ in the proof of $(1) \Rightarrow(2)$ is quasi-finitary.

3. Ultraimaginaries in simple theories

From now on the ambient theory will be simple. Our notation is standard and follows [6]. We shall be working in a sufficiently saturated model of the ambient theory. Tuples are tuples of hyperimaginaries, and closures (definable, algebraic and bounded closures) will include hyperimaginaries.

Remark 3.1. Since in a simple theory Lascar strong type equals KimPillay strong type, we have $\operatorname{bdd}^{u}(A)=\operatorname{dcl}^{u}(\operatorname{bdd}(A))$. But of course, as with real and imaginary algebraic closures, $\operatorname{bdd}(A) \cap \operatorname{bdd}(B)=\operatorname{bdd}(\emptyset)$ does not imply $\operatorname{bdd}^{u}(A) \cap \operatorname{bdd}^{u}(B)=\operatorname{bdd}^{u}(\emptyset)$.

We shall first see that ultraimaginary bounded closures of independent sets intersect trivially.

Lemma 3.2. If $A \downarrow_{B} C$, then $\operatorname{bdd}^{u}(A) \cap \operatorname{bdd}^{u}(C) \subseteq \operatorname{bdd}^{u}(B)$.
Proof: Consider $a_{E} \in \operatorname{bdd}^{u}(A) \cap \operatorname{bdd}^{u}(C)$. We may assume $a \downarrow_{A B} C$, whence $A a \downarrow_{B} C$. Let $\left(a_{i}: i<\omega\right)$ be a Morley sequence in $\operatorname{lstp}(a / B C)$. Then $E\left(a_{i}, a_{j}\right)$ for all $i, j<\omega$. But $a_{i} \downarrow_{B} a_{j}$ for $i \neq j$, so $\pi\left(x, a_{j}\right)=$ $\operatorname{tp}\left(a_{i} / a_{j}\right)$ does not fork over B, and neither does $\pi(x, a)$.

Now suppose $a_{E} \notin \operatorname{bdd}^{u}(B)$. We can then find a long sequence $\left(a_{i}^{\prime}: i<\alpha\right)$ of B-conjugates of a such that $\neg E\left(a_{i}^{\prime}, a_{j}^{\prime}\right)$ for $i \neq j$. By the Erdös-Rado theorem and compactness there is an infinite B indiscernible sequence ($a_{i}^{\prime \prime}: i<\omega$) whose 2-type over B is among the 2-types of $\left(a_{i}^{\prime}: i<\alpha\right)$. In particular $\neg E\left(a_{i}^{\prime \prime}, a_{j}^{\prime \prime}\right)$ for $i \neq j$, and $\left(\pi\left(x, a_{i}^{\prime \prime}\right): i<\omega\right)$ is 2-inconsistent. Since $a_{0}^{\prime \prime} \models \operatorname{tp}(a / B)$, we see that $\pi(x, a)$ divides over B, a contradiction.

Definition 3.3. We shall say that an ultraimaginary e is independent over A to B, denoted $e \downarrow_{A} B$, if it has a representative which is.

Even if not all ultraimaginaries satisfy finite character of independence, transitivity still holds.

Lemma 3.4. Let T be simple, a and b hyperimaginary, and e ultraimaginary. If $a \downarrow e$ and $b \downarrow_{a} e$, then $a b \downarrow e$.

Proof: Suppose $e=c_{E}$. By hypothesis there are $c^{\prime} \equiv c \equiv c^{\prime \prime}$ with $c_{E}=c_{E}^{\prime}=c_{E}^{\prime \prime}$ and $a \downarrow c^{\prime}$ as well as $b \downarrow_{a} c^{\prime \prime}$. Consider $c^{\prime \prime \prime} \equiv_{a c^{\prime \prime}} c^{\prime}$ with $c^{\prime \prime \prime} \downarrow_{a c^{\prime \prime}} b$. Then $b \downarrow_{a} c^{\prime \prime} c^{\prime \prime \prime} ;$ as $c^{\prime} \downarrow a$ implies $c^{\prime \prime \prime} \downarrow a$ we get $c^{\prime \prime \prime} \downarrow a b$, and clearly $E\left(c^{\prime}, c^{\prime \prime}\right)$ yields $E\left(c^{\prime \prime \prime}, c^{\prime \prime}\right)$, whence $c_{E}^{\prime \prime \prime}=c_{E}^{\prime \prime}=e$.
Corollary 3.5. Supposer a_{E} is an ultraimaginary with $S U(a)<\infty$. Then a_{E} is tame. In a supersimple theory, quasifinite ultraimaginaries are tame.

Proof: Consider sets A and B. As $S U(a)<\infty$ there is a finite $b \in B$ with $a \downarrow_{A b} B$. So $a_{E} \downarrow_{A} B$ if and only if $a_{E} \downarrow_{A} b$ by Lemma 3.4.

If e is quasifinite, $A \subseteq \operatorname{bdd}(e)$ and a is a finite tuple with $e \in$ $\operatorname{bdd}^{u}(A a)$, then for any B, C we have $e \downarrow_{B} C$ if and only if $A \downarrow_{B} C$ and $e \downarrow_{A B} C$. The result follows from the previous paragraph, working over A.

In particular, in a supersimple theory quasifinite ultraimaginaries are the correct ones to consider: Due to elimination of hyperimaginaries all parameters consist of imaginaries of ordinal $S U$-rank; as canonical bases of such imaginaries are finite, we can always reduce to a quasifinite situation.

The following two Propositions tells us how to obtain invariant equivalence relations, and hence ultraimaginaries.

Proposition 3.6. Let T be stable. For algebraically closed A and an \emptyset invariant equivalence relation E on $\operatorname{tp}(b)$, consider the relation $R(X, Y)$ given by

$$
\exists x y[X x \equiv Y y \equiv A b \wedge x \underset{X}{\downarrow} Y \wedge y \underset{Y}{\downarrow} X \wedge E(x, y)]
$$

Then R is an \emptyset-invariant equivalence relation.
Proof: Clearly, R is \emptyset-invariant, reflexive and symmetric. So suppose that $R\left(A, A^{\prime}\right)$ and $R\left(A^{\prime}, A^{\prime \prime}\right)$ both hold, and let this be witnessed by b, b^{\prime} and $b^{*}, b^{\prime \prime}$. Let $b_{1} \models \operatorname{tp}\left(b^{\prime} / A\right)=\operatorname{tp}\left(b^{*} / A^{\prime}\right)$ with $b^{\prime} \downarrow_{A^{\prime}} A A^{\prime \prime}$. Since A^{\prime} is algebraically closed, $b^{\prime} \downarrow_{A^{\prime}} A$ and $b^{*} \downarrow_{A^{\prime}} A^{\prime \prime}$ we have $b_{1} \equiv_{A A^{\prime}}$ b^{\prime} and $b_{1} \equiv_{A^{\prime} A^{\prime \prime}} b^{*}$. Hence there are b_{0}, b_{2} with $b b^{\prime} \equiv_{A A^{\prime}} b_{0} b_{1}$ and $b^{*} b^{\prime \prime} \equiv{ }_{A^{\prime} A^{\prime \prime}} b_{1} b_{2}$. In particular $E\left(b_{0}, b_{1}\right)$ and $E\left(b_{1}, b_{2}\right)$ hold, and so does $E\left(b_{0}, b_{2}\right)$. Moreover, we may assume $b_{0} \downarrow_{A A^{\prime} b_{1}} A^{\prime \prime}$ and $b_{2} \downarrow_{A^{\prime} A^{\prime \prime} b_{1}} A^{\prime}$. Now $b_{1} \downarrow_{A^{\prime}} A A^{\prime \prime}$ implies $b_{0} \downarrow_{A A^{\prime}} A^{\prime \prime}$ and $b_{2} \downarrow_{A^{\prime} A^{\prime \prime}} A$. Then $b_{0} \downarrow_{A} A^{\prime}$ and $b_{2} \downarrow_{A^{\prime \prime}} A^{\prime}$ imply $b_{0} \downarrow_{A} A^{\prime \prime}$ and $b_{2} \downarrow_{A^{\prime \prime}} A$, whence $R\left(A, A^{\prime \prime}\right)$ holds. So R is transitive.

Proposition 3.7. Let T be simple. Suppose R is an \emptyset-invariant, reflexive, symmetric and generically transitive relation on $\operatorname{lstp}(a)$, i.e. for $a_{1}, a_{2}, a_{3} \models \operatorname{lstp}(a)$ with $a_{1} \downarrow_{a_{2}} a_{3}$ and $R\left(a_{1}, a_{2}\right)$ and $R\left(a_{2}, a_{3}\right)$ we also have $R\left(a_{1}, a_{3}\right)$. Let E be the transitive closure of R, and suppose $a_{E} \in \operatorname{bdd}^{u}(\emptyset)$. Suppose further that p is a regular type such that $S U_{p}(a)$ is finite. Then there is $a^{\prime} \downarrow_{\mathrm{cl}_{p}(\emptyset)}$ a with $R\left(a, a^{\prime}\right)$.

Proof: Let $a^{\prime} \equiv{ }^{l s t p} a$ with $a^{\prime} \downarrow a$. Then $a_{E}=a_{E}^{\prime}$, so there is $n<\omega$ and a chain $a=a_{0}, a_{1}, \ldots, a_{n}=a^{\prime}$ such that $R\left(a_{i}, a_{i+1}\right)$ holds for all $i<n$. Put $a_{0}^{\prime}=a_{0}$, and for $0<i<n$ let

$$
a_{i}^{\prime} \equiv_{a_{i}}^{l s t p} a_{i-1}^{\prime} \quad \text { with } \quad a_{i}^{\prime} \underset{a_{i}}{\downarrow} a_{i+1}
$$

Claim. $\operatorname{bdd}^{u}\left(a_{i}^{\prime}\right) \cap \operatorname{bdd}^{u}\left(a_{i+1}\right) \subseteq \operatorname{bdd}^{u}\left(a_{0}\right)$.
Proof of Claim: For $i=0$ this is trivial. For $i>0$, as $a_{i}^{\prime} \equiv_{a_{i}}^{l s t p} a_{i-1}^{\prime}$ and $\operatorname{bdd}^{u}\left(a_{i}\right)=\operatorname{dcl}^{u}\left(\operatorname{bdd}\left(a_{i}\right)\right)$, we get

$$
\operatorname{bdd}^{u}\left(a_{i}^{\prime}\right) \cap \operatorname{bdd}^{u}\left(a_{i}\right)=\operatorname{bdd}^{u}\left(a_{i-1}^{\prime}\right) \cap \operatorname{bdd}^{u}\left(a_{i}\right) .
$$

Next, $a_{i}^{\prime} \downarrow_{a_{i}} a_{i+1}$ implies

$$
\operatorname{bdd}^{u}\left(a_{i}^{\prime} a_{i}\right) \cap \operatorname{bdd}^{u}\left(a_{i} a_{i+1}\right)=\operatorname{bdd}^{u}\left(a_{i}\right)
$$

by Lemma 3.2. Hence inductively

$$
\begin{aligned}
\operatorname{bdd}^{u}\left(a_{i}^{\prime}\right) \cap \operatorname{bdd}^{u}\left(a_{i+1}\right) & \subseteq \operatorname{bdd}^{u}\left(a_{i}^{\prime}\right) \cap \operatorname{bdd}^{u}\left(a_{i}\right) \\
& =\operatorname{bdd}^{u}\left(a_{i-1}^{\prime}\right) \cap \operatorname{bdd}^{u}\left(a_{i}\right) \\
& \subseteq \operatorname{bdd}^{u}\left(a_{0}\right) . \quad \square
\end{aligned}
$$

Now by generic transitivity and induction, $R\left(a_{i}^{\prime}, a_{i+1}\right)$ holds for all $i<$ n. In particular $R\left(a_{n-1}^{\prime}, a_{n}\right)$ holds, and by Lemma 3.2

$$
\operatorname{bdd}^{u}\left(a_{n-1}^{\prime}\right) \cap \operatorname{bdd}^{u}\left(a_{n}\right) \subseteq \operatorname{bdd}^{u}\left(a_{0}\right) \cap \operatorname{bdd}^{u}\left(a_{n}\right)=\operatorname{bdd}^{u}(\emptyset) .
$$

Choose $a^{\prime \prime}$ with $R\left(a^{\prime \prime}, a_{n}\right)$ such that $S U_{p}\left(a^{\prime \prime} / a_{n}\right)$ is maximal possible. We may choose it such that $a^{\prime \prime} \downarrow_{a_{n}} a_{n-1}^{\prime}$. Then

$$
\operatorname{bdd}^{u}\left(a^{\prime \prime}\right) \cap \operatorname{bdd}^{u}\left(a_{n-1}^{\prime}\right) \subseteq \operatorname{bdd}^{u}\left(a_{n}\right) \cap \operatorname{bdd}^{u}\left(a_{n-1}^{\prime}\right)=\operatorname{bdd}^{u}(\emptyset)
$$

and

$$
S U_{p}\left(a^{\prime \prime} / a_{n-1}^{\prime}\right) \geq S U_{p}\left(a^{\prime \prime} / a_{n-1}^{\prime} a_{n}\right)=S U_{p}\left(a^{\prime \prime} / a_{n}\right) .
$$

Put $\pi(x, y)=\operatorname{tp}\left(a^{\prime \prime}, a_{n-1}^{\prime}\right)$. Then for $a_{1} a_{2} \models \pi$ we have $R\left(a_{1}, a_{2}\right)$, $\operatorname{bdd}^{u}\left(a_{1}\right) \cap \operatorname{bdd}^{u}\left(a_{2}\right)=\operatorname{bdd}^{u}(\emptyset)$ and $S U_{p}\left(a_{1} / a_{2}\right)$ is maximal possible among couples satisfying R. Note that
$S U_{p}\left(a_{2} / a_{1}\right)=S U_{p}\left(a_{1} a_{2}\right)-S U_{p}\left(a_{1}\right)=S U_{p}\left(a_{1} a_{2}\right)-S U_{p}\left(a_{2}\right)=S U_{p}\left(a_{1} / a_{2}\right)$, so this is also maximal.

Choose $a_{3} \downarrow_{a_{2}} a_{1}$ with $a_{3} \equiv_{a_{2}}^{\text {stp }} a_{1}$. By generic transitivity $R\left(a_{1}, a_{3}\right)$ holds. Moreover,

$$
S U_{p}\left(a_{3} / a_{1}\right) \geq S U_{p}\left(a_{3} / a_{1} a_{2}\right)=S U_{p}\left(a_{3} / a_{2}\right),
$$

so equality holds. Similarly,

$$
S U_{p}\left(a_{1} / a_{3}\right)=S U_{p}\left(a_{1} / a_{2} a_{3}\right)=S U_{p}\left(a_{1} / a_{2}\right) .
$$

For a set A let

$$
\operatorname{cl}_{p}(A)=\left\{a: S U_{p}(a / A)=0\right\}
$$

denote the p-closure of A. Then $S U_{p}\left(a_{i} / a_{j}\right)=S U_{p}\left(a_{i} / a_{j} a_{k}\right)$ for $\{i, j, k\}=$ $\{1,2,3\}$ means that

$$
\operatorname{cl}_{p}\left(a_{i}\right) \underset{\operatorname{cl}_{p}\left(a_{j}\right)}{\perp} \operatorname{cl}_{p}\left(a_{k}\right) .
$$

In particular,

$$
\operatorname{cl}_{p}\left(a_{i}\right) \cap \operatorname{cl}_{p}\left(a_{k}\right)=\operatorname{cl}_{p}\left(a_{1}\right) \cap \operatorname{cl}_{p}\left(a_{2}\right) \cap \operatorname{cl}_{p}\left(a_{3}\right) .
$$

Let $b=\operatorname{cl}_{p}\left(a_{1}\right) \cap \operatorname{cl}_{p}\left(a_{2}\right) \cap \operatorname{bdd}\left(a_{1} a_{2}\right)$. Then $\operatorname{cl}_{p}\left(a_{1}\right) \cap \operatorname{cl}_{p}\left(a_{2}\right)=\operatorname{cl}_{p}(b)$ by [3, Lemma 3.18]. Let $F(x, y)$ be the \emptyset-invariant equivalence relation on $\operatorname{lstp}(b)$ given by $\operatorname{cl}_{p}(x)=\operatorname{cl}_{p}(y)$. As b_{F} is fixed by the $\operatorname{bdd}\left(a_{2}\right)$ automorphism moving a_{1} to a_{3} and $a_{1} \downarrow_{a_{2}} a_{3}$, we get $b_{F} \in \operatorname{bdd}^{u}\left(a_{2}\right)$
by Lemma 3.2. Similarly, considering an $a_{3}^{\prime} \downarrow_{a_{1}} a_{2}$ with $a_{3}^{\prime} \equiv_{a_{1}}^{l \text { stp }} a_{2}$ we obtain $b_{F} \in \operatorname{bdd}^{u}\left(a_{1}\right)$, whence

$$
b_{F} \in \operatorname{bdd}^{u}\left(a_{1}\right) \cap \operatorname{bdd}^{u}\left(a_{2}\right)=\operatorname{bdd}^{u}(\emptyset) .
$$

So if $b^{\prime} \downarrow b$ satisfies $\operatorname{lstp}(b)$, then $b_{F}^{\prime}=b_{F}$ and $\mathrm{cl}_{p}\left(b^{\prime}\right)=\mathrm{cl}_{p}(b)=\mathrm{cl}_{p}(\emptyset)$. But now

$$
\mathrm{Cb}\left(a_{3} / \mathrm{cl}_{p}\left(a_{1}\right) \mathrm{cl}_{p}\left(a_{2}\right)\right) \subseteq \operatorname{cl}_{p}\left(a_{1}\right) \cap \mathrm{cl}_{p}\left(a_{2}\right)=\mathrm{cl}_{p}(b)=\mathrm{cl}_{p}(\emptyset),
$$

so $a_{3} \downarrow_{\mathrm{cl}_{p}(\emptyset)} a_{2}$, as required.
Remark 3.8. We cannot generalize [6, Lemma 3.3.1] and strengthen Proposition 3.7 to say that if R is \emptyset-invariant, reflexive, symmetric and generically transitive on a Lascar strong type, then the transitive closure E of R equals the 2-step iteration of R. Consider on the forest of Example 2 the relation $R(a, b)$ which holds if 3 divides the distance between a and b. This is generically transitive, as for $a^{\prime} \downarrow_{a} a^{\prime \prime}$ the distance between a^{\prime} and $a^{\prime \prime}$ is the sum of the distances between a^{\prime} and a and between a and $a^{\prime \prime}$. However, two points of distance 2 are easily seen to be R^{2}-related, so the transitive closure E of R is just the relation of being in the same connected component. But no two points of distance 1 are R^{2}-related.

Definition 3.9. We shall say that an ultraimaginary e is (almost) Σ internal, or is Σ-analysable, if it has a representative which is. Similarly, we shall say that e has finite or ordinal rank over some set A if it has a representative which does. Finally, e is orthogonal over A to some type p if for all $B \downarrow_{A} e$ such that p is over B and for any realization $b \models p \mid B$ we have $e \downarrow_{A}^{A} B b$.
Remark 3.10. This definition does not imply that we define the notion of an analysis of an ultraimaginary, or the rank of an ultraimaginary. Moreover, e orthogonal to p over A does not imply that e has a representative which is orthogonal to p.

Let Σ be an \emptyset-invariant family of partial types, and recall that the first Σ-level of a over A is the set

$$
\ell_{1}^{\Sigma}(a / A)=\{b \in \operatorname{bdd}(a A): \operatorname{tp}(b / A) \text { is almost } \Sigma \text {-internal }\} .
$$

Lemma 3.11. If $c=\ell_{1}^{\Sigma}(b)$ and $\operatorname{tp}\left(c^{\prime} / A\right)$ is almost Σ-internal, where $A \downarrow b$, then $b \downarrow_{c} A c^{\prime}$.

Proof: $\mathrm{Cb}\left(A c c^{\prime} / b\right)$ is definable over a Morley sequence in $\operatorname{lstp}\left(A c c^{\prime} / b\right)$ and thus almost Σ-internal, as $A \downarrow b$. So $\mathrm{Cb}\left(A c c^{\prime} / b\right) \subseteq c$ by definition.

Proposition 3.12. Let T be simple. Suppose b_{E} is an ultraimaginary non-orthogonal to some regular type p, and $S U_{p}\left(\ell_{1}^{p}(b)\right)<\omega$. Then there is almost p-internal $e \in \operatorname{bdd}^{u}\left(b_{E}\right) \backslash \operatorname{bdd}^{u}(\emptyset)$. Moreover, $e \in \operatorname{bdd}^{u}\left(\ell_{1}^{p}(b)\right)$.

Proof: Let $c=\ell_{1}^{p}(b)$. Define an \emptyset-invariant relation R on $\operatorname{tp}(c)$ by

$$
R\left(c^{\prime}, c^{\prime \prime}\right) \quad \Leftrightarrow \quad \exists b^{\prime} b^{\prime \prime} b^{\prime} c^{\prime} \equiv b^{\prime \prime} c^{\prime \prime} \equiv b c \wedge E\left(b^{\prime}, b^{\prime \prime}\right)
$$

This is reflexive and symmetric; moreover for $c^{\prime} \downarrow_{c^{\prime \prime}} c^{\prime \prime \prime}$ with $\models R\left(c^{\prime}, c^{\prime \prime}\right)$ and $\models R\left(c^{\prime \prime}, c^{\prime \prime \prime}\right)$ we can find $b^{\prime}, b^{\prime \prime}, b^{*}, b^{\prime \prime \prime}$ with

$$
b^{\prime} c^{\prime} \equiv b^{\prime \prime} c^{\prime \prime} \equiv b^{*} c^{\prime \prime} \equiv b^{\prime \prime \prime} c^{\prime \prime \prime}
$$

and $\models E\left(b^{\prime}, b^{\prime \prime}\right)$ and $\models E\left(b^{*}, b^{\prime \prime \prime}\right)$. Since $c^{\prime \prime}$ is boundedly closed, $b^{\prime \prime} \equiv_{c^{\prime \prime}}^{l s t p}$ b^{*}, and $b^{\prime \prime} \downarrow_{c^{\prime \prime}} c^{\prime}$ and $b^{*} \downarrow_{c^{\prime \prime}} c^{\prime \prime \prime}$ by Lemma 3.11. By the Independence Theorem we can assume $b^{\prime \prime}=b^{*}$, whence $E\left(b^{\prime}, b^{\prime \prime \prime}\right)$ holds and $\vDash R\left(c^{\prime}, c^{\prime \prime \prime}\right)$. So R is generically transitive; let F be its transitive closure. The class c_{F} is clearly almost p-internal. Moreover, if $\models E\left(b^{\prime}, b\right)$ and $b^{\prime} c^{\prime} \equiv b c$, then $\models F\left(c^{\prime}, c\right)$, so c_{F} is bounded over b_{E}.

Finally, suppose $c_{F} \in \operatorname{bdd}(\emptyset)$. By Proposition 3.7 there is $c^{\prime} \downarrow_{\mathrm{cl}_{p}(\emptyset)} c$ with $\models R\left(c^{\prime}, c\right)$. Hence there are b^{\prime}, b^{*} with $b^{\prime} c^{\prime} \equiv b^{*} c \equiv b c$ and \models $E\left(b^{\prime}, b^{*}\right)$. Applying a c-automorphism (and moving c^{\prime}), we may assume $b=b^{*}$. Let $A \downarrow b c b^{\prime} c^{\prime}$ be some parameters and a some realizations of p over A with $a \mathbb{X}_{A} b_{E}$; we may assume $b^{\prime} c^{\prime} \downarrow_{b c} A a$. Then $b \downarrow_{A c} a$ by Lemma 3.11, whence $b^{\prime} c^{\prime} \downarrow_{A c} a$ and $b^{\prime} c^{\prime} \downarrow_{c} A a$. Thus $b^{\prime} c^{\prime} \downarrow_{\mathrm{cl}_{p}(c)} A a$. Now $c^{\prime} \downarrow_{\mathrm{cl}_{p}(\emptyset)}$ c yields $c^{\prime} \downarrow_{\mathrm{cl}_{p}(\emptyset)} \mathrm{cl}_{p}(c)$, and hence $c^{\prime} \downarrow_{\mathrm{cl}_{p}(\emptyset)} A a$. As $a \downarrow_{A} \operatorname{cl}_{p}(\emptyset)$ we get $a \downarrow_{A} c^{\prime}$. Now $b^{\prime} \downarrow_{A c^{\prime}} a$ by Lemma 3.11, whence $b^{\prime} \downarrow_{A} a$. As $b_{E}=b_{E}^{\prime}$ we obtain $a \downarrow_{A} b_{E}$, a contradiction.
Corollary 3.13. Let T be supersimple, and e be a quasifinitary ultraimaginary. Suppose $\operatorname{tp}(e / B)$ is non-orthogonal to some regular type p. Then there is an almost p-internal $e^{\prime} \in \operatorname{bdd}^{q f u}(B e) \backslash \operatorname{bdd}^{q f u}(B)$, of finite $S U_{p}$-rank over B.

Proof: Let $A \subseteq \operatorname{bdd}(e)$ be hyperimaginary and a a finite tuple such that $e \in \operatorname{bdd}^{u}(A a)$. If $\operatorname{tp}(A / B)$ is non-foreign to p, we are done by [6, Proposition 3.4.12]. But if $\operatorname{tp}(A / B)$ is foreign to p, then $\ell_{1}^{p}(a A / B) \downarrow_{B} A$, so $\ell_{1}^{p}(a A / B)=\ell_{1}^{p}(a / A B)$. Since $\ell_{1}^{p}(a / A B)$ is p-simple over $A B$, we get

$$
S U_{p}\left(\ell_{1}^{p}(a A / B) / B\right)=S U_{p}\left(\ell_{1}^{p}(a / A B) / A B\right)=w_{p}\left(\ell_{1}^{p}(a / A B) / A B\right)
$$

which is finite by supersimplicity.
By Proposition 3.12 applied over B there is an almost p-internal hyperimaginary $e_{0} \in \operatorname{bdd}^{u}(B e) \backslash \operatorname{bdd}^{u}(B)$; moreover $e_{0} \in \operatorname{bdd}^{u}\left(\ell_{1}^{p}(a A / B)\right)$.

By supersimplicity, there is a finite $b \in A$ with $a \downarrow_{B b \ell_{1}^{p}(a A / B)} A$. As $A \downarrow_{B b} \ell_{1}^{p}(a A / B)$, we get $A \downarrow_{B b} a \ell_{1}^{p}(a A / B)$, whence $A \downarrow_{B b a} \ell_{1}^{p}(a A / B)$. Thus

$$
\ell_{1}^{p}(a A / B)=\ell_{1}^{p}(a b / B) \subseteq \operatorname{bdd}(a b B),
$$

and $e^{\prime}=e_{0} B$ is quasifinite of finite $S U_{p}$-rank over B.
Remark 3.14. For hyperimaginary e in a simple theory, the proof of Corollary 3.13 uses a canonical base over e. As we cannot consider types over ultraimaginaries, this does not make sense in our context.

Proposition 3.15. Let T be supersimple. If $A B \downarrow D$ and $\operatorname{bdd}^{q f u}(A) \cap$ $\operatorname{bdd}^{q f u}(B)=\operatorname{bdd}^{q f u}(\emptyset)$, then $\operatorname{bdd}^{q f u}(A D) \cap \operatorname{bdd}^{q f u}(B D)=\operatorname{bdd}^{q f u}(D)$.

Proof: We may assume that A, B and D are boundedly closed. Consider

$$
e \in\left(\operatorname{bdd}^{q f u}(A D) \cap \operatorname{bdd}^{q f u}(B D)\right) \backslash \operatorname{bdd}^{q f u}(D)
$$

Let p be a regular type of least $S U$-rank non-orthogonal to e over D. By Corollary 3.13 we may assume that e is almost p-internal of finite $S U_{p}$-rank over D. Suppose $C \subseteq \operatorname{bdd}(e)$ is hyperimaginary. Then

$$
C \subseteq \operatorname{bdd}(A D) \cap \operatorname{bdd}(B D)=D
$$

by [4, Fact 2.4]; replacing e by $e D$ we may assume $D \in \operatorname{dcl}(e)$. If c is finite with $e \in \operatorname{bdd}(D c)$, there is finite $a \in A$ with $c \downarrow_{a D} A$, and $e \in \operatorname{bdd}^{q f u}(a D)$ by Lemma 3.2. Similarly, if c^{\prime} is almost p-internal of finite $S U_{p}$-rank over D with $e \in \operatorname{bdd}^{q f u}\left(c^{\prime} D\right)$, then $a^{\prime}=\mathrm{Cb}\left(c^{\prime} D / a\right)$ is almost p-internal of finite $S U_{p}$-rank, since $D \downarrow a$ and $a^{\prime} \in \operatorname{bdd}(a)$. Moreover, $c^{\prime} \downarrow_{a^{\prime} D} a$ implies $e \in \operatorname{bdd}^{q f u}\left(a^{\prime} D\right)$. So we may assume that $A=\operatorname{bdd}\left(a^{\prime}\right)$ and $S U_{p}(A)<\omega$.

Let $\left(A_{i}: i<\omega\right)$ be a Morley sequence in $\operatorname{lstp}(A / B D)$ with $A_{0}=$ A, and put $B^{\prime}=\operatorname{bdd}\left(A_{1} A_{2}\right)$. Then B^{\prime} is almost p-internal of finite $S U_{p}$-rank. Since $e \in \operatorname{bdd}^{q f u}(B D)$ we have $e \in \operatorname{bdd}^{q f u}\left(A_{i} D\right)$ for all $i<\omega$. Let e^{\prime} be the set of $B^{\prime} D$-conjugates of e, again a quasifinite ultraimaginary. Since any $B^{\prime} D$-conjugate of e is again in
$\operatorname{bdd}^{q f u}\left(A_{1} D\right) \cap \operatorname{bdd}^{q f u}\left(A_{2} D\right)=\operatorname{bdd}^{q f u}(B D) \cap \operatorname{bdd}^{q f u}\left(A_{1} D\right)=\operatorname{bdd}^{q f u}(B D) \cap \operatorname{bdd}^{q f u}(A D)$,
we have $e^{\prime} \in \operatorname{dcl}^{q f u}\left(B^{\prime} D\right) \cap \operatorname{bdd}^{q f u}(A D)$. Moreover, $B^{\prime} \downarrow_{B D} A$, whence $B^{\prime} \downarrow_{B} A$ and

$$
\operatorname{bdd}^{q f u}(A) \cap \operatorname{bdd}^{q f u}\left(B^{\prime}\right) \subseteq \operatorname{bdd}^{q f u}(A) \cap \operatorname{bdd}^{q f u}(B)=\operatorname{bdd}^{q f u}(\emptyset) .
$$

Choose $A^{\prime} \equiv \equiv_{A D}^{l s t p} B^{\prime}$ with $A^{\prime} \downarrow_{A D} B^{\prime}$. Then $e \in \operatorname{dcl}^{q f u}\left(A^{\prime} D\right) \cap \operatorname{dcl}^{q f u}\left(B^{\prime} D\right)$. Furthermore, $A^{\prime} \downarrow_{A} D$, whence $A^{\prime} \downarrow_{A} B^{\prime}$ and

$$
\operatorname{bdd}^{q f u}\left(A^{\prime}\right) \cap \operatorname{bdd}^{q f u}\left(B^{\prime}\right) \subseteq \operatorname{bdd}^{q f u}(A) \cap \operatorname{bdd}^{q f u}\left(B^{\prime}\right)=\operatorname{bdd}^{q f u}(\emptyset)
$$

We may assume $e^{\prime}=\left(A^{\prime} D\right)_{E}$ for some \emptyset-invariant equivalence relation E. Define a \emptyset-invariant reflexive and symmetric relation R on $\operatorname{lstp}\left(A^{\prime}\right)$ by

$$
R(X, Y) \Leftrightarrow \exists Z\left[X Z \equiv Y Z \equiv A^{\prime} D \wedge Z \downarrow X Y \wedge E(X Z, Y Z)\right]
$$

By the independence theorem, for $A_{1} \downarrow_{A_{2}} A_{3}$ with $R\left(A_{1}, A_{2}\right)$ and $R\left(A_{2}, A_{3}\right)$ we have $R\left(A_{1}, A_{3}\right)$. Hence R is generically transitive; let E^{\prime} be the transitive closure of R. Clearly $A_{E^{\prime}}^{\prime}$ is quasifinite.

Next, consider $A^{\prime \prime} \equiv_{B^{\prime}} A^{\prime}$ with $A^{\prime \prime} \downarrow_{B^{\prime}} A^{\prime}$. By the independence theorem there is D^{\prime} with $A^{\prime} D \equiv_{B^{\prime}} A^{\prime} D^{\prime} \equiv_{B^{\prime}} A^{\prime \prime} D^{\prime}$ and $D^{\prime} \downarrow_{B^{\prime}} A^{\prime} A^{\prime \prime}$. Then $D^{\prime} \downarrow B^{\prime}$, whence $D^{\prime} \downarrow A^{\prime} A^{\prime \prime}$ and $\left(A^{\prime} D^{\prime}\right)_{E}=\left(A^{\prime \prime} D^{\prime}\right)_{E} \in \operatorname{dcl}^{q f u}\left(B^{\prime} D^{\prime}\right)$. Therefore $E^{\prime}\left(A^{\prime}, A^{\prime \prime}\right)$ holds and $A_{E^{\prime}}^{\prime} \in \operatorname{dcl}^{q f u}\left(B^{\prime}\right)$. Thus

$$
A_{E^{\prime}}^{\prime} \in \operatorname{dcl}^{q f u}\left(A^{\prime}\right) \cap \operatorname{dcl}^{q f u}\left(B^{\prime}\right) \subseteq \operatorname{bdd}^{q f u}(\emptyset) .
$$

By Proposition 3.7 there is $A^{\prime \prime} \downarrow_{\mathrm{cl}_{p}(\emptyset)} A^{\prime}$ with $R\left(A^{\prime}, A^{\prime \prime}\right)$. Let D^{\prime} witness $R\left(A^{\prime}, A^{\prime \prime}\right)$. Then $D^{\prime} \equiv_{A^{\prime}} D$, so we may assume $D^{\prime}=D$. Since $\operatorname{cl}_{p}(D) \downarrow \operatorname{cl}_{p}\left(A^{\prime} A^{\prime \prime}\right)$ and $\operatorname{cl}_{p}\left(A^{\prime}\right) \downarrow_{\mathrm{cl}_{p}(\emptyset)} \operatorname{cl}_{p}\left(A^{\prime \prime}\right)$ we obtain

$$
\operatorname{cl}_{p}\left(A^{\prime}\right) \underset{\operatorname{cl}_{p}(\emptyset)}{\downarrow} \operatorname{cl}_{p}\left(A^{\prime \prime}\right) \operatorname{cl}_{p}(D)
$$

and hence $A^{\prime} \downarrow_{\mathrm{cl}_{p}(D)} A^{\prime \prime}$. But now
$e^{\prime}=\left(A^{\prime} D\right)_{E}=\left(A^{\prime \prime} D\right)_{E} \in \operatorname{dcl}^{q f u}(A D) \cap \operatorname{dcl}^{q f u}\left(A^{\prime} D\right) \subseteq \operatorname{bdd}^{q f u}\left(\operatorname{cl}_{p}(D)\right)$
by Lemma 3.2. Since e^{\prime} is orthogonal over D to $\mathrm{cl}_{p}(D)$ by minimality of $S U(p)$, we have $e^{\prime} \in \operatorname{bdd}^{q f u}(D)$, and $e \in \operatorname{bdd}^{q f u}\left(e^{\prime}\right) \subseteq \operatorname{bdd}^{q f u}(D)$.

Remark 3.16. Again, the proof of the hyperimaginary analogue of Proposition 3.15 for simple theories uses canonical bases and does not generalize.

4. Elimination of ultraimaginaries

On cannot avoid the non-tame ultraimaginaries of Example 2 which do not satisfy finite character and hence cannot be eliminated. We thus content ourselves with the elimination of quasi-finitary ultraimaginaries in supersimple theories.

Definition 4.1. Let e be ultraimaginary. We shall say that $S U(a / e)<$ ω^{α} if for all representatives b of e we have $S U(a / b)<\omega^{\alpha}$. Conversely, $S U(e / a)<\alpha^{\omega}$ if there is a representative b with $S U(b / a)<\omega^{\alpha}$.
Remark 4.2. This does not mean that we define the type of a over e or of e over a, nor the value of $S U(a / e)$ or of $S U(e / a)$.
Lemma 4.3. $U(e / a)<\omega^{0}$ if and only if $e \in \operatorname{bdd}^{u}(a)$, and $U(a / e)<\omega^{0}$ if and only if $a \in \operatorname{bdd}(e)$.

Proof: If b is a representative of e with $S U(b / a)<\omega^{0}$, then $b \in \operatorname{bdd}(a)$, so $e \in \operatorname{bdd}^{u}(a)$. If $e \in \operatorname{bdd}^{u}(a)$, then $e \in \operatorname{dcl}^{u}(\operatorname{bdd}(a))$, so $b=\operatorname{bdd}(a)$ is a representative of e with $S U(b / a)<\omega^{0}$.

If $a \notin \operatorname{bdd}(e)$, then there are arbitrarily many e-conjugates of a. Then for any representative b of e there is some e-conjugate a^{\prime} of a which is not in $\operatorname{bdd}(b)$. Let b^{\prime} be the image of b under an e-automorphism mapping a^{\prime} to a. Then b^{\prime} is a representative of e, and $S U\left(a / b^{\prime}\right) \geq \omega^{0}$. On the other hand, if $a \in \operatorname{bdd}(e)$, then $a \in \operatorname{bdd}(b)$ for any representative b of e, whence $S U(a / b)<\omega^{0}$.
Definition 4.4. An ultraimaginary e can be α-eliminated if there is a hyperimaginary a with $S U(a / e)<\omega^{\alpha}$ and $S U(e / a)<\omega^{\alpha}$. A theory has α-elimination of ultraimaginaries if all quasi-finitary ultraimaginaries can be α-eliminated.

0 -elimination is usually called geometric elimination.
Theorem 4.5. If e is ultraimaginary with $S U(e)<\omega^{\alpha+1}$, then e can be α-eliminated. A supersimple theory of finite rank has geometric elimination of quasifinite ultraimaginaries.

Proof: Let a be a tuple of minimal rank such that $e \in \operatorname{bdd}^{u}(a)$. Since $S U(e)<\omega^{\alpha+1}$ we have $S U(a)=\omega^{\alpha} n+\beta$ with $\beta<\omega^{\alpha}$; we shall use induction on n. By [6, Lemma 5.1.7] there is $a_{0} \in \operatorname{bdd}(a)$ with $S U\left(a_{0}\right)=\beta$ and $S U\left(a / a_{0}\right)=\omega^{\alpha} n$. By [6, Proposition 5.1.12] there is $B \downarrow_{a_{0}} a$ containing a_{0} and c with $S U(c / B)=\omega^{\alpha}$ and $c \not \mathbb{X}_{B} a$. Then $S U(a / B c)<\omega^{\alpha} n$; by inductive hypothesis there is b such that $S U(e / B b c)<\omega^{\alpha}$ and $S U(b / B c e)<\omega^{\alpha}$. In particular there is a representative b^{\prime} of e with $S U\left(b^{\prime} / B b c\right)<\omega^{\alpha}$, whence

$$
S U\left(b^{\prime} / B c e\right) \leq S U\left(b^{\prime} / B c b\right) \oplus S U(b / B c e)<\omega^{\alpha}
$$

Replacing b by b^{\prime} we may thus assume that b is a representative of e. Let $a^{\prime}=\operatorname{Cb}(B b c / a)$. Since $B b c \downarrow_{a^{\prime}} a$ we get $e \in \operatorname{bdd}^{u}\left(a^{\prime}\right)$ by Lemma 3.2. Hence $S U\left(a^{\prime}\right)=S U(a)$ by minimality of rank, and $S U\left(a / a^{\prime}\right)<\omega^{\alpha}$ by the Lascar inequalities.

- Case 1: $S U(c / B e)<\omega^{\alpha}$. Then $S U(b c / B e)<\omega^{\alpha}$. Moreover, if $\left(B_{i} b_{i} c_{i}: i<\omega\right)$ is a Morley sequence in $\operatorname{lstp}(B b c / a)$ with $B_{0} b_{0} c_{0}=B b c$, then $B \downarrow_{a_{0}} a$ implies that $\left(B_{i}: i<\omega\right) \downarrow_{a_{0}} a$, whence $\left(B_{i}: i<\omega\right) \downarrow_{B} a$ and $\left(B_{i}: i<\omega\right) \downarrow_{\mathrm{cl}_{\alpha}(B)} \mathrm{cl}_{\alpha}(B a)$. As $S U(b c / B a)<\omega^{\alpha}$ we get $a \downarrow_{\operatorname{cl}_{\alpha}(B b c)}\left(B_{i}: i<\omega\right)$, and therefore $a \downarrow_{\mathrm{cl}_{\alpha}(B b c)} \mathrm{cl}_{\alpha}\left(b, B_{i}: i<\omega\right)$. However, $S U\left(b_{i} c_{i} / B_{i} e\right)<\omega^{\alpha}$; as b is a representative of e we get $S U\left(b_{i} c_{i} / B_{i} b\right)<\omega^{\alpha}$ for all $i<\omega$, and

$$
a^{\prime} \underset{\mathrm{cl}_{\alpha}(B b)}{\perp}\left(B_{i} b_{i} c_{i}: i<\omega\right) .
$$

As $a^{\prime} \in \operatorname{dcl}\left(B_{i} b_{i} c_{i}: i<\omega\right)$, we obtain $a^{\prime} \in \operatorname{cl}_{\alpha}(B b)$, so
$S U(a / B e) \leq S U\left(a / a^{\prime}\right) \oplus S U\left(a^{\prime} / B b\right) \oplus S U(b / B e)<\omega^{\alpha}$.
Suppose $S U(a / e) \geq \omega^{\alpha}$. Then there is a representative $b^{\prime \prime}$ of e with $S U\left(a / b^{\prime \prime}\right) \geq \omega^{\alpha}$. Consider a Morley sequence ($a_{i}^{\prime}: i<\alpha$) in $\operatorname{lstp}\left(a / b^{\prime \prime}\right)$ with $a_{0}^{\prime}=a$. Since $a \downarrow_{a_{0}} B$ we may assume that ($a_{i}^{\prime}: i<\alpha$) is indiscernible over B (possibly moving $b^{\prime \prime}$). But then $S U\left(a_{i}^{\prime} / B b^{\prime \prime}\right)<\omega^{\alpha}$ for all $i<\alpha$, whence $a_{i}^{\prime} \mathbb{X}_{b^{\prime \prime}} B$ for all $i<\alpha$, contradicting boundedness of weight of $\operatorname{tp}\left(B / b^{\prime \prime}\right)$.

- Case 2: $S U(c / B e) \geq \omega^{\alpha}$. There is a representative b_{0} of e with $S U\left(c / B b_{0}\right) \geq \omega^{\alpha}$, whence $c \downarrow_{B} b_{0}$. Choose $b^{\prime} c^{\prime} \equiv_{B b_{0}} b c$ with $c^{\prime} \downarrow_{B b_{0}} a$. Then $c^{\prime} \downarrow_{B} a$, whence $B c^{\prime} \downarrow_{a_{0}} a$, and $S U\left(b^{\prime} / B c^{\prime} e\right)<$ ω^{α}. Moreover $S U\left(a / B b^{\prime} c^{\prime}\right) \geq \omega^{\alpha}$, as otherwise modulo ω^{α}
$S U(a / B) \geq S U(b c / B)=S U\left(b^{\prime} c^{\prime} / B\right)=S U\left(a b^{\prime} c^{\prime} / B\right) \geq S U\left(a c^{\prime} / B\right)>S U(a / B)$.
Let $\left(B_{i} b_{i} c_{i}: i<\omega\right)$ be a Morley sequence in $\operatorname{lstp}\left(B b^{\prime} c^{\prime} / a\right)$ with $B_{0} b_{0} c_{0}=B b^{\prime} c^{\prime}$, and $a^{\prime}=\operatorname{Cb}\left(B b^{\prime} c^{\prime} / a\right)$. Then $a^{\prime} \in \operatorname{dcl}\left(B_{i} b_{i} c_{i}\right.$: $i<\omega)$. Now $S U\left(b_{i} / B_{i} c_{i} e\right)<\omega^{\alpha}$, whence $S U\left(b_{i} / B_{i} c_{i} B b^{\prime} c^{\prime}\right)<$ ω^{α}. As $B c^{\prime} \downarrow_{a_{0}} a$, we get $\left(B_{i} c_{i}: i<\omega\right) \downarrow_{a_{0}} a$. So $\left(B_{i} c_{i}: i<\right.$ $\omega) \downarrow_{\mathrm{cl}_{\alpha}\left(B c^{\prime}\right)} \operatorname{cl}_{\alpha}\left(B c^{\prime} a\right)$, whence $\operatorname{cl}_{\alpha}\left(B b^{\prime} c^{\prime}, B_{i} c_{i}: i<\omega\right) \downarrow_{\mathrm{cl}_{\alpha}\left(B b^{\prime} c^{\prime}\right)} a$ and $\left(B_{i} b_{i} c_{i}: i<\omega\right) \downarrow_{\mathrm{cl}_{\alpha}\left(B b^{\prime} c^{\prime}\right)} a$. It follows that $a^{\prime} \in \operatorname{cl}_{\alpha}\left(B b^{\prime} c^{\prime}\right) \cap$ $\operatorname{bdd}(a)$; since $S U\left(a / B b^{\prime} c^{\prime}\right) \geq \omega^{\alpha}$ we get $S U(a) \geq S U\left(a^{\prime}\right)+\omega^{\alpha}$. However, $B b^{\prime} c^{\prime} \downarrow_{a^{\prime}} a$ implies $e \in \operatorname{bdd}^{u}\left(a_{0}\right)$ by Lemma 3.2, contradicting minimality of $S U(a)$.

5. Decomposition

In this section Σ will be an \emptyset-invariant family of partial types.
Lemma 5.1. (1) Suppose $a \square b$. If $c \downarrow a$ and $c \downarrow b$, then $a \square_{c} b$.
(2) Suppose $a \square_{c} b$. If $c \downarrow a b$ then $a \emptyset b$.
(3) Suppose $a \square_{c} b$. If $\operatorname{tp}(a)$ and $\operatorname{tp}(b)$ are foreign to $\operatorname{tp}(c)$, then $a \square b$.

Proof:
(1) Consider any d with $d \mathbb{\not}_{c} a$. Then $c d \not \backslash a$, whence $c d \nsucceq b$. Now $b \downarrow c$ implies $b \not ぬ_{c} d$. The converse follows by symmetry.
(2) Consider any d with $d \not \subset a$. Clearly we may assume $d \downarrow_{a b} c$, whence $a b d \downarrow c$. Since $a \downarrow c$ we get $d \mathbb{X}_{c} a$, whence $d \mathbb{X}_{c} b$ and $c d \notin b$. But $c \downarrow_{d} b$, so $d \notin b$; the converse follows by symmetry.
(3) Consider any d with $d \mathbb{X} a$. Since $a \downarrow c$ we get $d \mathbb{X}_{c} a$, whence $d \mathbb{X}_{c} b$ and $c d \not \subset b$. If $b \downarrow d$, then $b \downarrow_{d} c$ by foreigness, whence $b \downarrow c d$, a contradiction. So $b \notin d$; the converse follows by symmetry.

Here are two versions of [2, Lemma 1.11].
Proposition 5.2. Let A, B, a, b be such that $\operatorname{bdd}^{u}(A a) \cap \operatorname{bdd}^{u}(B b)=$ $\operatorname{bdd}^{u}(\emptyset)$, and a and b are domination-equivalent over $A B$. Suppose $A B$ is Σ-analysable, and $\operatorname{tp}(a / A)$ and $\operatorname{tp}(b / B)$ are foreign to Σ. Then $a \in \operatorname{bdd}(A)$ and $b \in \operatorname{bdd}(B)$.

Proof: Suppose otherwise. Put $A_{0}=\mathrm{Cb}(A / a)$. Then A_{0} is Σ-analysable, so $a \downarrow_{A} A_{0}$. It follows that $A_{0}=\operatorname{bdd}(A) \cap \operatorname{bdd}(a) ;$ similarly for $B_{0}=\mathrm{Cb}(b / B)$ we get $B_{0}=\operatorname{bdd}(B) \cap \operatorname{bdd}(b)$. Lemma 5.1(3) yields that a and b are domination-equivalent over $A_{0} B_{0}$. We may thus assume that $A B$ is quasi-finitary.

Define an \emptyset-invariant relation E on $\operatorname{lstp}(A a)$ by

$$
E\left(A^{\prime} a^{\prime}, A^{\prime \prime} a^{\prime \prime}\right) \quad \Leftrightarrow \quad a^{\prime} \unrhd_{A^{\prime} A^{\prime \prime}} a^{\prime \prime}
$$

Clearly, this is reflexive and symmetric. Suppose $E\left(A^{\prime} a^{\prime}, A^{\prime \prime} a^{\prime \prime}\right)$ and $E\left(A^{\prime \prime} a^{\prime \prime}, A^{\prime \prime \prime} a^{\prime \prime \prime}\right)$. By Lemma 5.1(1)

$$
a^{\prime} \square_{A^{\prime} A^{\prime \prime} A^{\prime \prime \prime}} a^{\prime \prime} \quad \text { and } \quad a^{\prime \prime} \square_{A^{\prime} A^{\prime \prime} A^{\prime \prime \prime}} a^{\prime \prime \prime},
$$

whence $a^{\prime} \square_{A^{\prime} A^{\prime \prime} A^{\prime \prime \prime}} a^{\prime \prime}$. Now $a^{\prime} \unrhd_{A^{\prime} A^{\prime \prime \prime}} a^{\prime \prime \prime}$ by Lemma $5.1(3)$. Thus $E\left(A^{\prime} a^{\prime}, A^{\prime \prime \prime} a^{\prime \prime \prime}\right)$ holds and E is transitive.

Let $A^{\prime} a^{\prime} \equiv_{B b}^{l s t p} A a$ with $A^{\prime} a^{\prime} \downarrow_{B b} A a$. Again by Lemma 5.1(1)

$$
a \unrhd_{A A^{\prime} B} b \unrhd_{A A^{\prime} B} a^{\prime},
$$

and $a \unrhd_{A A^{\prime}} a^{\prime}$ by Lemma 5.1(3). Thus $E\left(A a, A^{\prime} a^{\prime}\right)$ holds. But $\operatorname{bdd}^{u}(A a) \cap \operatorname{bdd}^{u}\left(A^{\prime} a^{\prime}\right) \subseteq \operatorname{bdd}^{u}(A a) \cap \operatorname{bdd}^{u}(B b)=\operatorname{bdd}^{u}(\emptyset)$.

Hence $(A a)_{E}=\left(A^{\prime} a^{\prime}\right)_{E} \in \operatorname{bdd}^{u}(\emptyset)$, and there is $A^{\prime \prime} a^{\prime \prime} \downarrow A a$ with $E\left(A a, A^{\prime \prime} a^{\prime \prime}\right)$. But then $a \square_{A A^{\prime \prime}} a^{\prime \prime}$ and $a \downarrow_{A A^{\prime \prime}} a^{\prime \prime}$ yield $a \downarrow_{A A^{\prime}} a$, whence $a \in \operatorname{bdd}\left(A A^{\prime}\right)$ and finally $a \in \operatorname{bdd}(A)$ as $a \downarrow_{A} A^{\prime}$. Similarly, $b \in$ $\operatorname{bdd}(B)$.

Corollary 5.3. Let A, B, a, b be such that $\operatorname{bdd}^{u}(A a) \cap \operatorname{bdd}^{u}(B b)=$ $\operatorname{bdd}^{u}(\emptyset)$, and a and b are interbounded over $A B$. Suppose $A B$ is Σ analysable. Then $A a$ and $B b$ are Σ-analysable.

Proof: Clearly we may assume that $A \subseteq \operatorname{bdd}(A a)$ and $B \subseteq \operatorname{bdd}(B b)$ are maximal Σ-analysable subsets. Hence $\operatorname{tp}(a / A)$ and $\operatorname{tp}(b / B)$ are foreign to Σ. Since a and b are interbounded over $A B$, they are dominationequivalent, contradicting Proposition 5.2.

Remark 5.4. By Theorem 4.5, if $S U(A a)$ or $S U(B b)$ is finite, then $\operatorname{bdd}(A a) \cap \operatorname{bdd}(B b)=\operatorname{bdd}(\emptyset)$ implies $\operatorname{bdd}^{u}(A a) \cap \operatorname{bdd}^{u}(B b)=\operatorname{bdd}^{u}(\emptyset)$, and we recover [2, Lemma 1.11].

Fact 5.5. [3, Theorem 3.4(3)] Let Σ^{\prime} be an \emptyset-invariant subfamily of Σ. Suppose $\operatorname{tp}(a)$ is foreign to $\Sigma \backslash \Sigma^{\prime}$. Then a and $\ell_{1}^{\Sigma^{\prime}}(a)$ are dominationequivalent.

Corollary 5.6. Let $A=\mathrm{Cb}(B / A)$ and $B=\operatorname{Cb}(A / B)$, with $\operatorname{bdd}^{u}(A) \cap$ $\operatorname{bdd}^{u}(B)=\operatorname{bdd}^{u}(\emptyset)$. If A is Σ-analysable and Σ^{\prime} is the subset of onebased partial types in Σ, then A is analysable in $\Sigma \backslash \Sigma^{\prime}$.

Proof: Let $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$ be maximally analysable in $\Sigma \backslash \Sigma^{\prime}$. So $\operatorname{tp}\left(A / A^{\prime}\right)$ and $\operatorname{tp}\left(B / B^{\prime}\right)$ are foreign to $\Sigma \backslash \Sigma^{\prime}$.

Suppose for a contradiction that $A \nsubseteq A^{\prime}$. Then $B \nsubseteq B^{\prime}$, since A is $\operatorname{tp}(B)$-internal and not analysable in $\Sigma \backslash \Sigma^{\prime}$. By Lemma 5.5 the first Σ^{\prime}-levels $a=\ell_{1}^{\Sigma^{\prime}}\left(A / A^{\prime}\right)$ and $b=\ell_{1}^{\Sigma^{\prime}}\left(B / B^{\prime}\right)$ are non-trivial, one-based, and

$$
a \unrhd_{A^{\prime}} A \quad \text { and } \quad b \unrhd_{B^{\prime}} B .
$$

Hence $a \mathbb{X}_{A^{\prime} B^{\prime}} b$ by Lemma 5.1(1). Let $a_{0}=\operatorname{Cb}\left(B^{\prime} b / A^{\prime} a\right)$ and $b_{0}=$ $\mathrm{Cb}\left(A^{\prime} a / B^{\prime} b\right)$. Then $a \downarrow_{A^{\prime} B^{\prime} a_{0}} b$ and $a \downarrow_{A^{\prime} B^{\prime} b_{0}} b$, so

$$
\operatorname{bdd}\left(A^{\prime} B^{\prime} a_{0}\right) \cap \operatorname{bdd}\left(A^{\prime} B^{\prime} b_{0}\right) \supseteq \operatorname{bdd}\left(A^{\prime} B^{\prime} a\right) \cap \operatorname{bdd}\left(A^{\prime} B^{\prime} b\right)
$$

It follows from one-basedness that

$$
\operatorname{bdd}\left(A^{\prime} B^{\prime} a_{0}\right)=\operatorname{bdd}\left(A^{\prime} B^{\prime} b_{0}\right)=\operatorname{bdd}\left(A^{\prime} B^{\prime} a\right) \cap \operatorname{bdd}\left(A^{\prime} B^{\prime} b\right) .
$$

We can now apply Corollary 5.3 to see that $a \in \operatorname{bdd}\left(A^{\prime}\right)$, a contradiction.

References

[1] Itaï Ben Yaacov. Discouraging Results for Ultraimaginary Independence Theory, J. Symb. Logic 68:846-850, 2003.
[2] Zoé Chatzidakis. A note on canonical bases and modular types in supersimple theories, preprint, September 2002.
[3] Daniel Palacín and Frank O. Wagner. Ample thoughts, preprint 2011.
[4] Anand Pillay. The geometry of forking and groups of finite Morley rank, J. Symb. Logic 60:1251-1259, 1995.
[5] Anand Pillay. Geometric stability theory. Oxford Logic Guides 32. Oxford University Press, Oxford, GB, 1996.
[6] Frank O. Wagner. Simple Theories. Mathematics and Its Applications 503. Kluwer Academic Publishers, Dordrecht, NL, 2000.
[7] Frank O. Wagner. Some remarks on one-basedness, J. Symb. Logic 69:34-38, 2004.

Université de Lyon; CNRS; Université Lyon 1; Institut Camille Jordan UMR5208, 43 bd du 11 novembre 1918, 69622 Villeurbanne Cedex, France

E-mail address: wagner@math.univ-lyon1.fr

[^0]: Date: 5 January 2012.
 2000 Mathematics Subject Classification. 03C45.
 Key words and phrases. stable; simple; internal; analysable.

