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PLUS ULTRA

FRANK O. WAGNER

Abstract. We develop some basic simplicity-theoretic facts for
quasi-finitary ultraimaginaries, i.e. classes of finite tuples modulo
∅-invariant equivalence relations, in a supersimple theory. We also
show that they are geometrically eliminable in a weak sense: If e
is an ultraimaginary definable over a tupe a with SU(a) < ωα+1,
then e is eliminable up to rank < ωalpha.

1. Introduction

This paper arose out of an attempt to understand and generalize
[2, Proposition 1.10 and Lemma 1.11]. In doing so, we realized that
certain stability-theoretic phenomena were best explained using ultra-
imaginaries. Although Ben Yaacov [1] has shown that no satisfactory
independence theory can exist for all ultraimaginaries, as there are
problems both with the finite character and with the extension axiom
for independence, at least finite character can be salvaged if one re-
stricts to quasi-finitary ultraimaginaries in a supersimple theory. This
enables us to recover certain tools from simplicity theory, even though,
due to the lack of extension, canonical bases are not available.

2. Ultraimaginaries

Definition 2.1. An ultraimaginary is the class aE of a tuple a under
an ∅-invariant equivalence relation E.

Clearly, we may assume that a is a countable tuple.

Definition 2.2. An ultraimaginary aE is definable over a set A if any
automorphism of the monster model fixing A stabilises the E-class of a.
It is bounded over A if the orbit of a under the group of automorphisms
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2 FRANK O. WAGNER

of the monster model which fix A is contained in boundedly many E-
classes. A representative of an ultraimaginary e is any tuple a such
that e is definable over a.

Remark 2.3. As usual, if EA(x, y) is an A-invariant equivalence rela-
tion, one considers the ∅-invariant relation E(xX, yY ) given by

(X = Y ∧X ≡ A ∧ EX(x, y)) ∨ (X = Y ∧ x = y).

This is an equivalence relation, and (aA)E is interdefinable over A with
aEA

.

Remark 2.4. As any ∅-invariant relation, E is given by a union of
types over ∅.

Ultraimaginaries arise quite naturally in stability and simplicity the-
ory.

Example. Let pA ∈ S(A) be a regular type. For A′, A′′ |= tp(A) put
E(A′, A′′) if pA′ 6⊥ pA′′ . Then E is an ∅-invariant equivalence relation,
and AE codes the non-orthogonality class of pA.

Contrary to the case of hyperimaginaries (classes modulo type-defin-
able equivalence relations) or even almost hyperimaginaries (ultraimag-
inaries which are interbounded with a hyperimaginary), the work with
ultraimaginaries requires caution, as we lose compactness when we con-
sider them as some kind of elements in our structure. For two ultra-
imaginaries a and b in a simple theory we define a |⌣ b if they have
representatives which are independent. This notion has to be handled
with care, as not all of the usual properties hold.

Example. [1] Let E be the ∅-invariant equivalence relation on infinite
sequences which holds if they differ on only finitely many elements.
Consider a sequence I = (ai : i < ω) of elements such that no finite
subtuple is bounded over the remaining elements. Then every finite tu-
ple ā ∈ I can be moved to a disjoint conjugate over IE, but I cannot.
Similarly, if I is a Morley sequence in a simple theory, then ā |⌣ IE for
any finite ā ∈ I, but I 6 |⌣ IE. If I is a sequence of independent real-
izations of pairwise orthogonal (or even perpendicular) regular types,
then IE is orthogonal (or perpendicular) to any finite subset of them,
but not to all of them simultaneously.

Even in the ω-stable context, for classes of finite tuples, the theory
is not smooth.
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Example. Let T be the theory of a cycle-free graph (forest) of infinite
valency, with predicates Pn(x, y) for couples of points of distance n for
all < ω. It is easy to see by back-and-forth that T eliminates quantifiers
and is ω-stable of rank ω; the formula Pn(x, a) has rank n over a. Let E
be the ∅-invariant equivalence relation of being in the same connected
component. Then existence of non-forking extensions fails over aE ,
as any two points in the connected component of a have some finite
distance n, and hence rank n over one another, but rank ≥ k over aE
for all k < ω, since aE is definable over a point of distance k.

The behaviour of Example 2 is inconvenient and signifies that we
shall avoid working over an ultraimaginary. The behaviour of Example
2 is outright vexatious; we shall restrict the class of ultraimaginaries
under consideration in order to preserve the finite character of inde-
pendence.

Definition 2.5. Let T be simple. An ultraimaginary e is tame if for
all hyperimaginary A,B we have e |⌣A

B if and only if e |⌣A
b̄ for all

finite b̄ ∈ B. It is quasi-finitary if there is hyperimaginary A in bdd(e)
and a finite tuple a such that e is bounded over Aa.

The set of all / all tame / all quasi-finite ultraimaginaries definable
over A will be denoted by dclu(A) / dcltu(A) / dclqfu(A), respectively.
Similarly, bddu(A) / bddtu(A) / bddqfu(A) will denote the correspond-
ing bounded closures.

Recall that two tuples a and b have the same Lascar strong type
over A, denoted a ≡lstp

A b or b |= lstp(a/A), if they lie in the same class
modulo all A-invariant equivalence relations with only boundedly many
classes. This is the finest bounded A-invariant equivalence relation, so
bddu(A) is bounded by the number of Lascar strong types over A.

Proposition 2.6. The following are equivalent:

(1) bddu(Aa) ∩ bddu(Ab) = bddu(A).
(2) For any a′ |= lstp(a/A) there is n < ω and a sequence (ai, bi :

i ≤ n) such that

a0 = a, b0 = b, an = a′

and for each i < n

bi+1 |= lstp(bi/Aai) and ai+1 |= lstp(ai/Abi+1).

If a and b are finite, this is also eqivalent to bddqfu(Aa)∩bddqfu(Ab) =
bddqfu(A).



4 FRANK O. WAGNER

Proof: (1) ⇒ (2) Suppose bddu(Aa) ∩ bddu(Ab) = bddu(A), and de-
fine an A-invariant relation on lstp(ab/A) by E(xy, x′y′) if there is a
sequence (xi, yi : i ≤ n) such that

ab ≡lstp
A x0y0, x0y0 = xy, xnyn = x′y′

and for each i < n

yi+1 |= lstp(yi/Axi) and xi+1 |= lstp(xi/Ayi+1).

Clearly E is an equivalence relation. Now if b′ |= lstp(b/Aa), then
|= E(ab, ab′). Hence (ab)E ∈ bddu(Aa). Similarly (ab)E ∈ bddu(Ab),
whence (abE) ∈ bddu(A). But for any a′ |= lstp(a/A) there is b′ with

ab ≡lstp
A a′b′. Then |= E(ab, a′b′); in particular (2) holds.

(2) ⇒ (1) Suppose not, and consider e ∈ (bddu(Aa) ∩ bddu(Ab)) \
bddu(A). As e /∈ bddu(A) there is a′ |= lstp(a/A) with e /∈ bddu(Aa)∩
bddu(Aa′). Consider a sequence (ai, bi : i ≤ n) as in (2). Since bi+1 |=
lstp(bi/Aai) and ai+1 |= lstp(ai/Abi+1) we have

bddu(Aai) ∩ bddu(Abi) = bddu(Aai) ∩ bddu(Abi+1)

= bddu(Aai+1) ∩ bddu(Abi+1).

In particular,

e ∈ bddu(Aa) ∩ bddu(Ab) = bddu(Aa0) ∩ bddu(Ab0)

⊆ bdd(Aa) ∩ bddu(Aa′),

a contradiction.

The last assertion follows from the fact that for finite ab the ultra-
imaginary (ab)E in the proof of (1) ⇒ (2) is quasi-finitary. �

3. Ultraimaginaries in simple theories

From now on the ambient theory will be simple. Our notation is
standard and follows [6]. We shall be working in a sufficiently saturated
model of the ambient theory. Tuples are tuples of hyperimaginaries,
and closures (definable, algebraic and bounded closures) will include
hyperimaginaries.

Remark 3.1. Since in a simple theory Lascar strong type equals Kim-
Pillay strong type, we have bddu(A) = dclu(bdd(A)). But of course, as
with real and imaginary algebraic closures, bdd(A)∩bdd(B) = bdd(∅)
does not imply bddu(A) ∩ bddu(B) = bddu(∅).

We shall first see that ultraimaginary bounded closures of indepen-
dent sets intersect trivially.
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Lemma 3.2. If A |⌣B
C, then bddu(A) ∩ bddu(C) ⊆ bddu(B).

Proof: Consider aE ∈ bddu(A) ∩ bddu(C). We may assume a |⌣AB
C,

whence Aa |⌣B
C. Let (ai : i < ω) be a Morley sequence in lstp(a/BC).

Then E(ai, aj) for all i, j < ω. But ai |⌣B
aj for i 6= j, so π(x, aj) =

tp(ai/aj) does not fork over B, and neither does π(x, a).

Now suppose aE /∈ bddu(B). We can then find a long sequence
(a′i : i < α) of B-conjugates of a such that ¬E(a′i, a

′
j) for i 6= j.

By the Erdös-Rado theorem and compactness there is an infinite B-
indiscernible sequence (a′′i : i < ω) whose 2-type over B is among
the 2-types of (a′i : i < α). In particular ¬E(a′′i , a

′′
j ) for i 6= j, and

(π(x, a′′i ) : i < ω) is 2-inconsistent. Since a′′0 |= tp(a/B), we see that
π(x, a) divides over B, a contradiction. �

Definition 3.3. We shall say that an ultraimaginary e is independent
over A to B, denoted e |⌣A

B, if it has a representative which is.

Even if not all ultraimaginaries satisfy finite character of indepen-
dence, transitivity still holds.

Lemma 3.4. Let T be simple, a and b hyperimaginary, and e ultra-
imaginary. If a |⌣ e and b |⌣a

e, then ab |⌣ e.

Proof: Suppose e = cE. By hypothesis there are c′ ≡ c ≡ c′′ with
cE = c′E = c′′E and a |⌣ c′ as well as b |⌣a

c′′. Consider c′′′ ≡ac′′ c
′ with

c′′′ |⌣ac′′
b. Then b |⌣a

c′′c′′′; as c′ |⌣ a implies c′′′ |⌣ a we get c′′′ |⌣ ab,

and clearly E(c′, c′′) yields E(c′′′, c′′), whence c′′′E = c′′E = e. �

Corollary 3.5. Supposer aE is an ultraimaginary with SU(a) < ∞.
Then aE is tame. In a supersimple theory, quasifinite ultraimaginaries
are tame.

Proof: Consider sets A and B. As SU(a) < ∞ there is a finite b ∈ B
with a |⌣Ab

B. So aE |⌣A
B if and only if aE |⌣A

b by Lemma 3.4.

If e is quasifinite, A ⊆ bdd(e) and a is a finite tuple with e ∈
bddu(Aa), then for any B,C we have e |⌣B

C if and only if A |⌣B
C

and e |⌣AB
C. The result follows from the previous paragraph, working

over A. �

In particular, in a supersimple theory quasifinite ultraimaginaries are
the correct ones to consider: Due to elimination of hyperimaginaries
all parameters consist of imaginaries of ordinal SU -rank; as canonical
bases of such imaginaries are finite, we can always reduce to a quasifi-
nite situation.
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The following two Propositions tells us how to obtain invariant equiv-
alence relations, and hence ultraimaginaries.

Proposition 3.6. Let T be stable. For algebraically closed A and an ∅-
invariant equivalence relation E on tp(b), consider the relation R(X, Y )
given by

∃xy [Xx ≡ Y y ≡ Ab ∧ x |⌣
X

Y ∧ y |⌣
Y

X ∧ E(x, y)].

Then R is an ∅-invariant equivalence relation.

Proof: Clearly, R is ∅-invariant, reflexive and symmetric. So suppose
that R(A,A′) and R(A′, A′′) both hold, and let this be witnessed by
b, b′ and b∗, b′′. Let b1 |= tp(b′/A) = tp(b∗/A′) with b′ |⌣A′

AA′′. Since

A′ is algebraically closed, b′ |⌣A′
A and b∗ |⌣A′

A′′ we have b1 ≡AA′

b′ and b1 ≡A′A′′ b∗. Hence there are b0, b2 with bb′ ≡AA′ b0b1 and
b∗b′′ ≡A′A′′ b1b2. In particular E(b0, b1) and E(b1, b2) hold, and so does
E(b0, b2). Moreover, we may assume b0 |⌣AA′b1

A′′ and b2 |⌣A′A′′b1
A′.

Now b1 |⌣A′
AA′′ implies b0 |⌣AA′

A′′ and b2 |⌣A′A′′
A. Then b0 |⌣A

A′

and b2 |⌣A′′
A′ imply b0 |⌣A

A′′ and b2 |⌣A′′
A, whence R(A,A′′) holds.

So R is transitive. �

Proposition 3.7. Let T be simple. Suppose R is an ∅-invariant, re-
flexive, symmetric and generically transitive relation on lstp(a), i.e.
for a1, a2, a3 |= lstp(a) with a1 |⌣a2

a3 and R(a1, a2) and R(a2, a3) we

also have R(a1, a3). Let E be the transitive closure of R, and suppose
aE ∈ bddu(∅). Suppose further that p is a regular type such that SUp(a)
is finite. Then there is a′ |⌣clp(∅)

a with R(a, a′).

Proof: Let a′ ≡lstp a with a′ |⌣ a. Then aE = a′E, so there is n < ω and
a chain a = a0, a1, . . . , an = a′ such that R(ai, ai+1) holds for all i < n.
Put a′0 = a0, and for 0 < i < n let

a′i ≡
lstp
ai

a′i−1 with a′i |⌣
ai

ai+1.

Claim. bddu(a′i) ∩ bddu(ai+1) ⊆ bddu(a0).

Proof of Claim: For i = 0 this is trivial. For i > 0, as a′i ≡
lstp
ai

a′i−1 and
bddu(ai) = dclu(bdd(ai)), we get

bddu(a′i) ∩ bddu(ai) = bddu(a′i−1) ∩ bddu(ai).

Next, a′i |⌣ai
ai+1 implies

bddu(a′iai) ∩ bddu(aiai+1) = bddu(ai)
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by Lemma 3.2. Hence inductively

bddu(a′i) ∩ bddu(ai+1) ⊆ bddu(a′i) ∩ bddu(ai)

= bddu(a′i−1) ∩ bddu(ai)

⊆ bddu(a0). �

Now by generic transitivity and induction, R(a′i, ai+1) holds for all i <
n. In particular R(a′n−1, an) holds, and by Lemma 3.2

bddu(a′n−1) ∩ bddu(an) ⊆ bddu(a0) ∩ bddu(an) = bddu(∅).

Choose a′′ with R(a′′, an) such that SUp(a
′′/an) is maximal possible.

We may choose it such that a′′ |⌣an
a′n−1. Then

bddu(a′′) ∩ bddu(a′n−1) ⊆ bddu(an) ∩ bddu(a′n−1) = bddu(∅)

and
SUp(a

′′/a′n−1) ≥ SUp(a
′′/a′n−1an) = SUp(a

′′/an).

Put π(x, y) = tp(a′′, a′n−1). Then for a1a2 |= π we have R(a1, a2),
bddu(a1) ∩ bddu(a2) = bddu(∅) and SUp(a1/a2) is maximal possible
among couples satisfying R. Note that

SUp(a2/a1) = SUp(a1a2)−SUp(a1) = SUp(a1a2)−SUp(a2) = SUp(a1/a2),

so this is also maximal.

Choose a3 |⌣a2
a1 with a3 ≡lstp

a2
a1. By generic transitivity R(a1, a3)

holds. Moreover,

SUp(a3/a1) ≥ SUp(a3/a1a2) = SUp(a3/a2),

so equality holds. Similarly,

SUp(a1/a3) = SUp(a1/a2a3) = SUp(a1/a2).

For a set A let
clp(A) = {a : SUp(a/A) = 0}

denote the p-closure ofA. Then SUp(ai/aj) = SUp(ai/ajak) for {i, j, k} =
{1, 2, 3} means that

clp(ai) |⌣
clp(aj )

clp(ak).

In particular,

clp(ai) ∩ clp(ak) = clp(a1) ∩ clp(a2) ∩ clp(a3).

Let b = clp(a1) ∩ clp(a2) ∩ bdd(a1a2). Then clp(a1) ∩ clp(a2) = clp(b)
by [3, Lemma 3.18]. Let F (x, y) be the ∅-invariant equivalence relation
on lstp(b) given by clp(x) = clp(y). As bF is fixed by the bdd(a2)-
automorphism moving a1 to a3 and a1 |⌣a2

a3, we get bF ∈ bddu(a2)
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by Lemma 3.2. Similarly, considering an a′3 |⌣a1
a2 with a′3 ≡

lstp
a1

a2 we

obtain bF ∈ bddu(a1), whence

bF ∈ bddu(a1) ∩ bddu(a2) = bddu(∅).

So if b′ |⌣ b satisfies lstp(b), then b′F = bF and clp(b
′) = clp(b) = clp(∅).

But now

Cb(a3/clp(a1)clp(a2)) ⊆ clp(a1) ∩ clp(a2) = clp(b) = clp(∅),

so a3 |⌣clp(∅)
a2, as required. �

Remark 3.8. We cannot generalize [6, Lemma 3.3.1] and strengthen
Proposition 3.7 to say that if R is ∅-invariant, reflexive, symmetric
and generically transitive on a Lascar strong type, then the transitive
closure E of R equals the 2-step iteration of R. Consider on the forest
of Example 2 the relation R(a, b) which holds if 3 divides the distance
between a and b. This is generically transitive, as for a′ |⌣a

a′′ the
distance between a′ and a′′ is the sum of the distances between a′

and a and between a and a′′. However, two points of distance 2 are
easily seen to be R2-related, so the transitive closure E of R is just the
relation of being in the same connected component. But no two points
of distance 1 are R2-related.

Definition 3.9. We shall say that an ultraimaginary e is (almost) Σ-
internal, or is Σ-analysable, if it has a representative which is. Similarly,
we shall say that e has finite or ordinal rank over some set A if it has
a representative which does. Finally, e is orthogonal over A to some
type p if for all B |⌣A

e such that p is over B and for any realization

b |= p|B we have e |⌣A
Bb.

Remark 3.10. This definition does not imply that we define the notion
of an analysis of an ultraimaginary, or the rank of an ultraimaginary.
Moreover, e orthogonal to p over A does not imply that e has a repre-
sentative which is orthogonal to p.

Let Σ be an ∅-invariant family of partial types, and recall that the
first Σ-level of a over A is the set

ℓΣ1 (a/A) = {b ∈ bdd(aA) : tp(b/A) is almost Σ-internal}.

Lemma 3.11. If c = ℓΣ1 (b) and tp(c′/A) is almost Σ-internal, where
A |⌣ b, then b |⌣c

Ac′.

Proof: Cb(Acc′/b) is definable over a Morley sequence in lstp(Acc′/b)
and thus almost Σ-internal, as A |⌣ b. So Cb(Acc′/b) ⊆ c by definition.

�
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Proposition 3.12. Let T be simple. Suppose bE is an ultraimaginary
non-orthogonal to some regular type p, and SUp(ℓ

p
1(b)) < ω. Then there

is almost p-internal e ∈ bddu(bE)\bdd
u(∅). Moreover, e ∈ bddu(ℓp1(b)).

Proof: Let c = ℓp1(b). Define an ∅-invariant relation R on tp(c) by

R(c′, c′′) ⇔ ∃b′b′′ b′c′ ≡ b′′c′′ ≡ bc ∧ E(b′, b′′).

This is reflexive and symmetric; moreover for c′ |⌣c′′
c′′′ with |= R(c′, c′′)

and |= R(c′′, c′′′) we can find b′, b′′, b∗, b′′′ with

b′c′ ≡ b′′c′′ ≡ b∗c′′ ≡ b′′′c′′′

and |= E(b′, b′′) and |= E(b∗, b′′′). Since c′′ is boundedly closed, b′′ ≡lstp
c′′

b∗, and b′′ |⌣c′′
c′ and b∗ |⌣c′′

c′′′ by Lemma 3.11. By the Indepen-

dence Theorem we can assume b′′ = b∗, whence E(b′, b′′′) holds and
|= R(c′, c′′′). So R is generically transitive; let F be its transitive clo-
sure. The class cF is clearly almost p-internal. Moreover, if |= E(b′, b)
and b′c′ ≡ bc, then |= F (c′, c), so cF is bounded over bE .

Finally, suppose cF ∈ bdd(∅). By Proposition 3.7 there is c′ |⌣clp(∅)
c

with |= R(c′, c). Hence there are b′, b∗ with b′c′ ≡ b∗c ≡ bc and |=
E(b′, b∗). Applying a c-automorphism (and moving c′), we may assume
b = b∗. Let A |⌣ bcb′c′ be some parameters and a some realizations
of p over A with a 6 |⌣A

bE ; we may assume b′c′ |⌣bc
Aa. Then b |⌣Ac

a

by Lemma 3.11, whence b′c′ |⌣Ac
a and b′c′ |⌣c

Aa. Thus b′c′ |⌣clp(c)
Aa.

Now c′ |⌣clp(∅)
c yields c′ |⌣clp(∅)

clp(c), and hence c′ |⌣clp(∅)
Aa. As a |⌣A

clp(∅)

we get a |⌣A
c′. Now b′ |⌣Ac′

a by Lemma 3.11, whence b′ |⌣A
a. As

bE = b′E we obtain a |⌣A
bE , a contradiction. �

Corollary 3.13. Let T be supersimple, and e be a quasifinitary ultra-
imaginary. Suppose tp(e/B) is non-orthogonal to some regular type
p. Then there is an almost p-internal e′ ∈ bddqfu(Be) \ bddqfu(B), of
finite SUp-rank over B.

Proof: Let A ⊆ bdd(e) be hyperimaginary and a a finite tuple such that
e ∈ bddu(Aa). If tp(A/B) is non-foreign to p, we are done by [6, Propo-
sition 3.4.12]. But if tp(A/B) is foreign to p, then ℓp1(aA/B) |⌣B

A, so

ℓp1(aA/B) = ℓp1(a/AB). Since ℓp1(a/AB) is p-simple over AB, we get

SUp(ℓ
p
1(aA/B)/B) = SUp(ℓ

p
1(a/AB)/AB) = wp(ℓ

p
1(a/AB)/AB),

which is finite by supersimplicity.

By Proposition 3.12 applied over B there is an almost p-internal hy-
perimaginary e0 ∈ bddu(Be)\bddu(B); moreover e0 ∈ bddu(ℓp1(aA/B)).
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By supersimplicity, there is a finite b ∈ A with a |⌣Bbℓp
1
(aA/B)

A. As

A |⌣Bb
ℓp1(aA/B), we get A |⌣Bb

aℓp1(aA/B), whence A |⌣Bba
ℓp1(aA/B).

Thus

ℓp1(aA/B) = ℓp1(ab/B) ⊆ bdd(abB),

and e′ = e0B is quasifinite of finite SUp-rank over B. �

Remark 3.14. For hyperimaginary e in a simple theory, the proof of
Corollary 3.13 uses a canonical base over e. As we cannot consider
types over ultraimaginaries, this does not make sense in our context.

Proposition 3.15. Let T be supersimple. If AB |⌣D and bddqfu(A)∩

bddqfu(B) = bddqfu(∅), then bddqfu(AD)∩bddqfu(BD) = bddqfu(D).

Proof: We may assume that A, B and D are boundedly closed. Con-
sider

e ∈ (bddqfu(AD) ∩ bddqfu(BD)) \ bddqfu(D).

Let p be a regular type of least SU -rank non-orthogonal to e over D.
By Corollary 3.13 we may assume that e is almost p-internal of finite
SUp-rank over D. Suppose C ⊆ bdd(e) is hyperimaginary. Then

C ⊆ bdd(AD) ∩ bdd(BD) = D

by [4, Fact 2.4]; replacing e by eD we may assume D ∈ dcl(e). If c
is finite with e ∈ bdd(Dc), there is finite a ∈ A with c |⌣aD

A, and

e ∈ bddqfu(aD) by Lemma 3.2. Similarly, if c′ is almost p-internal of
finite SUp-rank over D with e ∈ bddqfu(c′D), then a′ = Cb(c′D/a)
is almost p-internal of finite SUp-rank, since D |⌣ a and a′ ∈ bdd(a).

Moreover, c′ |⌣a′D
a implies e ∈ bddqfu(a′D). So we may assume that

A = bdd(a′) and SUp(A) < ω.

Let (Ai : i < ω) be a Morley sequence in lstp(A/BD) with A0 =
A, and put B′ = bdd(A1A2). Then B′ is almost p-internal of finite
SUp-rank. Since e ∈ bddqfu(BD) we have e ∈ bddqfu(AiD) for all
i < ω. Let e′ be the set of B′D-conjugates of e, again a quasifinite
ultraimaginary. Since any B′D-conjugate of e is again in

bddqfu(A1D)∩bddqfu(A2D) = bddqfu(BD)∩bddqfu(A1D) = bddqfu(BD)∩bddqfu(AD),

we have e′ ∈ dclqfu(B′D)∩bddqfu(AD). Moreover, B′ |⌣BD
A, whence

B′ |⌣B
A and

bddqfu(A) ∩ bddqfu(B′) ⊆ bddqfu(A) ∩ bddqfu(B) = bddqfu(∅).
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ChooseA′ ≡lstp
AD B′ withA′ |⌣AD

B′. Then e ∈ dclqfu(A′D)∩dclqfu(B′D).

Furthermore, A′ |⌣A
D, whence A′ |⌣A

B′ and

bddqfu(A′) ∩ bddqfu(B′) ⊆ bddqfu(A) ∩ bddqfu(B′) = bddqfu(∅).

We may assume e′ = (A′D)E for some ∅-invariant equivalence relation
E. Define a ∅-invariant reflexive and symmetric relation R on lstp(A′)
by

R(X, Y ) ⇔ ∃Z [XZ ≡ Y Z ≡ A′D ∧ Z |⌣XY ∧ E(XZ, Y Z)].

By the independence theorem, forA1 |⌣A2

A3 withR(A1, A2) andR(A2, A3)

we have R(A1, A3). Hence R is generically transitive; let E ′ be the
transitive closure of R. Clearly A′

E′ is quasifinite.

Next, consider A′′ ≡B′ A′ with A′′ |⌣B′
A′. By the independence the-

orem there isD′ with A′D ≡B′ A′D′ ≡B′ A′′D′ and D′ |⌣B′
A′A′′. Then

D′ |⌣B′, whence D′ |⌣A′A′′ and (A′D′)E = (A′′D′)E ∈ dclqfu(B′D′).

Therefore E ′(A′, A′′) holds and A′
E′ ∈ dclqfu(B′). Thus

A′
E′ ∈ dclqfu(A′) ∩ dclqfu(B′) ⊆ bddqfu(∅).

By Proposition 3.7 there is A′′ |⌣clp(∅)
A′ with R(A′, A′′). Let D′ wit-

ness R(A′, A′′). Then D′ ≡A′ D, so we may assume D′ = D. Since
clp(D) |⌣ clp(A

′A′′) and clp(A
′) |⌣clp(∅)

clp(A
′′) we obtain

clp(A
′) |⌣

clp(∅)

clp(A
′′)clp(D)

and hence A′ |⌣clp(D)
A′′. But now

e′ = (A′D)E = (A′′D)E ∈ dclqfu(AD) ∩ dclqfu(A′D) ⊆ bddqfu(clp(D))

by Lemma 3.2. Since e′ is orthogonal over D to clp(D) by minimality of

SU(p), we have e′ ∈ bddqfu(D), and e ∈ bddqfu(e′) ⊆ bddqfu(D). �

Remark 3.16. Again, the proof of the hyperimaginary analogue of
Proposition 3.15 for simple theories uses canonical bases and does not
generalize.

4. Elimination of ultraimaginaries

On cannot avoid the non-tame ultraimaginaries of Example 2 which
do not satisfy finite character and hence cannot be eliminated. We thus
content ourselves with the elimination of quasi-finitary ultraimaginaries
in supersimple theories.
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Definition 4.1. Let e be ultraimaginary. We shall say that SU(a/e) <
ωα if for all representatives b of e we have SU(a/b) < ωα. Conversely,
SU(e/a) < αω if there is a representative b with SU(b/a) < ωα.

Remark 4.2. This does not mean that we define the type of a over e
or of e over a, nor the value of SU(a/e) or of SU(e/a).

Lemma 4.3. U(e/a) < ω0 if and only if e ∈ bddu(a), and U(a/e) < ω0

if and only if a ∈ bdd(e).

Proof: If b is a representative of e with SU(b/a) < ω0, then b ∈ bdd(a),
so e ∈ bddu(a). If e ∈ bddu(a), then e ∈ dclu(bdd(a)), so b = bdd(a)
is a representative of e with SU(b/a) < ω0.

If a /∈ bdd(e), then there are arbitrarily many e-conjugates of a.
Then for any representative b of e there is some e-conjugate a′ of a which
is not in bdd(b). Let b′ be the image of b under an e-automorphism
mapping a′ to a. Then b′ is a representative of e, and SU(a/b′) ≥ ω0.
On the other hand, if a ∈ bdd(e), then a ∈ bdd(b) for any representa-
tive b of e, whence SU(a/b) < ω0. �

Definition 4.4. An ultraimaginary e can be α-eliminated if there is a
hyperimaginary a with SU(a/e) < ωα and SU(e/a) < ωα. A theory has
α-elimination of ultraimaginaries if all quasi-finitary ultraimaginaries
can be α-eliminated.

0-elimination is usually called geometric elimination.

Theorem 4.5. If e is ultraimaginary with SU(e) < ωα+1, then e can
be α-eliminated. A supersimple theory of finite rank has geometric
elimination of quasifinite ultraimaginaries.

Proof: Let a be a tuple of minimal rank such that e ∈ bddu(a).
Since SU(e) < ωα+1 we have SU(a) = ωαn + β with β < ωα; we
shall use induction on n. By [6, Lemma 5.1.7] there is a0 ∈ bdd(a)
with SU(a0) = β and SU(a/a0) = ωαn. By [6, Proposition 5.1.12]
there is B |⌣a0

a containing a0 and c with SU(c/B) = ωα and c 6 |⌣B
a.

Then SU(a/Bc) < ωαn; by inductive hypothesis there is b such that
SU(e/Bbc) < ωα and SU(b/Bce) < ωα. In particular there is a repre-
sentative b′ of e with SU(b′/Bbc) < ωα, whence

SU(b′/Bce) ≤ SU(b′/Bcb)⊕ SU(b/Bce) < ωα.

Replacing b by b′ we may thus assume that b is a representative of e.
Let a′ = Cb(Bbc/a). Since Bbc |⌣a′

a we get e ∈ bddu(a′) by Lemma

3.2. Hence SU(a′) = SU(a) by minimality of rank, and SU(a/a′) < ωα

by the Lascar inequalities.
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• Case 1: SU(c/Be) < ωα. Then SU(bc/Be) < ωα. Moreover,
if (Bibici : i < ω) is a Morley sequence in lstp(Bbc/a) with
B0b0c0 = Bbc, then B |⌣a0

a implies that (Bi : i < ω) |⌣a0
a,

whence (Bi : i < ω) |⌣B
a and (Bi : i < ω) |⌣clα(B)

clα(Ba). As

SU(bc/Ba) < ωα we get a |⌣clα(Bbc)
(Bi : i < ω), and therefore

a |⌣clα(Bbc)
clα(b, Bi : i < ω). However, SU(bici/Bie) < ωα; as b

is a representative of e we get SU(bici/Bib) < ωα for all i < ω,
and

a′ |⌣
clα(Bb)

(Bibici : i < ω).

As a′ ∈ dcl(Bibici : i < ω), we obtain a′ ∈ clα(Bb), so

SU(a/Be) ≤ SU(a/a′)⊕ SU(a′/Bb)⊕ SU(b/Be) < ωα.

Suppose SU(a/e) ≥ ωα. Then there is a representative b′′ of e
with SU(a/b′′) ≥ ωα. Consider a Morley sequence (a′i : i < α)
in lstp(a/b′′) with a′0 = a. Since a |⌣a0

B we may assume that

(a′i : i < α) is indiscernible over B (possibly moving b′′). But
then SU(a′i/Bb′′) < ωα for all i < α, whence a′i 6 |⌣b′′

B for all

i < α, contradicting boundedness of weight of tp(B/b′′).
• Case 2: SU(c/Be) ≥ ωα. There is a representative b0 of e with
SU(c/Bb0) ≥ ωα, whence c |⌣B

b0. Choose b′c′ ≡Bb0 bc with

c′ |⌣Bb0
a. Then c′ |⌣B

a, whence Bc′ |⌣a0
a, and SU(b′/Bc′e) <

ωα. Moreover SU(a/Bb′c′) ≥ ωα, as otherwise modulo ωα

SU(a/B) ≥ SU(bc/B) = SU(b′c′/B) = SU(ab′c′/B) ≥ SU(ac′/B) > SU(a/B).

Let (Bibici : i < ω) be a Morley sequence in lstp(Bb′c′/a) with
B0b0c0 = Bb′c′, and a′ = Cb(Bb′c′/a). Then a′ ∈ dcl(Bibici :
i < ω). Now SU(bi/Bicie) < ωα, whence SU(bi/BiciBb′c′) <
ωα. As Bc′ |⌣a0

a, we get (Bici : i < ω) |⌣a0
a. So (Bici : i <

ω) |⌣clα(Bc′)
clα(Bc′a), whence clα(Bb′c′, Bici : i < ω) |⌣clα(Bb′c′)

a

and (Bibici : i < ω) |⌣clα(Bb′c′)
a. It follows that a′ ∈ clα(Bb′c′)∩

bdd(a); since SU(a/Bb′c′) ≥ ωα we get SU(a) ≥ SU(a′) + ωα.
However, Bb′c′ |⌣a′

a implies e ∈ bddu(a0) by Lemma 3.2, con-

tradicting minimality of SU(a). �

5. Decomposition

In this section Σ will be an ∅-invariant family of partial types.

Lemma 5.1. (1) Suppose a� b. If c |⌣ a and c |⌣ b, then a�c b.
(2) Suppose a�c b. If c |⌣ ab then a� b.
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(3) Suppose a �c b. If tp(a) and tp(b) are foreign to tp(c), then
a� b.

Proof:

(1) Consider any d with d 6 |⌣c
a. Then cd 6 |⌣ a, whence cd 6 |⌣ b. Now

b |⌣ c implies b 6 |⌣c
d. The converse follows by symmetry.

(2) Consider any d with d 6 |⌣ a. Clearly we may assume d |⌣ab
c,

whence abd |⌣ c. Since a |⌣ c we get d 6 |⌣c
a, whence d 6 |⌣c

b and

cd 6 |⌣ b. But c |⌣d
b, so d 6 |⌣ b; the converse follows by symmetry.

(3) Consider any d with d 6 |⌣ a. Since a |⌣ c we get d 6 |⌣c
a, whence

d 6 |⌣c
b and cd 6 |⌣ b. If b |⌣ d, then b |⌣d

c by foreigness, whence

b |⌣ cd, a contradiction. So b 6 |⌣ d; the converse follows by sym-
metry. �

Here are two versions of [2, Lemma 1.11].

Proposition 5.2. Let A,B, a, b be such that bddu(Aa) ∩ bddu(Bb) =
bddu(∅), and a and b are domination-equivalent over AB. Suppose
AB is Σ-analysable, and tp(a/A) and tp(b/B) are foreign to Σ. Then
a ∈ bdd(A) and b ∈ bdd(B).

Proof: Suppose otherwise. Put A0 = Cb(A/a). Then A0 is Σ-analysable,
so a |⌣A

A0. It follows that A0 = bdd(A) ∩ bdd(a); similarly for

B0 = Cb(b/B) we get B0 = bdd(B) ∩ bdd(b). Lemma 5.1(3) yields
that a and b are domination-equivalent over A0B0. We may thus as-
sume that AB is quasi-finitary.

Define an ∅-invariant relation E on lstp(Aa) by

E(A′a′, A′′a′′) ⇔ a′ �A′A′′ a′′.

Clearly, this is reflexive and symmetric. Suppose E(A′a′, A′′a′′) and
E(A′′a′′, A′′′a′′′). By Lemma 5.1(1)

a′ �A′A′′A′′′ a′′ and a′′ �A′A′′A′′′ a′′′,

whence a′ �A′A′′A′′′ a′′. Now a′ �A′A′′′ a′′′ by Lemma 5.1(3). Thus
E(A′a′, A′′′a′′′) holds and E is transitive.

Let A′a′ ≡lstp
Bb Aa with A′a′ |⌣Bb

Aa. Again by Lemma 5.1(1)

a�AA′B b�AA′B a′,

and a�AA′ a′ by Lemma 5.1(3). Thus E(Aa,A′a′) holds. But

bddu(Aa) ∩ bddu(A′a′) ⊆ bddu(Aa) ∩ bddu(Bb) = bddu(∅).
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Hence (Aa)E = (A′a′)E ∈ bddu(∅), and there is A′′a′′ |⌣Aa with
E(Aa,A′′a′′). But then a�AA′′a′′ and a |⌣AA′′

a′′ yield a |⌣AA′
a, whence

a ∈ bdd(AA′) and finally a ∈ bdd(A) as a |⌣A
A′. Similarly, b ∈

bdd(B). �

Corollary 5.3. Let A,B, a, b be such that bddu(Aa) ∩ bddu(Bb) =
bddu(∅), and a and b are interbounded over AB. Suppose AB is Σ-
analysable. Then Aa and Bb are Σ-analysable.

Proof: Clearly we may assume that A ⊆ bdd(Aa) and B ⊆ bdd(Bb) are
maximal Σ-analysable subsets. Hence tp(a/A) and tp(b/B) are foreign
to Σ. Since a and b are interbounded over AB, they are domination-
equivalent, contradicting Proposition 5.2. �

Remark 5.4. By Theorem 4.5, if SU(Aa) or SU(Bb) is finite, then
bdd(Aa)∩bdd(Bb) = bdd(∅) implies bddu(Aa)∩bddu(Bb) = bddu(∅),
and we recover [2, Lemma 1.11].

Fact 5.5. [3, Theorem 3.4(3)] Let Σ′ be an ∅-invariant subfamily of Σ.
Suppose tp(a) is foreign to Σ \ Σ′. Then a and ℓΣ

′

1 (a) are domination-
equivalent.

Corollary 5.6. Let A = Cb(B/A) and B = Cb(A/B), with bddu(A)∩
bddu(B) = bddu(∅). If A is Σ-analysable and Σ′ is the subset of one-
based partial types in Σ, then A is analysable in Σ \ Σ′.

Proof: Let A′ ⊆ A and B′ ⊆ B be maximally analysable in Σ \ Σ′. So
tp(A/A′) and tp(B/B′) are foreign to Σ \ Σ′.

Suppose for a contradiction that A 6⊆ A′. Then B 6⊆ B′, since A is
tp(B)-internal and not analysable in Σ \ Σ′. By Lemma 5.5 the first
Σ′-levels a = ℓΣ

′

1 (A/A′) and b = ℓΣ
′

1 (B/B′) are non-trivial, one-based,
and

a�A′ A and b�B′ B.

Hence a 6 |⌣A′B′
b by Lemma 5.1(1). Let a0 = Cb(B′b/A′a) and b0 =

Cb(A′a/B′b). Then a |⌣A′B′a0
b and a |⌣A′B′b0

b, so

bdd(A′B′a0) ∩ bdd(A′B′b0) ⊇ bdd(A′B′a) ∩ bdd(A′B′b).

It follows from one-basedness that

bdd(A′B′a0) = bdd(A′B′b0) = bdd(A′B′a) ∩ bdd(A′B′b).

We can now apply Corollary 5.3 to see that a ∈ bdd(A′), a contradic-
tion. �
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