On the stability under convolution of resurgent functions

David Sauzin

January 5, 2012

Abstract

This article contains a self-contained proof of the stability under convolution of the class of resurgent functions associated with a closed discrete subset Ω of \mathbb{C}, under the assumption that Ω, the set of possible singularities, be stable under addition.

1 The Ω-continuable germs

For any closed discrete subset of \mathbb{C}, we introduce the definition Ω-continuability, which can be rephrased as holomorphy on a certain Riemann surface which depends only on Ω. It is a particular case of the notion of endless continuability due to J. Écalle, at the basis of his theory of resurgent functions [Eca81], [Mal85]. ${ }^{1}$ Our aim is to give a rigorous and self-contained treatment of the stability under convolution of this class of resurgent functions, with more details and more complete explanations than in [Sau06] which was dealing with the particular case $\Omega=2 \pi \mathrm{i} \mathbb{Z}$. (The article [Ou10] proposes another approach for the latter case.)

For any $R>0$ and $\zeta_{0} \in \mathbb{C}$ we use the notations $\mathbb{D}_{R}:=\{\zeta \in \mathbb{C}| | \zeta \mid<R\}, \mathbb{D}_{R}^{*}:=\mathbb{D}_{R} \backslash\{0\}$ and $D\left(\zeta_{0}, R\right):=\left\{\zeta \in \mathbb{C}| | \zeta-\zeta_{0} \mid<R\right\}$. In this article, "path" means a piecewise C^{1} function $\gamma: J \rightarrow \mathbb{C}$, where J is a compact interval of \mathbb{R}.

Definition 1.1. Let Ω be a non-empty closed discrete subset of \mathbb{C}, let $\hat{\varphi}(\zeta) \in \mathbb{C}\{\zeta\}$ be a holomorphic germ at the origin. We say that $\hat{\varphi}$ is Ω-continuable if there exists $R>0$ such that \mathbb{D}_{R}^{*} is contained in the disc of convergence of $\hat{\varphi}, \mathbb{D}_{R}^{*} \cap \Omega=\emptyset$ and $\hat{\varphi}$ admits analytic continuation along any path of $\mathbb{C} \backslash \Omega$ originating from any point of \mathbb{D}_{R}^{*}. We use the notation

$$
\hat{\mathscr{R}}_{\Omega}:=\{\text { all } \Omega \text {-continuable holomorphic germs }\} \subset \mathbb{C}\{\zeta\} \text {. }
$$

The theory can be developed in a greater generality (see particularly [Eca81], Vol. 3, or [CNP93], where a function is defined to be resurgent if it can be analytically continued to an "endless" Riemann surface which may depend on the function), but Definition 1.1 already covers interesting cases: one encounters examples of Ω-continuable germs with $\Omega=\mathbb{N}^{*}$ or $\Omega=\mathbb{Z}$ when dealing with differential equations formally conjugate to the Euler equation (in the study of the saddle-node singularities) [Eca84], [Sau10], or with $2 \pi \mathrm{i} \mathbb{Z}$ when dealing with certain difference equations like Abel's equation for parabolic germs (in holomorphic dynamics) [Eca81], [Sau06], [Sau12].

[^0]Remark 1.2. As is often the case with analytic continuation and Cauchy integrals, the precise parametrisation of γ will usually not matter, in the sense that we shall get the same result from two paths $\gamma:[a, b] \rightarrow \mathbb{C} \backslash \Omega$ and $\gamma^{\prime}:\left[a^{\prime}, b^{\prime}\right] \rightarrow \mathbb{C} \backslash \Omega$ which ony differ by a change of parametrisation $\left(\gamma=\gamma^{\prime} \circ \sigma\right.$ with $\sigma:[a, b] \rightarrow\left[a^{\prime}, b^{\prime}\right]$ piecewise continuously differentiable, increasing and mapping a to a^{\prime} and b to $\left.b^{\prime}\right)$.

If $\hat{\varphi}$ is a holomorphic germ at $\gamma($ a) which admits an analytic continuation along γ, we denote by cont ${ }_{\gamma} \hat{\varphi}$ the resulting holomorphic germ at the endpoint $\gamma(b)$.

Remark 1.3. Let $\rho:=\min \{|\omega|, \omega \in \Omega \backslash\{0\}\}$. Any $\hat{\varphi} \in \hat{\mathscr{R}}_{\Omega}$ is a holomorphic germ at 0 with radius of convergence $\geq \rho$ and one can always take $R=\rho$ in Definition 1.1. In fact, even if $0 \in \Omega$, for arbitrary $\zeta_{0} \in \mathbb{D}_{\rho}$ we have

$$
\hat{\varphi} \in \hat{\mathscr{R}}_{\Omega} \Longleftrightarrow \left\lvert\, \begin{aligned}
& \hat{\varphi} \text { holomorphic function of } \mathbb{D}_{\rho} \text { admitting analytic continuation along } \\
& \text { any path } \gamma:[0,1] \rightarrow \mathbb{C} \text { such that } \gamma(0)=\zeta_{0} \text { and } \gamma((0,1]) \subset \mathbb{C} \backslash \Omega
\end{aligned}\right.
$$

(even if $\zeta_{0}=0$: there is no need to avoid 0 at the beginning of the path, when we still are in the disc of convergence of $\hat{\varphi})$.

Example 1.1. A trivial example of Ω-continuable germ is any entire function of \mathbb{C}. Other elementary examples of Ω-continuable germs are the functions which are holomorphic in $\mathbb{C} \backslash$ Ω and regular at 0 , like $\frac{1}{(\zeta-\omega)^{m}}$ with $m \in \mathbb{N}^{*}$ and $\omega \in \Omega \backslash\{0\}$. But these are still singlevalued examples, whereas the interest of the Definition 1.1 is to authorize multivaluedness when following the analytic continuation. Elementary examples of multivalued continuation are provided by $\sum_{n \geq 1} \frac{\zeta^{n}}{n}=-\log (1-\zeta)$ (principal branch of the logarithm), which is $\{1\}-$ continuable, and $\sum_{n \geq 0} \frac{\zeta^{n}}{n+1}=-\frac{1}{\zeta} \log (1-\zeta)$, which is $\{0,1\}$-continuable.

Example 1.2. If $\omega \in \mathbb{C}^{*}$ and $m \in \mathbb{N}^{*}$, then $(\log (\zeta-\omega))^{m} \in \hat{\mathscr{R}}_{\{\omega\}}$; if moreover $\omega \neq-1$, then $(\log (\zeta-\omega))^{-m} \in \hat{\mathscr{R}}_{\{\omega, \omega+1\}}$.

Example 1.3. If Ω is a closed discrete subset of $\mathbb{C}, 0 \notin \Omega, \omega \in \Omega$ and $\hat{\psi}$ is holomorphic in $\mathbb{C} \backslash \Omega$, then $\hat{\varphi}(\zeta)=\hat{\psi}(\zeta) \log (\zeta-\omega)$ defines a germ of $\hat{\mathscr{R}}_{\Omega}$ whose monodromy around ω is given by $2 \pi \mathrm{i} \hat{\psi}$.

2 The convolution of holomorphic germs at the origin

The convolution in $\mathbb{C}\{\zeta\}$ is defined by the formula

$$
\hat{\varphi} * \hat{\psi}(\zeta):=\int_{0}^{\zeta} \hat{\varphi}(\xi) \hat{\psi}(\zeta-\xi) \mathrm{d} \xi
$$

for any $\hat{\varphi}, \hat{\psi} \in \mathbb{C}\{\zeta\}$: the formula makes sense for $|\zeta|$ close enough and defines a holomorphic germ at 0 whose disc of convergence contains the intersection of the discs of convergence of $\hat{\varphi}$ and $\hat{\psi}$. The convolution law $*$ is commutative and associative. ${ }^{2}$

The question we address in this article is the question of the stability of $\hat{\mathscr{R}}_{\Omega}$ under convolution. This amounts to inquiring about the analytic continuation of the germ $\hat{\varphi} * \hat{\psi}$ when Ω-continuability is assumed for $\hat{\varphi}$ and $\hat{\psi}$. Let us first mention an easy case:

[^1]Lemma 2.1. Let Ω be any non-empty closed discrete subset of \mathbb{C} and suppose \hat{A} is an entire function of \mathbb{C}. Then, for any $\hat{\varphi} \in \hat{\mathscr{R}}_{\Omega}$, the convolution product $\hat{A} * \hat{\varphi}$ belongs to $\hat{\mathscr{R}}_{\Omega}$; its analytic continuation along a path γ of $\mathbb{C} \backslash \Omega$ starting from a point ζ_{0} close enough to 0 and ending at a point ζ_{1} is the holomorphic germ at ζ_{1} explicitly given by

$$
\begin{equation*}
\operatorname{cont}_{\gamma}(\hat{A} * \hat{\varphi})(\zeta)=\int_{0}^{\zeta_{0}} \hat{A}(\zeta-\xi) \hat{\varphi}(\xi) \mathrm{d} \xi+\int_{\gamma} \hat{A}(\zeta-\xi) \hat{\varphi}(\xi) \mathrm{d} \xi+\int_{\zeta_{1}}^{\zeta} \hat{A}(\zeta-\xi) \hat{\varphi}(\xi) \mathrm{d} \xi \tag{1}
\end{equation*}
$$

for ζ close enough to ζ_{1}.
The proof is left as an exercise, but we wish to emphasize that formulas such as (1) require a word of caution: the value of $\hat{A}(\zeta-\xi)$ is unambiguously defined whatever ζ and ξ are, but in the notation " $\hat{\varphi}(\xi)$ " it is understood that we are using the appropriate branch of the possibily multivalued function $\hat{\varphi}$; in such a formula, what branch we are using is clear from the context:

- $\hat{\varphi}$ is unambiguously defined in its disc of convergence D_{0} (centred at 0) and the first integral thus makes sense for $\zeta_{0} \in D_{0}$;
- in the second integral ξ is moving along γ which is a path of analytic continuation for $\hat{\varphi}$, we thus consider the analytic continuation of $\hat{\varphi}$ along the piece of γ between its origin and ξ;
- in the third integral, " $\hat{\varphi}$ " is to be understood as $\operatorname{cont}_{\gamma} \hat{\varphi}$, the germ at ζ_{1} resulting form the analytic continuation of $\hat{\varphi}$ along γ, this integral thus makes sense for any ζ at a distance from ζ_{1} less than the radius of convergence of cont $_{\gamma} \hat{\varphi}$.
Using a parametrisation $\gamma:[0,1] \rightarrow \mathbb{C} \backslash \Omega$, with $\gamma(0)=\zeta_{0}$ and $\gamma(1)=\zeta_{1}$, and introducing the truncated paths $\gamma_{s}:=\gamma_{[0, s]}$ for any $s \in[0,1]$, the interpretation of the last two integrals in (1) is

$$
\begin{aligned}
\int_{\gamma} \hat{A}(\zeta-\xi) \hat{\varphi}(\xi) \mathrm{d} \xi & :=\int_{0}^{1} \hat{A}(\zeta-\gamma(s))\left(\operatorname{cont}_{\gamma_{s}} \hat{\varphi}\right)(\gamma(s)) \gamma^{\prime}(s) \mathrm{d} s \\
\int_{\zeta_{1}}^{\zeta} \hat{A}(\zeta-\xi) \hat{\varphi}(\xi) \mathrm{d} \xi & :=\int_{\zeta_{1}}^{\zeta} \hat{A}(\zeta-\xi)\left(\operatorname{cont}_{\gamma} \hat{\varphi}\right)(\xi) \mathrm{d} \xi
\end{aligned}
$$

3 Main result

We now wish to consider the case of the convolution of two Ω-continuable holomorphic germs at $0, \hat{\varphi}$ and $\hat{\psi}$, without assuming that any of them extends to an entire function. The main result of this article is

Theorem 3.1. Let Ω be a non-empty closed discrete subset of \mathbb{C} which is stable by addition. Then the space $\hat{\mathscr{R}}_{\Omega}$ is stable by convolution.

The hypothesis on Ω is satisfied by the typical examples \mathbb{Z} or $2 \pi \mathrm{i} \mathbb{Z}$, but also by $\mathbb{N}^{*}, \mathbb{Z} \times \mathbb{Z}$, $\mathbb{N}^{*} \times \mathbb{N}$ or $\left\{m+n \sqrt{2} \mid m, n \in \mathbb{N}^{*}\right\}$ for instance. An elementary example will convince us that the stability of Ω under addition is a necessary condition for the conclusion:
Example 3.1 ([CNP93]). Let us consider $\omega_{1}, \omega_{2} \in \mathbb{C}^{*}$ and $\hat{\varphi}(\zeta)=\frac{1}{\zeta-\omega_{1}}, \hat{\psi}(\zeta)=\frac{1}{\zeta-\omega_{2}}$ and study

$$
\hat{\chi}(\zeta)=\hat{\varphi} * \hat{\psi}(\zeta)=\int_{0}^{\zeta} \frac{1}{\left(\xi-\omega_{1}\right)\left(\zeta-\xi-\omega_{2}\right)} \mathrm{d} \xi, \quad|\zeta|<\min \left\{\left|\omega_{1}\right|,\left|\omega_{2}\right|\right\} .
$$

The formula

$$
\frac{1}{\left(\xi-\omega_{1}\right)\left(\zeta-\xi-\omega_{2}\right)}=\frac{1}{\zeta-\omega_{1}-\omega_{2}}\left(\frac{1}{\xi-\omega_{1}}+\frac{1}{\zeta-\xi-\omega_{2}}\right)
$$

shows that, for any $\zeta \neq \omega_{1}+\omega_{2}$ of modulus $<\min \left\{\left|\omega_{1}\right|,\left|\omega_{2}\right|\right\}$, one can write

$$
\begin{equation*}
\hat{\chi}(\zeta)=\frac{1}{\zeta-\omega_{1}-\omega_{2}}\left(L_{1}(\zeta)+L_{2}(\zeta)\right), \quad L_{j}(\zeta):=\int_{0}^{\zeta} \frac{\mathrm{d} \xi}{\xi-\omega_{j}} \tag{2}
\end{equation*}
$$

(with the help of the change of variable $\xi \mapsto \zeta-\xi$ in the case of L_{2}). Removing the halflines $\omega_{j}[1,+\infty)$ from \mathbb{C}, we obtain a cut plane Δ in which $\hat{\chi}$ has a meromorphic continuation (since $[0, \zeta]$ avoids the points ω_{1} and ω_{2} for all $\zeta \in \Delta$). We can in fact follow the meromorphic continuation of $\hat{\chi}$ along any path which avoids ω_{1} and ω_{2}, because

$$
L_{j}(\zeta)=-\int_{0}^{\zeta / \omega_{j}} \frac{\mathrm{~d} \xi}{1-\xi}=\log \left(1-\frac{\zeta}{\omega_{j}}\right) \in \hat{\mathscr{R}}_{\left\{\omega_{j}\right\}}
$$

We used the words "meromorphic continuation" and not "analytic continuation" because of the factor $\frac{1}{\zeta-\omega_{1}-\omega_{2}}$. The conclusion is thus only $\hat{\chi} \in \hat{\mathscr{R}}_{\Omega}$, with $\Omega:=\left\{\omega_{1}, \omega_{2}, \omega_{1}+\omega_{2}\right\}$.

In fact, if $\omega:=\omega_{1}+\omega_{2} \in \Delta$, the principal branch of $\hat{\chi}$ (i.e. its meromorphic continuation to Δ) has a removable singularity ${ }^{3}$ at ω, because $\left(L_{1}+L_{2}\right)(\omega)=\int_{0}^{\omega} \frac{d \xi}{\xi-\omega_{1}}+\int_{0}^{\omega} \frac{d \xi}{\xi-\omega_{2}}=0$ in that case (by the change of variable $\xi \mapsto \omega-\xi$ in one of the integrals). But it is easy to see that this does not happen for all the branches of $\hat{\chi}$: when considering all the paths γ going from 0 to ω and avoiding ω_{1} and ω_{2}, the number $\operatorname{cont}_{\gamma} L_{1}(\omega)+\operatorname{cont}_{\gamma} L_{2}(\omega)$ takes all the values of the form $2 \pi \mathrm{i} k$ with $k \in \mathbb{Z}$; whenever this value is nonzero, the corresponding branch of $\hat{\chi}$ does have a pole at ω.

This example thus shows that $\hat{\mathscr{R}}_{\left\{\omega_{1}, \omega_{2}\right\}}$ is not stable by convolution (it contains $\hat{\varphi}_{1}$ and $\hat{\varphi}_{2}$ but not $\hat{\varphi}_{1} * \hat{\varphi}_{2}$).

4 Proof of the main result: Analytic part

We now fix Ω as in the assumption of Theorem 3.1 and start the proof. We begin with a new definition:

Definition 4.1. Let $I=[0,1]$. A continuous map $H: I \times J \rightarrow \mathbb{C}$, where J is a compact interval of \mathbb{R}, is called a symmetric Ω-homotopy if, for each $t \in J$,

$$
H_{t}: s \in I \mapsto H_{t}(s):=H(s, t)
$$

defines a path which satisfies
i) $H_{t}(0)=0$,
ii) $H_{t}((0,1]) \subset \mathbb{C} \backslash \Omega$,
iii) $H_{t}(1)-H_{t}(s)=H_{t}(1-s)$ for every $s \in I$.

[^2]We then call endpoint path of H the path

$$
\Gamma_{H}: t \in J \mapsto H_{t}(1)
$$

Writing $J=[a, b]$, we call H_{a} (resp. H_{b}) the initial path of H (resp. its final path).
The first two conditions imply that each path H_{t} is a path of analytic continuation for any $\hat{\varphi} \in \hat{\mathscr{R}}_{\Omega}$, in view of Remark 1.3. Here is a technical statement we shall use:

Lemma 4.2. For a symmetric Ω-homotopy H defined on $I \times J$, using the notation $H_{t \mid s}$ for the truncated path $\left(H_{t}\right)_{\mid[0, s]}$ (analogously to what we did when commenting Lemma 2.1), there exists $\delta>0$ such that, for any $\hat{\varphi} \in \hat{\mathscr{R}}_{\Omega}$ and $(s, t) \in I \times J$, the radius of convergence of the holomorphic germ $\operatorname{cont}_{H_{t \mid s}} \hat{\varphi}$ at $H_{t}(s)$ is at least δ.
Proof. Let ρ be as in Remark 1.3. Consider $U:=H^{-1}\left(\mathbb{D}_{\rho / 2}\right)$: this is an open subset of $I \times J$ which contains $\{0\} \times J$; we define U_{0} to be the connected component of U which contains $\{0\} \times J$, $K:=I \times J \backslash U_{0}$ and $\delta:=\min \{\operatorname{dist}(H(K), \Omega), \rho / 2\}$.

We have $\delta>0$ because $H(K)$ is compact (since K is compact) and $H(K) \subset \mathbb{C} \backslash \Omega$ (since $K \subset(0,1] \times J)$. Now, for any s and t,

- either $(s, t) \in U_{0}$, then $[0, s] \times\{t\} \subset U_{0}$, the truncated path $H_{t \mid s}$ lies in $H\left(U_{0}\right) \subset \mathbb{D}_{\rho / 2}$, hence $\operatorname{cont}_{H_{t \mid s}} \hat{\varphi}$ is a holomorphic germ at $H_{t}(s)$ with radius of convergence $\geq \delta$;
- or $(s, t) \in K$, and then $\operatorname{dist}\left(H_{t}(s), \Omega\right) \geq \delta$, which yields the same conclusion for the germ $\operatorname{cont}_{H_{t \mid s}} \hat{\varphi}$.

The third condition in Definition 4.1 means that each path H_{t} is symmetric with respect to its midpoint $\frac{1}{2} H_{t}(1)$. Here is the motivation behind this requirement:
Lemma 4.3. Suppose H is a symmetric Ω-homotopy whose initial path is contained in \mathbb{D}_{ρ}, with ρ as in Remark 1.3. Then its endpoint path Γ_{H} is a path of analytic continuation for any convolution product $\hat{\varphi} * \hat{\psi}$ with $\hat{\varphi}, \hat{\psi} \in \hat{\mathscr{R}}_{\Omega}$.
Proof. We assume that H is defined on $I \times J$ and we set $\gamma:=\Gamma_{H}$. Let $\hat{\varphi}, \hat{\psi} \in \hat{\mathscr{R}}_{\Omega}$ and, for $t \in J$, consider the formula

$$
\begin{equation*}
\hat{\chi}_{t}(\zeta)=\int_{H_{t}} \hat{\varphi}(\xi) \hat{\psi}(\zeta-\xi) \mathrm{d} \xi+\int_{\gamma(t)}^{\zeta} \hat{\varphi}(\xi) \hat{\psi}(\zeta-\xi) \mathrm{d} \xi \tag{3}
\end{equation*}
$$

(recall that $\gamma(t)=H_{t}(1)$). We shall check that $\hat{\chi}_{t}$ is a well-defined holomorphic germ at $\gamma(t)$ and that it provides the analytic continuation of $\hat{\varphi} * \hat{\psi}$ along γ.
a) The idea is that when ξ moves along $H_{t}, \xi=H_{t}(s)$ with $s \in I$, we can use for " $\hat{\varphi}(\xi)$ " the analytic continuation of $\hat{\varphi}$ along the truncated path $H_{t \mid s}$; correspondingly, if ζ is close to $\gamma(t)$, then $\zeta-\xi$ is close to $\gamma(t)-\xi=H_{t}(1)-H_{t}(s)=H_{t}(1-s)$, thus for " $\hat{\psi}(\zeta-\xi)$ " we can use the analytic continuation of $\hat{\psi}$ along $H_{t \mid 1-s}$. In other words, setting $\zeta=\gamma(t)+\sigma$, we wish to interpret (3) as

$$
\begin{align*}
& \hat{\chi}_{t}(\gamma(t)+\sigma):=\int_{0}^{1}\left(\operatorname{cont}_{H_{t \mid s}} \hat{\varphi}\right)\left(H_{t}(s)\right)\left(\operatorname{cont}_{H_{t \mid 1-s}} \hat{\psi}\right)\left(H_{t}(1-s)+\sigma\right) H_{t}^{\prime}(s) \mathrm{d} s \\
&+\int_{0}^{1}\left(\operatorname{cont}_{H_{t}} \hat{\varphi}\right)(\gamma(t)+u \sigma) \hat{\psi}((1-u) \sigma) \sigma \mathrm{d} u \tag{4}
\end{align*}
$$

(in the last integral, we have performed the change variable $\xi=\gamma(t)+u \sigma$; it is the germ of $\hat{\psi}$ at the origin that we wish to use there).

Lemma 4.2 provides $\delta>0$ such that, by regular dependence of the integrals upon the parameter σ, the right-hand side of (4) is holomorphic for $|\sigma|<\delta$. We thus have a family of analytic elements $\left(\hat{\chi}_{t}, D_{t}\right), t \in J$, with $D_{t}:=\{\zeta \in \mathbb{C}| | \zeta-\gamma(t) \mid<\delta\}$.
b) For t small enough, the path H_{t} is contained in \mathbb{D}_{ρ} which is open and simply connected; then, for $|\zeta|$ small enough, the rectilinear segment $[0, \zeta]$ and the concatenation of H_{t} and $[\gamma(t), \zeta]$ are homotopic in \mathbb{D}_{ρ}, hence the Cauchy theorem implies $\hat{\chi}_{t}(\zeta)=\hat{\varphi} * \hat{\psi}(\zeta)$.
c) By uniform continuity, there exists $\varepsilon>0$ such that, for any $t_{0}, t \in J$,

$$
\begin{equation*}
\left|t-t_{0}\right| \leq \varepsilon \quad \Longrightarrow \quad\left|H_{t}(s)-H_{t_{0}}(s)\right|<\delta / 2 \quad \text { for all } s \in I . \tag{5}
\end{equation*}
$$

To complete the proof, we check that, for any $t_{0}<t_{1}$ in J such that $\left|t_{1}-t_{0}\right| \leq \varepsilon$, we have $\hat{\chi}_{t_{0}} \equiv \hat{\chi}_{t_{1}}$ in $D_{t_{0}} \cap D_{t_{1}}$.

Because of (5), the assumption $\left|t_{1}-t_{0}\right| \leq \varepsilon$ implies that, for $t \in\left[t_{0}, t_{1}\right], s \in I$ and $\mid \xi-$ $H_{t_{0}}(s) \mid<\delta$,

$$
\operatorname{cont}_{H_{t \mid s}} \hat{\varphi}(\xi)=\operatorname{cont}_{H_{t_{0} \mid s}} \hat{\varphi}(\xi), \quad \operatorname{cont}_{H_{t \mid 1-s}} \hat{\psi}(\xi)=\operatorname{cont}_{H_{t_{0} \mid 1-s}} \hat{\psi}(\xi)
$$

Thus, as soon as $t \in\left[t_{0}, t_{1}\right]$ and $\left|\zeta-\gamma\left(t_{0}\right)\right|<\delta / 2$, we can write

$$
\begin{aligned}
\hat{\chi}_{t}(\zeta)=\int_{0}^{1}\left(\operatorname{cont}_{H_{t_{0} \mid s}} \hat{\varphi}\right)\left(H_{t}(s)\right)\left(\operatorname{cont}_{H_{t_{0}, 1-s}} \hat{\psi}\right)\left(\zeta-H_{t}(s)\right) H_{t}^{\prime}(s) \mathrm{d} s & \\
& +\int_{\gamma(t)}^{\zeta}\left(\operatorname{cont}_{H_{t_{0}}} \hat{\varphi}\right)(\xi) \hat{\psi}(\zeta-\xi) \mathrm{d} \xi
\end{aligned}
$$

and we get $\hat{\chi}_{t_{0}}(\zeta)=\hat{\chi}_{t}(\zeta)$ from the Cauchy theorem by means of the homotopy induced by H between the concatenation of $H_{t_{0}}$ and $\left[\gamma\left(t_{0}\right), \zeta\right]$ and the concatenation of H_{t} and $[\gamma(t), \zeta]$.

5 Proof of the main result: Geometric part

5.1 The key lemma

In view of Lemma 4.3, the proof of Theorem 3.1 immediately follows from the following purely geometric result:

Lemma 5.1. For any path $\gamma:[0,1] \rightarrow \mathbb{C} \backslash \Omega$ such that $\gamma(0) \in \mathbb{D}_{\rho}^{*}$ and the left and right derivatives $\gamma_{ \pm}^{\prime}$ do not vanish on $[0,1]$, there exists a symmetric Ω-homotopy H whose endpoint path is γ and whose initial path is a rectilinear segment, i.e. $\Gamma_{H}=\gamma$ and $H_{0}(s) \equiv s \gamma(0)$.

The proof is very simple when γ does not pass through 0 , which is automatic if we assume $0 \in \Omega$. The general case requires an extra work which is technical and involves a quantitative version of the simpler case. With a view to helping the reader to grasp the mechanism of the proof, we thus begin with the case when $0 \in \Omega$.

5.2 Proof of the key lemma when $0 \in \Omega$

Assume that γ is given as in the hypothesis of Lemma 5.1. We are looking for a symmetric Ω-homotopy whose initial path is imposed: it must be

$$
s \in I \mapsto H_{0}(s):=s \gamma(0),
$$

which satisfies the three requirements of Definition 4.1 at $t=0$:
(i) $H_{0}(0)=0$,
(ii) $H_{0}((0,1]) \subset \mathbb{C} \backslash \Omega$,
(iii) $H_{0}(1)-H_{0}(s)=H_{0}(1-s)$ for every $s \in I$.

The idea is to define a family of maps $\left(\Psi_{t}\right)_{t \in[0,1]}$ so that

$$
\begin{equation*}
H_{t}(s):=\Psi_{t}\left(H_{0}(s)\right), \quad s \in I, \tag{6}
\end{equation*}
$$

yield the desired homotopy. For that, it is sufficient that $(t, \zeta) \in[0,1] \times \mathbb{C} \mapsto \Psi_{t}(\zeta)$ be continuously differentiable (for the structure of real two-dimensional vector space of \mathbb{C}), $\Psi_{0}=\mathrm{Id}$ and, for each $t \in[0,1]$,
(i') $\Psi_{t}(0)=0$,
(ii') $\Psi_{t}(\mathbb{C} \backslash \Omega) \subset \mathbb{C} \backslash \Omega$,
(iii) $\Psi_{t}(\gamma(0)-\zeta)=\Psi_{t}(\gamma(0))-\Psi_{t}(\zeta)$ for all $\zeta \in \mathbb{C}$,
(iv') $\Psi_{t}(\gamma(0))=\gamma(t)$.
In fact, the properties (i')-(iv') ensure that any initial path H_{0} satisfying (i)-(iii) and ending at $\gamma(0)$ produces through (6) a symmetric Ω-homotopy whose endpoint path is γ. Consequently, we may assume without loss of generality that γ is C^{1} on $[0,1]$ (then, if γ is only piecewise C^{1}, we just need to concatenate the symmetric Ω-homotopies associated with the various pieces).

The maps Ψ_{t} will be generated by the flow of a non-autonomous vector field $X(\zeta, t)$ associated with γ that we now define. We view $(\mathbb{C},|\cdot|)$ as a real 2 -dimensional Banach space and pick ${ }^{4}$ a C^{1} function $\eta: \mathbb{C} \rightarrow[0,1]$ such that

$$
\{\zeta \in \mathbb{C} \mid \eta(\zeta)=0\}=\Omega
$$

Observe that $D(\zeta, t):=\eta(\zeta)+\eta(\gamma(t)-\zeta)$ defines a C^{1} function of (ζ, t) and that

$$
D(\zeta, t)>0 \quad \text { for all } \zeta \in \mathbb{C} \text { and } t \in[0,1] .
$$

[^3]Indeed, $D(\zeta, t)=0$ would imply $\zeta \in \Omega$ and $\gamma(t)-\zeta \in \Omega$, hence $\gamma(t) \in \Omega$, which would contradict our assumptions (it is here that we use the stability under addition of Ω). Therefore, the formula

$$
X(\zeta, t):=\frac{\eta(\zeta)}{\eta(\zeta)+\eta(\gamma(t)-\zeta)} \gamma^{\prime}(t)
$$

defines a non-autonomous vector field, which is continuous in (ζ, t) on $\mathbb{C} \times[0,1], C^{1}$ in ζ and has its partial derivatives continuous in (ζ, t). The Cauchy-Lipschitz theorem on the existence and uniqueness of solutions to the first-order differential equation $\frac{\mathrm{d} \zeta}{\mathrm{d} t}=X(\zeta, t)$ applies: for every $\zeta \in \mathbb{C}$ and $t_{0} \in[0,1]$ there is a unique solution $t \mapsto \Phi^{t_{0}, t}(\zeta)$ such that $\Phi^{t_{0}, t_{0}}(\zeta)=\zeta$. The fact that the vector field X is bounded implies that $\Phi^{t_{0}, t}(\zeta)$ is defined for all $t \in[0,1]$ and the classical theory guarantees that $\left(t_{0}, t, \zeta\right) \mapsto \Phi^{t_{0}, t}(\zeta)$ is C^{1} on $[0,1] \times[0,1] \times \mathbb{C}$.

Let us set $\Psi_{t}:=\Phi^{0, t}$ for $t \in[0,1]$. We easily check that this family of maps satisfies (i')-(iv'), as a consequence of the identities

$$
\begin{gather*}
X(\omega, t)=0 \quad \text { for all } \omega \in \Omega \tag{7}\\
X(\gamma(t)-\zeta, t)=\gamma^{\prime}(t)-X(\zeta, t) \quad \text { for all } \zeta \in \mathbb{C} \tag{8}
\end{gather*}
$$

valid for all $t \in[0,1]((7)$ and (8) directly follow from our definition of X; here we use $0 \in \Omega$ to ensure $\eta(0)=0)$:

- (i') and (ii') follow from (7) which yields $\Phi^{t_{0}, t}(\omega)=\omega$ for every t_{0} and t, and from the non-autonomous flow property $\Phi^{t, 0} \circ \Phi^{0, t}=\operatorname{Id}$ (hence $\Psi_{t}(\zeta)=\omega$ implies $\zeta=\Phi^{t, 0}(\omega)=\omega$);
- (iv') follows from the fact that $X(\gamma(t), t)=\gamma^{\prime}(t)$, by (8) with $\zeta=0$, hence $t \mapsto \gamma(t)$ is a solution of X;
- (iii') follows from (8): for any solution $t \mapsto \zeta(t)$, the curve $t \mapsto \xi(t):=\gamma(t)-\zeta(t)$ satisfies $\xi(0)=\gamma(0)-\zeta(0)$ and $\xi^{\prime}(t)=\gamma^{\prime}(t)-X(\zeta(t), t)=X(\xi(t), t)$, hence it is a solution: $\xi(t)=\Psi_{t}(\gamma(0)-\zeta(0))$.

5.3 Proof of the key lemma when $0 \notin \Omega$

From now on, we suppose $0 \notin \Omega$ and we use the notation

$$
\Omega_{\varepsilon}:=\{\zeta \in \mathbb{C} \mid \operatorname{dist}(\zeta, \Omega)<\varepsilon\}
$$

for any $\varepsilon>0$. We shall require the following technical
Lemma 5.2. For any $\varepsilon>0$ there exists a C^{1} function $\eta: \mathbb{C} \rightarrow[0,1]$ such that

$$
\{\zeta \in \mathbb{C} \mid \eta(\zeta)=0\}=\{0\} \cup \bar{\Omega}_{\varepsilon}
$$

Proof. Pick a C^{1} function $\chi: \mathbb{R} \rightarrow[0,1]$ such that $\{x \in \mathbb{R} \mid \chi(x)=0\}=[-\sqrt{\varepsilon}, \sqrt{\varepsilon}]$ and $\chi(x)=1$ for $|x| \geq \sqrt{1+\varepsilon}$, and a bijection $\omega: \mathbb{N}^{*} \rightarrow \Omega$. For each $k \in \mathbb{N}^{*}, \eta_{k}(\zeta):=\chi\left(|\zeta-\omega(k)|^{2}\right)$ defines a C^{1} function on \mathbb{C} such that $\eta_{k}^{-1}(0)=\overline{D(\omega(k), \varepsilon)}$ and $\eta_{k} \equiv 1$ on $\mathbb{C} \backslash D(\omega(k), 1+\varepsilon)$. Consider the infinite product

$$
\begin{equation*}
\eta_{*}(\zeta):=\prod_{k \in \mathbb{N}^{*}} \eta_{k}(\zeta) \tag{9}
\end{equation*}
$$

For any bounded open subset U of \mathbb{C}, the set $\mathcal{F}_{U}:=\left\{k \in \mathbb{N}^{*} \mid U \cap D(\omega(k), 1+\varepsilon) \neq \emptyset\right\}$ is finite (because Ω is discrete), thus almost all the factors in (9) are equal to 1 when $\zeta \in U$: $\left(\eta_{*}\right)_{\mid U}=\prod_{k \in \mathcal{F}_{U}}\left(\eta_{k}\right)_{\mid U}$, hence η_{*} is C^{1}, takes its values in $[0,1]$ and

$$
\eta_{*}^{-1}(0) \cap U=\bigcup_{k \in \mathcal{F}_{U}} \overline{D(\omega(k), \varepsilon)} \cap U
$$

whence it follows that $\eta_{*}^{-1}(0)=\bar{\Omega}_{\varepsilon}$.
If $0 \in \bar{\Omega}_{\varepsilon}$, then one can take $\eta=\eta_{*}$. If not, then one can take the product $\eta=\eta_{0} \eta_{*}$ with $\eta_{0}(\zeta):=\chi_{0}\left(|\zeta|^{2}\right)$, where χ_{0} is any C^{1} function on \mathbb{R} which takes its values in $[0,1]$ and such that $\chi_{0}^{-1}(0)=\{0\}$.

We now repeat the work of the previous section replacing Ω with $\{0\} \cup \Omega$, adding quantitative information (we still assume that we are given a path which does not pass through 0 but we want to control the way the corresponding symmetric Ω-homotopy approaches the points of Ω) and authorizing a more general initial path than a rectilinear one.

Lemma 5.3. Let $\delta, \delta^{\prime}>0$ with $\delta^{\prime}<\delta / 2$. Suppose that $J=[a, b]$ is a compact interval of \mathbb{R} and $\gamma: J \rightarrow \mathbb{C}$ is a path such that

$$
0 \notin \gamma(J) \quad \text { and } \quad \gamma(J) \subset \mathbb{C} \backslash \Omega_{\delta}
$$

Suppose that $h: I \rightarrow \mathbb{C}$ is a C^{1} path such that
(i) $h(0)=0$,
(ii) $h(I) \subset \mathbb{C} \backslash \Omega_{\delta^{\prime}}$,
(iii) $h(1-s)=h(1)-h(s)$ for all $s \in I$,
(iv) $h(1)=\gamma(a)$.

Then there exists a symmetric Ω-homotopy H defined on $I \times J$, whose initial path is h, whose endpoint path is γ, which satisfies $H(I \times J) \subset \mathbb{C} \backslash \Omega_{\delta^{\prime}}$ and whose final path is C^{1}.

Proof. We may assume without loss of generality that γ is C^{1} on J (if γ is only piecewise C^{1}, we just need to concatenate the symmetric Ω-homotopies associated with the various pieces). We shall define a family of maps $\left(\Psi_{t}\right)_{t \in J}$ so that

$$
\begin{equation*}
H_{t}(s):=\Psi_{t}(h(s)), \quad s \in I \tag{10}
\end{equation*}
$$

yield the desired homotopy. For that, it is sufficient that $(t, \zeta) \in J \times \mathbb{C} \mapsto \Psi_{t}(\zeta)$ be continuously differentiable, $\Psi_{0}=\mathrm{Id}$ and, for each $t \in J$,
$\left({ }^{\prime}\right) \Psi_{t}(0)=0$,
(ii') $\Psi_{t}\left(\mathbb{C} \backslash \Omega_{\delta^{\prime}}\right) \subset \mathbb{C} \backslash \Omega_{\delta^{\prime}}$,
(iii') $\Psi_{t}(\gamma(0)-\zeta)=\Psi_{t}(\gamma(0))-\Psi_{t}(\zeta)$ for all $\zeta \in \mathbb{C}$,
(iv') $\Psi_{t}(\gamma(a))=\gamma(t)$.

As in Section 5.2, our maps Ψ_{t} will be generated by a non-autonomous vector field.
Lemma 5.2 allows us to choose a C^{1} function $\eta: \mathbb{C} \rightarrow[0,1]$ such that

$$
\{\zeta \in \mathbb{C} \mid \eta(\zeta)=0\}=\{0\} \cup \Omega_{\delta^{\prime}} .
$$

We observe that $D(\zeta, t):=\eta(\zeta)+\eta(\gamma(t)-\zeta)$ defines a C^{1} function of (ζ, t) and that

$$
D(\zeta, t)>0 \quad \text { for all } \zeta \in \mathbb{C} \text { and } t \in[0,1] .
$$

Indeed, $D(\zeta, t)=0$ would imply that both ζ and $\gamma(t)-\zeta$ lie in $\{0\} \cup \Omega_{\delta^{\prime}}$, hence $\gamma(t) \in\{0\} \cup \Omega_{2 \delta^{\prime}}$, which would contradict our assumption $\gamma(J) \subset \mathbb{C} \backslash\left(\{0\} \cup \Omega_{\delta}\right)$. Therefore,

$$
X(\zeta, t):=\frac{\eta(\zeta)}{\eta(\zeta)+\eta(\gamma(t)-\zeta)} \gamma^{\prime}(t), \quad(\zeta, t) \in \mathbb{C} \times J,
$$

defines a non-autonomous vector field whose flow $\left(\Phi^{t_{0}, t}\right)_{t_{0}, t \in J}$ allows one to conclude the proof exactly as in Section 5.2, setting $\Psi_{t}:=\Phi^{a, t}$ and replacing (7) with

$$
X(\omega, t)=0 \quad \text { for all } \omega \in\{0\} \cup \Omega_{\delta^{\prime}} .
$$

We now consider the case of a path γ which entirely lies close to 0 .
Lemma 5.4. Let $\varepsilon, \delta^{\prime}>0$ with $0<\varepsilon<\delta^{\prime}$. Suppose that $K=[a, b]$ is a compact interval of \mathbb{R} and $\gamma: K \rightarrow \mathbb{C}$ is a path such that

$$
\gamma(K) \subset \overline{\mathbb{D}}_{\varepsilon / 2} .
$$

Suppose that $h: I \rightarrow \mathbb{C}$ is a C^{1} path such that
(i) $h(0)=0$,
(ii) $h(I) \subset \mathbb{C} \backslash \Omega_{\delta^{\prime}}$,
(iii) $h(1-s)=h(1)-h(s)$ for all $s \in I$,
(iv) $h(1)=\gamma(a)$.

Then there exists a symmetric Ω-homotopy H defined on $I \times K$, whose initial path is h, whose endpoint path is γ, which satisfies

$$
H(I \times K) \subset \mathbb{C} \backslash \Omega_{\delta^{\prime \prime}} \quad \text { with } \delta^{\prime \prime}:=\delta^{\prime}-\varepsilon
$$

and whose final path is C^{1}.
Proof. Define $H(s, t):=h(s)+s(\gamma(t)-\gamma(a))$. This way $H(s, a)=h(s), H(1, t)=\gamma(t)$ and H is a symmetric Ω-homotopy as required: $H(0, t)=0, H(s, t)+H(1-s, t)=h(s)+h(1-s)+$ $\gamma(t)-\gamma(a)=\gamma(t), \operatorname{dist}(H(s, t), \Omega) \geq \operatorname{dist}(h(s), \Omega)-|\gamma(t)-\gamma(a)| \geq \delta^{\prime}-\varepsilon$.

Proof of Lemma 5.1 under the standing assumption $0 \notin \Omega$. Let γ be as in the hypothesis of Lemma 5.1. Without loss of generality, we can assume $\gamma(1) \neq 0$ (if not, view γ as the restriction of a path $\tilde{\gamma}:[0,2] \rightarrow \mathbb{C} \backslash \Omega$ such that $\gamma(2) \neq 0$, with which is associated a symmetric Ω-homotopy \tilde{H} defined on $I \times[0,2]$, and restrict \tilde{H} to $I \times[0,1])$. Let $\delta:=\operatorname{dist}(\Omega, \gamma([0,1]))$.

The set $Z:=\{t \in[0,1] \mid \gamma(t)=0\}$ is closed; it is also discrete because of the non-vanishing of the derivatives of γ, thus it has a finite cardinality $N \in \mathbb{N}$. If $N=0$, then we can apply Lemma 5.3 with $J=[0,1]$ and $h(s) \equiv s \gamma(0)$ and the proof is complete.

From now on we suppose $N \geq 1$. Let us write

$$
Z=\left\{t_{1}, \ldots, t_{N}\right\} \quad \text { with } 0<t_{1}<\cdots<t_{N}<1 .
$$

We define

$$
\delta_{0}:=\frac{1}{2} \min \left\{\frac{\delta}{2}, \rho-|\gamma(0)|\right\} \quad \text { and } \quad \varepsilon:=\min \left\{|\gamma(0)|,|\gamma(1)|, \frac{\delta_{0}}{N+1}\right\} .
$$

The uniform continuity of γ allows us to find pairwise disjoint closed intervals of positive lengths K_{1}, \ldots, K_{N} such that

$$
t_{j} \in K_{j} \quad \text { and } \quad \gamma\left(K_{j}\right) \subset \overline{\mathbb{D}}_{\varepsilon / 2}, \quad j=1, \ldots, N
$$

By considering the connected components of $[0,1] \backslash \bigcup K_{j}$ and taking their closures, we get adjacent closed subintervals of positive lengths of $[0,1]$,

$$
J_{0}, K_{1}, J_{1}, K_{2}, \ldots, J_{N-1}, K_{N}, J_{N}
$$

with $J_{j}=\left[a_{j}, b_{j}\right], K_{j}=\left[b_{j-1}, a_{j}\right], a_{0}=0, b_{N}=1$. Observe that

$$
0 \notin \gamma\left(J_{j}\right) \quad \text { and } \quad \gamma\left(J_{j}\right) \subset \mathbb{C} \backslash \Omega_{\delta}, \quad j=0, \ldots, N
$$

- We apply Lemma 5.3 with $J=J_{0}=\left[0, b_{0}\right], h(s) \equiv s \gamma(0)$ and $\delta^{\prime}=\delta_{0}$ (which is allowed by the choice of δ_{0}): we get a symmetric Ω-homotopy H defined on $I \times J_{0}$ whose initial path is the rectilinear segment $[0, \gamma(0)]$, whose endpoint path is $\gamma_{\mid J_{0}}$ and whose final path $H_{b_{0}}$ is C^{1} and lies in $\mathbb{C} \backslash \Omega_{\delta_{0}}$.
- We apply Lemma 5.4 with $K=K_{1}, \delta^{\prime}=\delta_{0}$ and $h=H_{b_{0}}$: we get an extension of our symmetric Ω-homotopy H to $I \times K_{1}$, in which the enpoint path is extended by $\gamma_{\mid K_{1}}$ and the final path is now $H_{a_{1}}$, a C^{1} path contained in $\mathbb{C} \backslash \Omega_{\delta_{1}}$ with $\delta_{1}:=\delta_{0}-\varepsilon$.
- And so on: we apply alternatively Lemma 5.4 on K_{j} and Lemma 5.3 on J_{j} : we get an extension of the symmetric Ω-homotopy H to $I \times K_{j}$ or $I \times J_{j}$ such that both $H_{a_{j}}(I)$ and $H_{b_{j}}(I)$ are contained in $\mathbb{C} \backslash \Omega_{\delta_{j}}$ with $\delta_{j}:=\delta_{0}-j \varepsilon$.

When we reach $j=N$, the proof is complete.

Acknowledgements. The research leading to these results has received funding from the European Comunity's Seventh Framework Program (FP7/2007-2013) under Grant Agreement n. 236346.

References

[CNP93] B. Candelpergher, J.-C. Nosmas and F. Pham. Approche de la résurgence. Actualités Math., Hermann, Paris, 1993.
[Eca81] J. Écalle. Les fonctions résurgentes. Publ. Math. d'Orsay, Vol. 1: 81-05, Vol. 2: 81-06, Vol. 3: 85-05, 1981, 1985.
[Eca84] J. Écalle. Cinq applications des fonctions résurgentes. Publ. Math. d’Orsay 84-62, 1984.
[Eca92] J. Écalle. Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac. Actualités Math., Hermann, Paris, 1992.
[Eca93] J. Écalle. Six lectures on Transseries, Analysable Functions and the Constructive Proof of Dulac's conjecture. D.Schlomiuk (ed.), Bifurcations and Periodic Orbits of Vector Field, pp. 75-184, Kluwer Ac. Publishers, 1993.
[Ma185] B. Malgrange. Introduction aux travaux de J. Écalle. L’Enseign. Math. (2) 31, 3-4 (1985), 261-282.
[Ou10] Y. Ou. On the stability by convolution product of a resurgent algebra. Ann. Fac. Sci. Toulouse (6) 19, 3-4 (2010), 687-705.
[Sau06] D. Sauzin, Resurgent functions and splitting problems. RIMS Kokyuroku 1493 (2005), 48-117.
[Sau10] D. Sauzin, Mould expansions for the saddle-node and resurgence monomials. In Renormalization and Galois theories. Selected papers of the CIRM workshop, Luminy, France, March 2006, p. 83-163, A. Connes, F. Fauvet, J.-P. Ramis (eds.), IRMA Lectures in Mathematics and Theoretical Physics 15, Zrich: European Mathematical Society, 2009.
[Sau12] D. Sauzin, Introduction to 1-summability and the resurgence theory. In preparation.

David Sauzin
Scuola Normale Superiore di Pisa
Piazza dei Cavalieri 7, 56126 Pisa, Italy
email: david.sauzin@sns.it
On leave from Institut de mécanique céleste, CNRS
77 av. Denfert-Rochereau, 75014 Paris, France
email: sauzin@imcce.fr

[^0]: ${ }^{1}$ In Écalle's terminology, resurgent functions are defined either in the "convolutive model", the "formal model" or the "geometric models". Roughly speaking, the convolutive model of resurgent functions is a subspace of $\mathbb{C}\{\zeta\}$ defined by requiring a certain property of analytic continuation; from it, one defines the formal model as a subspace of $z^{-1} \mathbb{C}\left[\left[z^{-1}\right]\right]$ via inverse formal Borel transform and the geometric models by Laplace transforms in certain directions—see [Eca81], [Eca92], [Eca93], [CNP93], [Sau06], [Sau12]. Our Ω-continuable germs belong to the convolutive model of resurgent functions.

[^1]: ${ }^{2}$ It is induced by the pull-back of the Cauchy product in $z^{-1} \mathbb{C}\left[\left[z^{-1}\right]\right]$ by the formal Borel transform and corresponds, via the Laplace transform, to the ordinary product of analytic functions.

[^2]: ${ }^{3}$ This is consistent with the well-known fact that the space of holomorphic functions of an open set Δ which is star-shaped with respect to 0 is stable under convolution.

[^3]: ${ }^{4}$ For instance pick a C^{1} function $\varphi_{0}: \mathbb{R} \rightarrow[0,1]$ such that $\left\{x \in \mathbb{R} \mid \varphi_{0}(x)=1\right\}=\{0\}$ and $\varphi_{0}(x)=0$ for $|x| \geq 1$, and a bijection $\omega: \mathbb{N} \rightarrow \Omega$; then set $\delta_{k}:=\operatorname{dist}(\omega(k), \Omega \backslash\{\omega(k)\})>0$ and $\sigma(\zeta):=\sum_{k} \varphi_{0}\left(\frac{4|\zeta-\omega(k)|^{2}}{\delta_{k}^{2}}\right)$: for each $\zeta \in \mathbb{C}$ there is at most one non-zero term in this series (because $k \neq \ell,|\zeta-\omega(k)|<\delta_{k} / 2$ and $|\zeta-\omega(\ell)|<\delta_{\ell} / 2$ would imply $|\omega(k)-\omega(\ell)|<\left(\delta_{k}+\delta_{\ell}\right) / 2$, which would contradict $|\omega(k)-\omega(\ell)| \geq \delta_{k}$ and $\left.\delta_{\ell}\right)$, thus σ is C^{1}, takes its values in $[0,1]$ and satisfies $\{\zeta \in \mathbb{C} \mid \sigma(\zeta)=1\}=\Omega$, therefore $\eta:=1-\sigma$ will do. Other solution: adapt the proof of Lemma 5.2.

