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On the stability under convolution of resurgent functions

David Sauzin

May 6, 2012

Abstract

This article introduces, for any closed discrete subset Ω of C, the definition of Ω-
continuability, which is a particular case of Écalle’s resurgence: Ω-continuable functions
are required to be holomorphic near 0 and to admit analytic continuation along any path
which avoids Ω. We give a rigorous and self-contained treatment of the stability under con-
volution of this space of functions, showing that a necessary and sufficient condition is the
stability of Ω under addition.

1 Introduction

In Écalle’s theory of resurgent functions, a fundamental notion is that of endlessly continuable
germs: these are holomorphic germs of one complex variable at the origin which enjoy a cer-
tain property of analytic continuation (the possible singularities of their analytic continuation
must be isolated, at least locally—[Eca81], [Mal85]); they arise as Borel transforms of possibly
divergent formal series which solve certain nonlinear problems.

Since the theory is designed to deal with nonlinear problems, it is an essential fact that the
property of endless continuability is stable under convolution (indeed, via Borel transform, the
convolution of germs at 0 reflects the Cauchy product of formal series). This allows to define the
algebra of resurgent functions in the “convolutive model” and then to study certain subalgebras
obtained by specifying the location or the nature of the possible singularities that one can
encounter in the process of analytic continuation. Écalle then proceeds with defining the “alien
calculus”, which involves particular derivations of this algebra and is an efficient way of encoding
the singularities, and deriving consequences in the “geometric models” obtained by applying
the Laplace transform in all possible directions; this can be a way of describing nonlinear
Stokes phenomena or of solving problems of analytic classification—see [Eca81], [Eca92], [Eca93],
[CNP93], [Sau06], [Sau10], [Sau12].

Unfortunately, the proof of the stability under convolution of endlessly continuable germs in
full generality is difficult. Écalle’s argument is based on the notion of “symmetrically contractile”
paths, but the fact that one can always find such paths is a delicate matter. Therefore, when
we came across a strikingly simple proof which applies to interesting subspaces of resurgent
functions, we thought it was worthwhile to bring it to the attention of researchers interested in
resurgence theory.

We shall deal in this article with a particular case of endless continuability, which we call Ω-
continuability, which corresponds to specifying a priori the possible location of the singularities:
they are required to lie in a set Ω that we fix in advance. This means that there is one Riemann
surface over C, depending only on Ω, on which every Ω-continuable germs induce a holomorphic
function (whereas in the general case of endless continuability there is an “endless” Riemann
surface which does depend on the considered germ). Our definition already covers interesting
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cases: one encounters examples of Ω-continuable germs with Ω = N
∗ or Ω = Z when dealing

with differential equations formally conjugate to the Euler equation (in the study of the saddle-
node singularities) [Eca84], [Sau10], or with Ω = 2πiZ when dealing with certain difference
equations like Abel’s equation for parabolic germs in holomorphic dynamics [Eca81], [Sau06],
[DS12], [Sau12].

Our aim is to give a rigorous and self-contained treatment of the stability under convolution
of the space of Ω-continuable germs, with more details and more complete explanations than
e.g. [Sau06] which was dealing with the particular case Ω = 2πiZ. For the latter case, the recent
article [Ou10] is available, but our approach is different.

For any closed discrete subset of C, we shall thus introduce the definition Ω-continuability
in Section 2, recall the definition of convolution in Section 3 and state in Section 4 our main
result, Theorem 4.1, which is the equivalence of the stability under convolution of Ω-continuable
germs and the stability under addition of the set Ω. The rest of the article will be devoted to
the proof of this theorem.

A novel feature of our proof (even if we certainly owe a debt to [Eca81] and [CNP93]) is
the construction of “symmetric Ω-homotopies” (rather than symmetrically contractile paths)
by means of certain non-autonomous vector fields.

2 The Ω-continuable germs

In this article, “path” means a piecewise C1 function γ : J → C, where J is a compact interval
of R. For any R > 0 and ζ0 ∈ C we use the notations D(ζ0, R) := { ζ ∈ C | |ζ − ζ0| < R },
DR := D(0, R) and D

∗
R := DR \ {0}.

Definition 2.1. Let Ω be a non-empty closed discrete subset of C, let ϕ̂(ζ) ∈ C{ζ} be a holo-
morphic germ at the origin. We say that ϕ̂ is Ω-continuable if there exists R > 0 not larger
than the radius of convergence of ϕ̂ such that D∗

R ∩ Ω = ∅ and ϕ̂ admits analytic continuation
along any path of C \ Ω originating from any point of D∗

R. We use the notation

R̂Ω := { all Ω-continuable holomorphic germs } ⊂ C{ζ}.

Remark 2.2. Let ρ := min
{

|ω|, ω ∈ Ω \ {0}
}

. Any ϕ̂ ∈ R̂Ω is a holomorphic germ at 0 with
radius of convergence ≥ ρ and one can always take R = ρ in Definition 2.1. In fact, given an
arbitrary ζ0 ∈ Dρ, we have

ϕ̂ ∈ R̂Ω ⇐⇒
∣

∣

∣

∣

∣

ϕ̂ germ of holomorphic function of Dρ admitting analytic continuation

along any path γ : [0, 1] → C such that γ(0) = ζ0 and γ
(

(0, 1]
)

⊂ C \ Ω

(even if ζ0 = 0 and 0 ∈ Ω: there is no need to avoid 0 at the beginning of the path, when we
still are in the disc of convergence of ϕ̂).

Example 2.3. Trivially, any entire function of C defines an Ω-continuable germ. Other ele-
mentary examples of Ω-continuable germs are the functions which are holomorphic in C \ Ω
and regular at 0, like 1

(ζ−ω)m with m ∈ N
∗ and ω ∈ Ω \ {0}. But these are still single-valued

examples, whereas the interest of the Definition 2.1 is to authorize multiple-valuedness when
following the analytic continuation. Elementary examples of multiple-valued continuation are
provided by

∑

n≥1
ζn

n = − log(1− ζ) (principal branch of the logarithm), which is Ω-continuable

if and only if 1 ∈ Ω, and
∑

n≥0
ζn

n+1 = −1
ζ log(1 − ζ), which is Ω-continuable if and only if

{0, 1} ⊂ Ω.
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Example 2.4. If ω ∈ C
∗ and m ∈ N

∗, then
(

log(ζ − ω)
)m ∈ R̂{ω}; if moreover ω 6= −1, then

(

log(ζ − ω)
)−m ∈ R̂{ω,ω+1}.

Example 2.5. If Ω is a closed discrete subset of C, 0 /∈ Ω, ω ∈ Ω and ψ̂ is holomorphic in
C \ Ω, then ϕ̂(ζ) = ψ̂(ζ) log(ζ − ω) defines a germ of R̂Ω whose monodromy around ω is given
by 2πiψ̂.

Notation 2.6. Given a path γ : [a, b] → C, if ϕ̂ is a holomorphic germ at γ(a) which admits
an analytic continuation along γ, we denote by contγ ϕ̂ the resulting holomorphic germ at the
endpoint γ(b).

As is often the case with analytic continuation and Cauchy integrals, the precise parametri-
sation of our paths will usually not matter, in the sense that we shall get the same results from
two paths γ : [a, b] → C and γ′ : [a′, b′] → C which ony differ by a change of parametrisation
(γ = γ′ ◦σ with σ : [a, b] → [a′, b′] piecewise continuously differentiable, increasing and mapping
a to a′ and b to b′).

We identify C{ζ}, the space of power series with positive radius of convergence, with the
space of holomorphic germs at 0. Given ϕ̂ ∈ C{ζ}, we shall often denote by the same symbol ϕ̂
the holomorphic function it defines, or even the principal branch of its analytic continuation
when such a notion is well-defined.

3 The convolution of holomorphic germs at the origin

The convolution in C{ζ} is defined by the formula

ϕ̂ ∗ ψ̂(ζ) :=
∫ ζ

0
ϕ̂(ξ)ψ̂(ζ − ξ) dξ

for any ϕ̂, ψ̂ ∈ C{ζ}: the formula makes sense for |ζ| small enough and defines a holomorphic
germ at 0 whose disc of convergence contains the intersection of the discs of convergence of ϕ̂
and ψ̂. The convolution law ∗ is commutative and associative.1

The question we address in this article is the question of the stability of R̂Ω under convolu-
tion. As already mentioned, this is relevant when dealing with the formal solutions of nonlinear
problems and this is absolutely necessary to develop the theory of resurgent functions and alien
calculus for Ω-continuable germs.

This amounts to inquiring about the analytic continuation of the germ ϕ̂ ∗ ψ̂ when Ω-
continuability is assumed for ϕ̂ and ψ̂. Let us first mention an easy case, which is used in [DS12]
and [Sau10]:

Lemma 3.1. Let Ω be any non-empty closed discrete subset of C and suppose Â is an entire
function of C. Then, for any ϕ̂ ∈ R̂Ω, the convolution product Â ∗ ϕ̂ belongs to R̂Ω; its analytic
continuation along a path γ of C \Ω starting from a point ζ0 close enough to 0 and ending at a
point ζ1 is the holomorphic germ at ζ1 explicitly given by

contγ(Â ∗ ϕ̂)(ζ) =
∫ ζ0

0
Â(ζ − ξ)ϕ̂(ξ) dξ +

∫

γ
Â(ζ − ξ)ϕ̂(ξ) dξ +

∫ ζ

ζ1

Â(ζ − ξ)ϕ̂(ξ) dξ (1)

for ζ close enough to ζ1.

1Indeed, the formal Borel transform ϕ̃(z) =
∑

anz
−n−1 7→ ϕ̂(ζ) =

∑

an
ζn

n!
turns the Cauchy product of

z−1
C[[z−1]] into convolution (and the Laplace transform (Lϕ̂)(z) :=

∫ ∞

0
e−zζ ϕ̂(ζ) dζ turns the convolution into

the ordinary product of analytic functions).
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The proof is left as an exercise (see e.g. the proof of Lemma 5.3 for a formalized proof in
a more complicated situation), but we wish to emphasize that formulas such as (1) require a
word of caution: the value of Â(ζ − ξ) is unambiguously defined whatever ζ and ξ are, but in
the notation “ϕ̂(ξ)” it is understood that we are using the appropriate branch of the possibily
multiple-valued function ϕ̂; in such a formula, what branch we are using is clear from the
context:

− ϕ̂ is unambiguously defined in its disc of convergence D0 (centred at 0) and the first integral
thus makes sense for ζ0 ∈ D0;

− in the second integral ξ is moving along γ which is a path of analytic continuation for ϕ̂, we
thus consider the analytic continuation of ϕ̂ along the piece of γ between its origin and ξ;

− in the third integral, “ϕ̂” is to be understood as contγ ϕ̂, the germ at ζ1 resulting form the
analytic continuation of ϕ̂ along γ, this integral then makes sense for any ζ at a distance
from ζ1 less than the radius of convergence of contγ ϕ̂.

Using a parametrisation γ : [0, 1] → C \ Ω, with γ(0) = ζ0 and γ(1) = ζ1, and introducing
the truncated paths γs := γ|[0,s] for any s ∈ [0, 1], the interpretation of the last two integrals
in (1) is

∫

γ
Â(ζ − ξ)ϕ̂(ξ) dξ :=

∫ 1

0
Â(ζ − γ(s))(contγs ϕ̂)(γ(s))γ

′(s) ds,

∫ ζ

ζ1

Â(ζ − ξ)ϕ̂(ξ) dξ :=

∫ ζ

ζ1

Â(ζ − ξ)(contγ ϕ̂)(ξ) dξ.

4 Main result

We now wish to be able to consider the convolution of two Ω-continuable holomorphic germs
at 0 without assuming that any of them extends to an entire function. The main result of this
article is

Theorem 4.1. Let Ω be a non-empty closed discrete subset of C. Then the space R̂Ω is stable
under convolution if and only if Ω is stable under addition.

The necessary and sufficient condition on Ω is satisfied by the typical examples Z or 2πiZ,
but also by N

∗, Z+ iZ, N∗ + iN or {m+ n
√
2 | m,n ∈ N

∗} for instance.
The rest of the article is dedicated to the proof of Theorem 4.1. The necessity of the condition

on Ω will follow from the following elementary example:

Example 4.2 ([CNP93]). Let us consider ω1, ω2 ∈ C
∗, ϕ̂1(ζ) =

1
ζ−ω1

, ϕ̂2(ζ) =
1

ζ−ω2
and study

χ̂(ζ) = ϕ̂1 ∗ ϕ̂2(ζ) =

∫ ζ

0

1

(ξ − ω1)(ζ − ξ − ω2)
dξ, |ζ| < min

{

|ω1|, |ω2|
}

.

The formula
1

(ξ − ω1)(ζ − ξ − ω2)
=

1

ζ − ω1 − ω2

(

1

ξ − ω1
+

1

ζ − ξ − ω2

)
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shows that, for any ζ 6= ω1 + ω2 of modulus < min
{

|ω1|, |ω2|
}

, one can write

χ̂(ζ) =
1

ζ − ω1 − ω2

(

L1(ζ) + L2(ζ)
)

, Lj(ζ) :=

∫ ζ

0

dξ

ξ − ωj
(2)

(with the help of the change of variable ξ 7→ ζ − ξ in the case of L2).
Removing the half-lines ωj[1,+∞) from C, we obtain a cut plane ∆ in which χ̂ has a

meromorphic continuation (since [0, ζ] avoids the points ω1 and ω2 for all ζ ∈ ∆). We can in
fact follow the meromorphic continuation of χ̂ along any path which avoids ω1 and ω2, because

Lj(ζ) = −
∫ ζ/ωj

0

dξ

1− ξ
= log

(

1− ζ

ωj

)

∈ R̂{ωj}.

We used the words “meromorphic continuation” and not “analytic continuation” because of the
factor 1

ζ−ω1−ω2
. The conclusion is thus only χ̂ ∈ R̂Ω, with Ω := {ω1, ω2, ω1 + ω2}.

– If ω := ω1 + ω2 ∈ ∆, the principal branch of χ̂ (i.e. its meromorphic continuation to ∆)
has a removable singularity2 at ω, because (L1 + L2)(ω) =

∫ ω
0

dξ
ξ−ω1

+
∫ ω
0

dξ
ξ−ω2

= 0 in that case
(by the change of variable ξ 7→ ω− ξ in one of the integrals). But it is easy to see that this does
not happen for all the branches of χ̂: when considering all the paths γ going from 0 to ω and
avoiding ω1 and ω2, we have

contγ Lj(ω) =

∫

γ

dξ

ξ − ωj
, j = 1, 2,

hence 1
2πi

(

contγ L1(ω) + contγ L2(ω)
)

is the sum of the winding numbers around ω1 and ω2 of
the loop obtained by concatenating γ and the line segment [ω, 0]; elementary geometry shows
that this sum of winding numbers can take all integer values, but whenever this value is non-zero
the corresponding branch of χ̂ does have a pole at ω.

– The case ω /∈ ∆ is slightly different. Then we can write ωj = rj e
iθ with r1, r2 > 0 and

consider the path γ0 which follows the segment [0, ω] except that it circumvents ω1 and ω2

by small half-circles travelled anti-clockwise (notice that ω1 and ω2 may coincide); an easy
computation yields

contγ0 L1(ω) =

∫ −1

−r1

dξ

ξ
+

∫ r2

1

dξ

ξ
+

∫

Γ0

dξ

ξ
,

where Γ0 is the half-circle from−1 to 1 with radius 1 travelled anti-clockwise, hence contγ0 L1(ω) =
log r2

r1
+ iπ, similarly contγ0 L2(ω) = log r1

r2
+ iπ, therefore contγ L1(ω) + contγ L2(ω) = 2πi is

non-zero and this again yields a branch of χ̂ with a pole at ω (and infinitely many others by
using other paths than γ0).

In all cases, there are paths from 0 to ω1 + ω2 which avoid ω1 and ω2 and which are not
paths of analytic continuation for χ̂. This example thus shows that R̂{ω1,ω2} is not stable under
convolution: it contains ϕ̂1 and ϕ̂2 but not ϕ̂1 ∗ ϕ̂2.

Now we see that for R̂Ω to be stable under convolution it is necessary that Ω be stable under
addition: if not, one can find ω1, ω2 ∈ Ω such that ω1 + ω2 /∈ Ω and Example 4.2 then yields
ϕ̂1, ϕ̂2 ∈ R̂Ω with ϕ̂1 ∗ ϕ̂2 /∈ R̂Ω. This gives the easy part of Theorem 4.1.

2This is consistent with the well-known fact that the space of holomorphic functions of an open set ∆ which
is star-shaped with respect to 0 is stable under convolution.
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Figure 1: A symmetric Ω-homotopy, with its initial path Ha, its final path Hb and its endpoint-
path γ = ΓH .

5 Proof of the main result: Analytic part

From now on we assume that Ω is stable under addition. Our aim is to prove that this is
sufficient to entail the stability under convolution of R̂Ω. We begin with a definition, illustrated
by Figure 1:

Definition 5.1. A continuous map H : I×J → C, where I = [0, 1] and J is a compact interval
of R, is called a symmetric Ω-homotopy if, for each t ∈ J ,

s ∈ I 7→ Ht(s) := H(s, t)

defines a path which satisfies

i) Ht(0) = 0,

ii) Ht

(

(0, 1]
)

⊂ C \ Ω,

iii) Ht(1)−Ht(s) = Ht(1− s) for every s ∈ I.

We then call endpoint path of H the path

ΓH : t ∈ J 7→ Ht(1).

Writing J = [a, b], we call Ha (resp. Hb) the initial path of H (resp. its final path).

The first two conditions imply that each path Ht is a path of analytic continuation for any
ϕ̂ ∈ R̂Ω, in view of Remark 2.2.

We shall use the notation Ht|s for the truncated paths (Ht)|[0,s], s ∈ I, t ∈ J (analogously
to what we did when commenting Lemma 3.1). Here is a technical statement we shall use:

Lemma 5.2. For a symmetric Ω-homotopy H defined on I × J , there exists δ > 0 such that,
for any ϕ̂ ∈ R̂Ω and (s, t) ∈ I×J , the radius of convergence of the holomorphic germ contHt|s

ϕ̂
at Ht(s) is at least δ.
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Proof. Let ρ be as in Remark 2.2. Consider U := H−1(Dρ/2): this is an open subset of I × J
which contains {0}×J ; we define U0 to be the connected component of U which contains {0}×J ,
K := I × J \ U0 and δ := min

{

dist
(

H(K),Ω
)

, ρ/2
}

.
We have δ > 0 because H(K) is compact (since K is compact) and H(K) ⊂ C \ Ω (since

K ⊂ (0, 1] × J). Now, for any s and t,

– either (s, t) ∈ U0, then [0, s]×{t} ⊂ U0, the truncated path Ht|s lies in H(U0) ⊂ Dρ/2, hence
contHt|s

ϕ̂ is a holomorphic germ at Ht(s) with radius of convergence ≥ δ;

– or (s, t) ∈ K, and then dist(Ht(s),Ω) ≥ δ, which yields the same conclusion for the germ
contHt|s

ϕ̂.

The third condition in Definition 5.1 means that each path Ht is symmetric with respect to
its midpoint 1

2Ht(1). Here is the motivation behind this requirement:

Lemma 5.3. Suppose H is a symmetric Ω-homotopy whose initial path is contained in Dρ,
with ρ as in Remark 2.2. Then its endpoint path ΓH is a path of analytic continuation for any
convolution product ϕ̂ ∗ ψ̂ with ϕ̂, ψ̂ ∈ R̂Ω.

Proof. We assume that H is defined on I×J and we set γ := ΓH . Let ϕ̂, ψ̂ ∈ R̂Ω and, for t ∈ J ,
consider the formula

χ̂t(ζ) =

∫

Ht

ϕ̂(ξ)ψ̂(ζ − ξ) dξ +

∫ ζ

γ(t)
ϕ̂(ξ)ψ̂(ζ − ξ) dξ (3)

(recall that γ(t) = Ht(1)). We shall check that χ̂t is a well-defined holomorphic germ at γ(t)
and that it provides the analytic continuation of ϕ̂ ∗ ψ̂ along γ.

a) The idea is that when ξ moves along Ht, ξ = Ht(s) with s ∈ I, we can use for “ϕ̂(ξ)” the
analytic continuation of ϕ̂ along the truncated path Ht|s; correspondingly, if ζ is close to γ(t),

then ζ − ξ is close to γ(t) − ξ = Ht(1) − Ht(s) = Ht(1 − s), thus for “ψ̂(ζ − ξ)” we can use
the analytic continuation of ψ̂ along Ht|1−s. In other words, setting ζ = γ(t) + σ, we wish to
interpret (3) as

χ̂t(γ(t) + σ) :=

∫ 1

0
(contHt|s

ϕ̂)(Ht(s))(contHt|1−s
ψ̂)(Ht(1− s) + σ)H ′

t(s) ds

+

∫ 1

0
(contHt ϕ̂)(γ(t) + uσ)ψ̂((1− u)σ)σ du (4)

(in the last integral, we have performed the change variable ξ = γ(t) + uσ; it is the germ of ψ̂
at the origin that we use there).

Lemma 5.2 provides δ > 0 such that, by regular dependence of the integrals upon the
parameter σ, the right-hand side of (4) is holomorphic for |σ| < δ. We thus have a family of
analytic elements (χ̂t,Dt), t ∈ J , with Dt := { ζ ∈ C | |ζ − γ(t)| < δ }.
b) For t small enough, the path Ht is contained in Dρ which is open and simply connected;
then, for |ζ| small enough, the line segment [0, ζ] and the concatenation of Ht and [γ(t), ζ] are
homotopic in Dρ, hence the Cauchy theorem implies χ̂t(ζ) = ϕ̂ ∗ ψ̂(ζ).

7



c) By uniform continuity, there exists ε > 0 such that, for any t0, t ∈ J ,

|t− t0| ≤ ε =⇒ |Ht(s)−Ht0(s)| < δ/2 for all s ∈ I. (5)

To complete the proof, we check that, for any t0 < t1 in J such that |t1 − t0| ≤ ε, we have
χ̂t0 ≡ χ̂t1 in Dt0 ∩Dt1 .

Because of (5), the assumption |t1 − t0| ≤ ε implies that, for t ∈ [t0, t1], s ∈ I and |ξ −
Ht0(s)| < δ,

contHt|s
ϕ̂(ξ) = contHt0|s

ϕ̂(ξ), contHt|1−s
ψ̂(ξ) = contHt0|1−s

ψ̂(ξ).

Thus, as soon as t ∈ [t0, t1] and |ζ − γ(t0)| < δ/2, we can write

χ̂t(ζ) =

∫ 1

0
(contHt0|s

ϕ̂)(Ht(s))(contHt0,1−s
ψ̂)(ζ −Ht(s))H

′
t(s) ds

+

∫ ζ

γ(t)
(contHt0

ϕ̂)(ξ)ψ̂(ζ − ξ) dξ

and we get χ̂t0(ζ) = χ̂t(ζ) from the Cauchy theorem by means of the homotopy induced by H
between the concatenation of Ht0 and [γ(t0), ζ] and the concatenation of Ht and [γ(t), ζ].

Remark 5.4. Definition 5.1 is not really new: when the initial path Ha is a line segment
contained in Dρ, the final path Hb is what Écalle calls a “symmetrically contractile path” in

[Eca81]. The proof of Lemma 5.3 shows that the analytic continuation of ϕ̂∗ψ̂ until the endpoint
Hb(1) = ΓH(b) can be computed by the usual integral taken over Hb (however, it usually cannot
be computed as the same integral over the endpoint path ΓH , even when the latter integral is
well-defined).

6 Proof of the main result: Geometric part

6.1 The key lemma

In view of Lemma 5.3, the proof of Theorem 4.1 will be complete if we prove the following
purely geometric result:

Lemma 6.1. For any path γ : I = [0, 1] → C \ Ω such that γ(0) ∈ D
∗
ρ and the left and right

derivatives γ′± do not vanish on I, there exists a symmetric Ω-homotopy H on I × I whose
endpoint path is γ and whose initial path is a line segment, i.e. ΓH = γ and H0(s) ≡ sγ(0).

The proof is strikingly simple when γ does not pass through 0, which is automatic if we
assume 0 ∈ Ω. The general case requires an extra work which is technical and involves a quan-
titative version of the simpler case. With a view to helping the reader to grasp the mechanism
of the proof, we thus begin with the case when 0 ∈ Ω.

6.2 Proof of the key lemma when 0 ∈ Ω

Assume that γ is given as in the hypothesis of Lemma 6.1. We are looking for a symmetric
Ω-homotopy whose initial path is imposed: it must be

s ∈ I 7→ H0(s) := sγ(0),

which satisfies the three requirements of Definition 5.1 at t = 0:

8



(i) H0(0) = 0,

(ii) H0

(

(0, 1]
)

⊂ C \ Ω,

(iii) H0(1)−H0(s) = H0(1− s) for every s ∈ I.

The idea is to define a family of maps (Ψt)t∈[0,1] so that

Ht(s) := Ψt

(

H0(s)
)

, s ∈ I, (6)

yield the desired homotopy. For that, it is sufficient that (t, ζ) ∈ [0, 1]×C 7→ Ψt(ζ) be continu-
ously differentiable (for the structure of real two-dimensional vector space of C), Ψ0 = Id and,
for each t ∈ [0, 1],

(i’) Ψt(0) = 0,

(ii’) Ψt(C \Ω) ⊂ C \ Ω,

(iii’) Ψt

(

γ(0) − ζ
)

= Ψt

(

γ(0)
)

−Ψt(ζ) for all ζ ∈ C,

(iv’) Ψt

(

γ(0)
)

= γ(t).

In fact, the properties (i’)–(iv’) ensure that any initial path H0 satisfying (i)–(iii) and ending
at γ(0) produces through (6) a symmetric Ω-homotopy whose endpoint path is γ. Consequently,
we may assume without loss of generality that γ is C1 on [0, 1] (then, if γ is only piecewise C1,
we just need to concatenate the symmetric Ω-homotopies associated with the various pieces).

The maps Ψt will be generated by the flow of a non-autonomous vector fieldX(ζ, t) associated
with γ that we now define. We view (C, | · |) as a real 2-dimensional Banach space and pick3 a
C1 function η : C → [0, 1] such that

{ ζ ∈ C | η(ζ) = 0 } = Ω.

Observe that D(ζ, t) := η(ζ) + η
(

γ(t)− ζ
)

defines a C1 function of (ζ, t) which satisfies

D(ζ, t) > 0 for all ζ ∈ C and t ∈ [0, 1]

because Ω is stable under addition; indeed, D(ζ, t) = 0 would imply ζ ∈ Ω and γ(t) − ζ ∈ Ω,
hence γ(t) ∈ Ω, which would contradict our assumptions. Therefore, the formula

X(ζ, t) :=
η(ζ)

η(ζ) + η
(

γ(t)− ζ
)γ′(t) (7)

defines a non-autonomous vector field, which is continuous in (ζ, t) on C × [0, 1], C1 in ζ and
has its partial derivatives continuous in (ζ, t). The Cauchy-Lipschitz theorem on the existence
and uniqueness of solutions to differential equations applies to dζ

dt = X(ζ, t): for every ζ ∈ C

and t0 ∈ [0, 1] there is a unique solution t 7→ Φt0,t(ζ) such that Φt0,t0(ζ) = ζ. The fact that the

3For instance pick a C1 function ϕ0 : R → [0, 1] such that {x ∈ R | ϕ0(x) = 1 } = {0} and ϕ0(x) = 0 for

|x| ≥ 1, and a bijection ω : N → Ω; then set δk := dist
(

ω(k),Ω \ {ω(k)}
)

> 0 and σ(ζ) :=
∑

k
ϕ0

( 4|ζ−ω(k)|2

δ2
k

)

: for

each ζ ∈ C there is at most one non-zero term in this series (because k 6= ℓ, |ζ−ω(k)| < δk/2 and |ζ−ω(ℓ)| < δℓ/2
would imply |ω(k) − ω(ℓ)| < (δk + δℓ)/2, which would contradict |ω(k) − ω(ℓ)| ≥ δk and δℓ), thus σ is C1, takes
its values in [0, 1] and satisfies { ζ ∈ C | σ(ζ) = 1 } = Ω, therefore η := 1− σ will do. Other solution: adapt the
proof of Lemma 6.3.
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vector field X is bounded implies that Φt0,t(ζ) is defined for all t ∈ [0, 1] and the classical theory
guarantees that (t0, t, ζ) 7→ Φt0,t(ζ) is C1 on [0, 1] × [0, 1] × C.

Let us set Ψt := Φ0,t for t ∈ [0, 1] and check that this family of maps satisfies (i’)–(iv’). We
have

X(ω, t) = 0 for all ω ∈ Ω, (8)

X
(

γ(t)− ζ, t
)

= γ′(t)−X(ζ, t) for all ζ ∈ C (9)

for all t ∈ [0, 1] (by the very definition of X). Therefore

• (i’) and (ii’) follow from (8) which yields Φt0,t(ω) = ω for every t0 and t, whence Ψt(0) = 0
since 0 ∈ Ω, and from the non-autonomous flow property Φt,0 ◦Φ0,t = Id (hence Ψt(ζ) = ω
implies ζ = Φt,0(ω) = ω);

• (iv’) follows from the fact that X
(

γ(t), t
)

= γ′(t), by (8) and (9) with ζ = 0, using again
that 0 ∈ Ω, hence t 7→ γ(t) is a solution of X;

• (iii’) follows from (9): for any solution t 7→ ζ(t), the curve t 7→ ξ(t) := γ(t)− ζ(t) satisfies
ξ(0) = γ(0) − ζ(0) and ξ′(t) = γ′(t) − X

(

ζ(t), t
)

= X
(

ξ(t), t
)

, hence it is a solution:
ξ(t) = Ψt

(

γ(0) − ζ(0)
)

.

As explained above, formula (6) thus produces the desired symmetric Ω-homotopy.

Remark 6.2. Our proof of Lemma 6.1, which essentially relies on the use of the flow of the non-
autonomous vector field (7), arose as an attempt to understand a related but more complicated
construction which can be found in an appendix of the book [CNP93] (however the vector field
there was autonomous and we must confess that we were not able to follow completely the
arguments of [CNP93]).

6.3 Proof of the key lemma when 0 /∈ Ω

From now on, we suppose 0 /∈ Ω and we use the notation

Ωε := { ζ ∈ C | dist(ζ,Ω) < ε }

for any ε > 0, hence Ωε = { ζ ∈ C | dist(ζ,Ω) ≤ ε }. We shall require the following technical

Lemma 6.3. For any ε > 0 there exists a C1 function η : C → [0, 1] such that

{ ζ ∈ C | η(ζ) = 0 } = {0} ∪ Ωε.

Proof. Pick a C1 function χ : R → [0, 1] such that {x ∈ R | χ(x) = 0 } = [−ε2, ε2] and χ(x) = 1
for |x| ≥ (1 + ε)2, and a bijection ω : N

∗ → Ω. For each k ∈ N
∗, ηk(ζ) := χ

(

|ζ − ω(k)|2
)

defines

a C1 function on C such that η−1
k (0) = D(ω(k), ε) and ηk ≡ 1 on C \D(ω(k), 1 + ε). Consider

the infinite product

η∗(ζ) :=
∏

k∈N∗

ηk(ζ). (10)

For any bounded open subset U of C, the set FU := { k ∈ N
∗ | U ∩ D(ω(k), 1 + ε) 6= ∅ } is

finite (because Ω is discrete), thus almost all the factors in (10) are equal to 1 when ζ ∈ U :
(η∗)|U =

∏

k∈FU
(ηk)|U , hence η∗ is C1, takes its values in [0, 1] and

η−1
∗ (0) ∩ U =

⋃

k∈FU

D(ω(k), ε) ∩ U,
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whence it follows that η−1
∗ (0) = Ωε.

If 0 ∈ Ωε, then one can take η = η∗. If not, then one can take the product η = η0η∗ with
η0(ζ) := χ0(|ζ|2), where χ0 is any C

1 function on R which takes its values in [0, 1] and such that
χ−1
0 (0) = {0}.

We now repeat the work of the previous section replacing Ω with {0}∪Ω, adding quantitative
information (we still assume that we are given a path which does not pass through 0 but we
want to control the way the corresponding symmetric Ω-homotopy approaches the points of Ω)
and authorizing a more general initial path than a rectilinear one.

Lemma 6.4. Let δ, δ′ > 0 with δ′ < δ/2. Suppose that J = [a, b] is a compact interval of R and
γ : J → C is a path such that

0 /∈ γ(J) and γ(J) ⊂ C \Ωδ.

Suppose that h : I → C is a C1 path such that

(i) h(0) = 0,

(ii) h(I) ⊂ C \Ωδ′ ,

(iii) h(1− s) = h(1) − h(s) for all s ∈ I,

(iv) h(1) = γ(a).

Then there exists a symmetric Ω-homotopy H defined on I × J , whose initial path is h, whose
endpoint path is γ, which satisfies H(I × J) ⊂ C \ Ωδ′ and whose final path is C1.

Proof. We may assume without loss of generality that γ is C1 on J (if γ is only piecewise C1,
we just need to concatenate the symmetric Ω-homotopies associated with the various pieces).
We shall define a family of maps (Ψt)t∈J so that

Ht(s) := Ψt

(

h(s)
)

, s ∈ I, (11)

yield the desired homotopy. For that, it is sufficient that (t, ζ) ∈ J×C 7→ Ψt(ζ) be continuously
differentiable, Ψ0 = Id and, for each t ∈ J ,

(i’) Ψt(0) = 0,

(ii’) Ψt(C \Ωδ′) ⊂ C \Ωδ′ ,

(iii’) Ψt

(

γ(0) − ζ
)

= Ψt

(

γ(0)
)

−Ψt(ζ) for all ζ ∈ C,

(iv’) Ψt

(

γ(a)
)

= γ(t).

As in Section 6.2, our maps Ψt will be generated by a non-autonomous vector field.
Lemma 6.3 allows us to choose a C1 function η : C → [0, 1] such that

{ ζ ∈ C | η(ζ) = 0 } = {0} ∪ Ωδ′ .

We observe that D(ζ, t) := η(ζ) + η
(

γ(t)− ζ
)

defines a C1 function of (ζ, t) which satisfies

D(ζ, t) > 0 for all ζ ∈ C and t ∈ [0, 1]

11



because Ω is stable under addition; indeed, D(ζ, t) = 0 would imply that both ζ and γ(t)−ζ lie in
{0}∪Ωδ′ , hence γ(t) ∈ {0}∪Ω2δ′ , which would contradict our assumption γ(J) ⊂ C\

(

{0}∪Ωδ

)

.
Therefore the formula

X(ζ, t) :=
η(ζ)

η(ζ) + η
(

γ(t)− ζ
)γ′(t), (ζ, t) ∈ C× J,

defines a non-autonomous vector field whose flow (Φt0,t)t0,t∈J allows one to conclude the proof
exactly as in Section 6.2, setting Ψt := Φa,t and replacing (8) with

X(ω, t) = 0 for all ω ∈ {0} ∪ Ωδ′ .

We now consider the case of a path γ which entirely lies close to 0.

Lemma 6.5. Let ε, δ′ > 0 with 0 < ε < δ′. Suppose that K = [a, b] is a compact interval of R
and γ : K → C is a path such that

γ(K) ⊂ Dε/2.

Suppose that h : I → C is a C1 path such that

(i) h(0) = 0,

(ii) h(I) ⊂ C \Ωδ′ ,

(iii) h(1− s) = h(1) − h(s) for all s ∈ I,

(iv) h(1) = γ(a).

Then there exists a symmetric Ω-homotopy H defined on I ×K, whose initial path is h, whose
endpoint path is γ, which satisfies

H(I ×K) ⊂ C \ Ωδ′′ with δ′′ := δ′ − ε

and whose final path is C1.

Proof. Define H(s, t) := h(s) + s
(

γ(t)− γ(a)
)

. This way H(s, a) = h(s), H(1, t) = γ(t) and H
is a symmetric Ω-homotopy as required: H(0, t) = 0, H(s, t) +H(1 − s, t) = h(s) + h(1 − s) +
γ(t)− γ(a) = γ(t), dist

(

H(s, t),Ω
)

≥ dist
(

h(s),Ω) − |γ(t) − γ(a)| ≥ δ′ − ε.

Proof of the key-lemma when 0 /∈ Ω. Let γ be as in the hypothesis of Lemma 6.1. Without
loss of generality, we can assume γ(1) 6= 0 (if not, view γ as the restriction of a path γ̃ : [0, 2] →
C \ Ω such that γ(2) 6= 0, with which is associated a symmetric Ω-homotopy H̃ defined on
I × [0, 2], and restrict H̃ to I × [0, 1]). Let δ := dist

(

Ω, γ([0, 1])
)

.
The set Z := { t ∈ [0, 1] | γ(t) = 0 } is closed; it is also discrete because of the non-vanishing

of the derivatives of γ, thus it has a finite cardinality N ∈ N. If N = 0, then we can apply
Lemma 6.4 with J = [0, 1] and h(s) ≡ sγ(0) and the proof is complete.

From now on we suppose N ≥ 1. Let us write

Z = {t1, . . . , tN} with 0 < t1 < · · · < tN < 1.
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We define

δ0 :=
1

2
min

{δ

2
, ρ− |γ(0)|

}

and ε := min
{

|γ(0)|, |γ(1)|, δ0
N + 1

}

.

The continuity of γ allows us to find pairwise disjoint closed intervals of positive lengths
K1, . . . ,KN such that

tj ∈ K̊j and γ(Kj) ⊂ Dε/2, j = 1, . . . , N.

By considering the connected components of [0, 1] \ ⋃

Kj and taking their closures, we get
adjacent closed subintervals of positive lengths of [0, 1],

J0,K1, J1,K2, . . . , JN−1,KN , JN

with Jj = [aj , bj ], Kj = [bj−1, aj ], a0 = 0, bN = 1. Observe that

0 /∈ γ(Jj) and γ(Jj) ⊂ C \Ωδ, j = 0, . . . , N.

• We apply Lemma 6.4 with J = J0 = [0, b0], h(s) ≡ sγ(0) and δ′ = δ0 (which is allowed by
the choice of δ0): we get a symmetric Ω-homotopy H defined on I × J0 whose initial path
is the line segment [0, γ(0)], whose endpoint path is γ|J0 and whose final path Hb0 is C1

and lies in C \ Ωδ0 .

• We apply Lemma 6.5 with K = K1, δ
′ = δ0 and h = Hb0 : we get an extension of our

symmetric Ω-homotopy H to I ×K1, in which the enpoint path is extended by γ|K1
and

the final path is now Ha1 , a C
1 path contained in C \ Ωδ1 with δ1 := δ0 − ε.

• And so on: we apply alternatively Lemma 6.5 on Kj and Lemma 6.4 on Jj: we get an
extension of the symmetric Ω-homotopy H to I ×Kj or I × Jj such that both Haj (I) and
Hbj (I) are contained in C \ Ωδj with δj := δ0 − jε.

When we reach j = N , the proof of Lemma 6.1 is complete.
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