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Magnetic interpretation of the nodal defect on

graphs

Yves Colin de Verdière ∗†

January 5, 2012

Abstract

In this note, we present a natural proof of a recent and surprising result
of Gregory Berkolaiko interpreting the Courant nodal defect as a Morse
index. This proof is inspired by a nice paper of Miroslav Fiedler published
in 1975.

1 Introduction

The “nodal defect” of an eigenfunction of a Schrödinger operator is closely related
to the difference between the upper bound on the number of nodal domains
given by Courant’s Theorem and the number of nodal domains. In the recent
paper [2], Gregory Berkolaiko proves a nice formula for the nodal defect of an
eigenfunction of a Schrödinger operator on a finite graph in terms of the Morse
index of the corresponding eigenvalue as a function of a magnetic deformation of
the operator. His proof remains mysterious and rather indirect. In order to get
a better understanding in view of possible generalizations, it is desirable to have
a more direct approach. This is what we do here.

2 Notations

Let G = (X,E) be a finite connected graph where X is the set of vertices and E
the set of unoriented edges. We denote by {x, y} the edge linking the vertices x

and y. We denote by ~E the set of oriented edges and by [x, y] the edge from x

to y; the set ~E is a 2-fold cover of E. A 1-form α on G is a map ~E → R such
that α([y, x]) = −α([x, y]) for all {x, y} ∈ E. We denote by Ω1(G) the vector
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space of dimension #E of 1-forms on G. The operator d : RX → Ω1(G) is defined
by df([x, y]) = f(y) − f(x). If Q is a non degenerate, not necessarily positive,
quadratic form on Ω1(G), we denote by d⋆ the adjoint of d where R

X carries the
canonical Euclidean structure and Ω1(G) is equipped with the symmetric inner
product Q̂ associated to Q. We have dim ker d⋆ = β where β = 1 +#E −#X is
the dimension of the space of cycles of G. We will show later that, in our context,
we have the Hodge decomposition Ω1(G) = dRX ⊕ ker d⋆ where both spaces are
Q̂-orthogonal.

Following [3], we denote by OG the set of X × X real symmetric matrices
H which satisfy hx,y < 0 if {x, y} ∈ E and hx,y = 0 if {x, y} /∈ E and x 6= y.
Note that the diagonal entries of H are arbitrary. It will be useful to write the
quadratic form associated to H as

q1(f) = −
∑

{x,y}∈E

hx,y(f(x)− f(y))2 +
∑

x∈X

Vxf(x)
2 ,

with Vx = hx,x +
∑

y∼x hx,y. A magnetic field is a map B : ~E → U(1) defined by

B([x, y]) = eiαx,y where [x, y] → αx,y is a 1-form on G. We denote by BG = eiΩ
1(G)

the manifold of magnetic fields on G. The magnetic Schrödinger operator HB

associated to H ∈ OG and B = eiα is defined by the quadratic form

qB(f) = −
1

2

∑

[x,y]∈ ~E

hx,y|f(x)− eiαx,yf(y)|2 +
∑

x∈X

Vx|f(x)|
2

associated to a Hermitian form on CX . We fix H and we denote by

λ1(B) ≤ λ2(B) ≤ · · · ≤ λn(B) ≤ · · · ≤ λ#X(B)

the eigenvalues of HB. It will be important to notice that λn(B̄) = λn(B).
Moreover, we have a gauge invariance: the operatorsHB andHB′ with α′ = α+df
for some f ∈ RX are unitarily equivalent. Hence they have the same eigenvalues.
This implies that, if Ω1(G) = dRX ⊕ ker d⋆ (this is not always the case because
Q is not positive), it is enough to consider 1−forms in the subspace ker d⋆ of
Ω1(G) when studying the map Λn : B → λn(B). This holds in particular for
investigations concerning the Hessian and the Morse index.

3 Statement of Berkolaiko’s magnetic Theorem

Before stating the main result, we recall the

Definition 1 The Morse index j(q) ∈ N∪{+∞} of a quadratic form q on a real
vector space E is defined by j(q) = supF dimF where F is a subspace of E so
that q|F\0 is < 0.
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The Morse index of a smooth real-valued function f defined on a smooth
manifold M at a critical point x0 ∈ M (i.e. satisfying df(x0) = 0) is the Morse
index of the Hessian of f , which is a canonically defined quadratic form on the
tangent space Tx0

M . The critical point x0 is called non degenerate if the previous
Hessian is non degenerate.

The aim of this note is to prove the following nice results due to Berkolaiko
[1, 2]:

Theorem 1 Let G = (X,E) be a finite connected graph and β the dimension
of the space of cycles of G. We suppose that the n-th eigenvalue λn of H ∈ OG

is simple. We assume moreover that an associated non-zero eigenfunction φn

satisfies φn(x) 6= 0 for all x ∈ X. Then, the number ν of edges along which φn

changes sign satisfies n− 1 ≤ ν ≤ n− 1 + β.
Moreover Λn : B → λn(B) is smooth at B ≡ 1 which is a critical point of Λn

and the nodal defect, δn = ν − (n − 1) is the Morse index of Λn at that point.
If M is the manifold of dimansion β of magnetic fields on G modulo the gauge
transforms, the function [B] → Λn(B) has [1] as a non degenerate critical point.

Remark 1 The previous results can be extended by replacing B ≡ 1 by Bx,y = ±1
for all edges {x, y} ∈ E. The number ν is then the number of edges {x, y} ∈ E
satisfying Bx,yφn(x)φn(y) < 0 where φn is the corresponding eigenfunction.

Remark 2 In fact, we will identify in a precise way the Hessian of Λn as a
quadratic form on ker d⋆, the tangent space to the manifold of magnetic fields
modulo gauge transforms.

Remark 3 The assumptions on H are satisfied for H in an open dense subset
of OG.

The upper bound of ν in the first part of Theorem 1 is related to Courant nodal
Theorem (see [5] Section VI.6) as follows: a nodal domain on a graph for the
eigenfunction φn is a connected component of the sub-graph G′ of G obtained
by removing the edges along which φn changes sign. Denoting by µ the number
of nodal domains of φn, the Courant Theorem for graphs (see [3], Theorem 2.4)
asserts that µ ≤ n; using Euler formula for the graph G′ and because µ = b0(G

′),
the number of connected components of the graph G′, we get also a lower bound
(see [1]):

Corollary 1 Under the assumptions of Theorem 1, we have n− β ≤ µ ≤ n .

Important warning: Without loss of generality, we can and WILL assume
in the rest of this note that λn = Λn(1) = 0. This implies that the Morse index
of q1 is n− 1.
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The scheme of proof will be to build a quadratic form Q on Ω1(G) so that
ind(Q) = ν, ind(Q|dRX ) = n − 1 and hence ind(Q|ker d⋆) = δn. The form Q is
defined by

Q(ω) =
1

2

∑

~E

ax,yω([x, y])
2 with ax,y = −hx,yφn(x)φn(y) = ay,x . (1)

The Morse index of Q is the number of edges so that ax,y < 0. Since hx,y < 0,
this is precisely the number ν of sign changes of φn. It remains to identify δn
with the Morse index of Λn restricted to eiker d

⋆

.

4 The quadratic form Q

Lemma 1 The set of forms f → (f(x) − f(y))2 where {x, y} ∈ P2(X), the set
of subsets with two elements of X, and f → f(x)2 with x ∈ X is a basis of the
set of quadratic forms on RX .

Definition 2 A quadratic form q on RX is said of Laplace type if ∀f ∈ RX , q̂(1, f) ≡
0 where q̂ is the symmetric bi-linear form associated to q.

Lemma 2 The set of forms f → (f(x) − f(y))2, {x, y} ∈ P2(X) is a basis of
the space of quadratic forms of Laplace type.

The form q̃1 : f → q1(φnf), where φnf is the point-wise product of φn and f ,
is of Laplace type because

̂̃q1(1, g) = 〈Hφn|φng〉 = 〈0|φng〉 .

Hence ̂̃q1(1, g) = 0.
Moreover, q̃1(f) = Q(df). Indeed, because of Lemma 2, it is enough to

compare the coefficients of the basis forms f → (f(x) − f(y))2. The form f →
Q(df) is already expanded in this basis. To find the coefficient for the form
f → q̃1(f), we observe that (because we know it is of Laplace type) the coefficient
in question is minus the coefficient in front of the term f(x)f(y), divided by two.
This evaluates to ax,y (see equation (1)).

In fact, we will need to use Q̂(df, dg) = 〈H(φnf)|φng〉.

Lemma 3 The Morse index of Q|dRX is equal to n− 1.

Because the kernel of d is also the kernel of q̃1 (the constant functions), the index
of Q|dRX is the index of q̃1. This index is equal to the index of q1 by Sylvester
Theorem. Since λn = 0, the index of q1 is n− 1 by elementary spectral theory.
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Lemma 4 Let us denote by d⋆ the adjoint of d where RX is equipped with the
canonical Euclidean structure and Ω1(G) with the inner product associated to Q.
The space Ω1(G) splits as

Ω1(G) = dRX ⊕ ker d⋆

(Hodge type splitting), and this decomposition is Q-orthogonal.

More explicitly d⋆ is given by

d⋆ω(x) =
∑

y∼x

ax,yω([y, x]) .

If ω = df satisfies d⋆ω = 0, we have d⋆df = 0. Hence Q̂(df, dg) = 0 for all
g and 〈H(φnf)|φng)〉 = 0. Because λn is of multiplicity 1, this implies that f is
constant and hence df = 0. So dRX ∩ ker d⋆ = {0} and the conclusions follow.

At this point, we know that the nodal defect is the Morse index of the re-
striction of Q to the space ker d⋆ of dimension β. The first part of the Theorem
follows.

5 The Hessian of Λn and magnetic variations

We need one more fact to complete the proof: to identify the Hessian of Λn on
eiker d

⋆

at B ≡ 1 with the restriction of Q to ker d⋆.
Let us denote by S ⊂ CX the set of unit vectors f normalized so that f(x0)

is real and f(x0) > 0 where x0 is chosen in X .

Lemma 5 The point B ≡ 1 is a critical point of Λn. If φn(B) ∈ S is the
eigenfunction of HB corresponding to the eigenvalue λn(B), the differential of
B → φn(B) vanishes at B ≡ 1 on ker d⋆.

The first property comes from the fact that Λn(B̄) = Λn(B). We can compute, for
any variation eitα, t close to 0, of B ≡ 1, ḢBφn+Hφ̇n = 0. The condition d⋆α = 0
can be written as

∑
y∼x hx,yφn(y)αx,y = 0 for all x ∈ X . This is exactly iḢBφn.

Hence H(φ̇n) = 0 and φ̇n = cφn since λn is simple. From the normalization
‖φn(B)‖ = 1, we get c ∈ iR and, since φ̇n(x0) ∈ R, the number c is real. We
deduce that φ̇n = 0.

Lemma 6 The function F : S × eiker d
⋆

→ R defined by F (f, eiα) = 〈Heiαf |f〉
admits (φn, 0) as a critical point and the Hessian of (Λn)|eiker d⋆ at the point B ≡ 1
is the form Q.
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The differential of F with respect to f vanishes because f is an eigenfunction ofH .
The differential with respect to ker d⋆ vanishes, because F (f, eiα) = F (f, e−iα).
The Hessian of F at (φn, 0) is well defined. Because the differential at B = 1
of B → φn(B) vanishes on eiker d

⋆

, the Hessians of Λn : B → F (φn(B), B) and
Mn : B → F (φn(1), B) agree. A simple calculation of the Hessian of Mn gives
the result:

Mn(e
iα) = −

1

2

∑

[x,y]∈ ~E

hx,y|φn(x)− eiαx,yφn(y)|
2 +

∑

x∈X

Vx|φn(x)|
2 =

−
∑

[x,y]∈E

hx,y
(
φn(x)

2 + φn(y)
2 − 2 cosαx,yφn(x)φn(y)

)
+

∑

x∈X

Vx|φn(x)|
2.

Computing the second derivative with respect to α at α = 0 gives Hessian(Mn) =
Q(α).

Appendix A: a pedestrian approach to the calcu-

lus of the Hessian of Λn in Section 5

We will derive a direct approach to the calculus of the second derivative of an
eigenvalue which could be used directly in the proof of Lemma 6. Let t → A(t)
be a C2 curve defined near t = 0 in the space of Hermitian matrices on a finite
dimensional Hilbert space (H, 〈.|.〉). Let us assume that λ(0) is an eigenvalue of
A(0) of multiplicity one with a normalized eigenvector φ(0). Then, for t close to
0, A(t) has a simple eigenvalue λ(t) of multiplicity one which is a C2 function of
t. We can choose an associated eigenfunction φ(t) which is C2 with respect to t.
The following assertions give the values of the first and second derivatives of λ(t)
at t = 0:

Proposition 1 Under the previous assumptions, we have

λ′(0) = 〈A′(0)φ(0)|φ(0)〉 ,

If λ′(0) = 0, we have

λ′′(0) = 〈A′′(0)φ(0)|φ(0)〉+ 2〈φ′(0)|A′(0)φ(0)〉 ,

where φ′(0) is any solution of (A(0)− λ(0))φ′(0) = −A′(0)φ(0).
In particular, if A′(0)φ(0) = 0,

λ′′(0) = 〈A′′(0)φ(0)|φ(0)〉 .

Proof.–
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We start with (A(t) − λ(t))φ(t) = 0 where φ(t) is an eigenfunction
of A(t) which depends in a C2 way of t. Taking the first derivative,
we get

(A′(t)− λ′(t))φ(t) + (A(t)− λ(t))φ′(t) = 0 . (2)

Putting t = 0 and taking the scalar product with φ(0), we get the
formula for λ′(0). Similarly, the t-derivative of Equation (2) is

(A′′(t)−λ′′(t))φ(t)+2(A′(t)−λ′(t))φ′(t)+(A(t)−λ(t))φ′′(t) = 0 . (3)

Pouting t = 0, taking the scalar product with φ(0) and using λ′(0) =
0, we get the result.

�

We can apply this to A(t) := Heitα with α ∈ ker d⋆ in order to get the Hessian
of Λn in Section 5. The condition A′(0)φ(0) = 0 is exactly d⋆α = 0!

Appendix B: Hill’s operators

In this Appendix, we will describe the case of a Schrödinger operator on the
circle, also called the Hill’s operator. This is the simplest continuous case, but it
may be useful to do it with some details in order to try to extend the method to
higher dimensional manifolds.

Eigenvalues and discriminant

The Hill’s operator is

H = −
d2

dx2
+ q(x)

where q : R → R is a smooth, 1-periodic, function. The spectral theory of Hill’s
operators has been well studied; in particular, the inverse spectral theory for
this operator allows to solve non-linear evolution equations, like the Korteweg-de
Vries one. A presentation of the properties of Hill’s operators is given in [7].

The following facts are known:

Theorem 2 If we denote by λ±j , j = 1, · · · the spectra of H acting on periodic
(resp anti-periodic) functions of period 1, we have the inequalities

λ+1 < λ−1 ≤ λ−2 < λ+2 ≤ λ+3 < · · ·

and the spectrum of H on L2(R) is then union of intervals, called the bands,

[λ+1 , λ
−
1 ] ∪ [λ−2 , λ

+
2 ] ∪ [λ+3 , λ

−
3 ] ∪ · · · .
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These statements are linked to the properties of the discriminant∆(λ): if y1(x, λ)
and y2(x, λ) are the normalized solutions of (H − λ)y = 0 whose Cauchy data
are y1(0, λ) = 1, y′1(0, λ) = 0, y2(0, λ) = 0, y′2(0, λ) = 1, the discriminant ∆ is
the entire function given by ∆(λ) := y1(1, λ) + y′2(1, λ). The spectrum of H on
L2(R) is the set of real λ’s so that |∆(λ)| ≤ 2. The periodic (resp. anti-periodic)
spectra are given by ∆(λ) = 2 (resp. ∆(λ) = −2). The function ∆(λ) − 2 is a
regularization of

∏∞
n=1(λ− λ+n ) in the spirit of [4]. It is proved in [7], Section II,

that, if λ+n is simple, ∆′(λ+n ) 6= 0 and the sign of this derivative is that of (−1)n.

Magnetic fields

We will assume that λ+n is equal to 0 and is a simple eigenvalue of H acting on
1-periodic functions. Up to gauge transform, every magnetic potential on the
circle is a constant α. The bands are linked to the addition of a magnetic field
as follows: the n-th band is the image of the circle U = {eiα|α ∈ R} by the map
Λn where Λn(e

iα) is the n-th eigenvalue of Hα which is H acting on functions f
so that f(x + 1) = eiαf(x). In particular, if n is even, λ+n is a maximum of Λn

while if n is odd, λ+n is a minimum of Λn. This fits with Berkolaiko’s formula
because the (even!) number of zeros of the corresponding periodic eigenfunction
φn is n = (n − 1) + 1 if n is even and n − 1 = (n − 1) + 0 if n is odd (see [7]
Theorem 2.14). In this appendix, we will use the general formula for the second
derivative in order to reprove this result and to show that the critical points are
non degenerate.

A direct computation of d2Λn/dα
2(0) using the discriminant works as fol-

lows: the spectrum of Hα is given by ∆−1(2 cosα). Near λ = λ+n , we have
2 + ∆′(λ+n )(λn(α) − λ+n ) ∼ 2 cosα. This gives λn(α) ∼ λ+n − α2/∆′(λ+n ), hence
the Morse index of Λn at α = 0 is 0 if n is odd and 1 is n is even.

A direct calculation of the Hessian

We will denote with a “dot” the derivatives w.r. to α and by a “prime” the
derivatives w.r. to x. The operatorHα is unitarily equivalent toKα = e−iαxHeiαx

acting on 1-periodic functions. We have

Kα = H − 2iα
d

dx
+ α2 .

The derivatives of Kα w.r. to α at α = 0 are K̇ = −2i d
dx

and K̈ = 2. Applying
Proposition 1 and denoting by φn a corresponding normalized eigenfunction, we
get

Λ̈n(0) = 2 + 4i

∫ 1

0

φ̇n(x)φ
′
n(x)dx .

Moreover Hφ̇n(x) = −K̇φn = 2iφ′
n(x).
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Let us denote by ψ the function y1(., 0). Then, using the method of “variation
of parameters” (i.e. making the Ansatz φ̇n(x) = C1(x)ψ(x) + C2(x)φn(x) with
C ′

1(x)ψ(x) + C ′
2(x)φn(x) = 0), we get

φ̇n(x) = −ixφn(x) + kψ(x) + Cφn(x) , (4)

where the constant k is chosen so that φ̇n(x) is periodic and C is an arbitrary
constant which can be fixed by a normalization of φn. We can always assume
that φn(0) = φn(1) = 0 by shifting the origin of R to some zero of φn. Using
the wronskian, we see that φ̇n(1) = φ̇n(0). We have to check the derivatives:
kψ′(1)− i(φn(1)+φ′

n(1)) = kψ′(0)− iφn(0) or kψ
′(1) = iφ′

n(0). This gives, using
Equation (4),

φ̇n(x) = −ixφn(x) + i
φ′
n(0)

ψ′(1)
ψ(x) + Cφn(x) .

We get

Λ̈n(0) = 2 + 4i

∫ 1

0

[−ixφn(x) + kψ(x) + Cφn(x)]φ
′
n(x)dx .

By integration by parts, we have
∫ 1

0
2xφn(x)φ

′
n(x)dx = −

∫ 1

0
φn(x)

2dx = −1.

Moreover, again by integration by parts,
∫ 1

0
ψ(x)φ′

n(x)dx = −
∫ 1

0
ψ′(x)φn(x)dx

and, since the Wronskian ψφ′
n−ψ

′φn is constant and ≡ φ′
n(0),

∫ 1

0
ψ(x)φ′

n(x)dx =
1
2
φ′
n(0). We get

Λ̈n(0) = −2φ′
n(0)

2/ψ′(1) .

Moreover, it follows from Equation (2.13), page 16 in [7] and the fact that φn =
φ′
n(0)y2, that this is exactly −2/∆′(λ+n ).
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