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Functional data analysis involves data described by regular functions rather than by a finite number of real valued variables. While some robust data analysis methods can be applied directly to the very high dimensional vectors obtained from a fine grid sampling of functional data, all methods benefit from a prior simplification of the functions that reduces the redundancy induced by the regularity.

In this paper we propose to use a clustering approach that targets variables rather than individual to design a piecewise constant representation of a set of functions. The contiguity constraint induced by the functional nature of the variables allows a polynomial complexity algorithm to give the optimal solution.

Introduction

Functional data [START_REF] Ramsay | Functional Data Analysis[END_REF] appear in applications in which objects to analyse display some form of variability. In spectrometry, for instance, samples are described by spectra: each spectrum is a mapping from wavelengths to e.g., transmittance 1 . Time varying objects offer a more general example: when the characteristics of objects evolve through time, a loss free representation consists in describing these characteristics as functions that map time to real values.

In practice, functional data are given as high dimensional vectors (e.g., more than 100 variables) obtained by sampling the functions on a fine grid. For smooth F. Rossi Institut Télécom, Télécom ParisTech, LTCI -UMR CNRS 5141 46, rue Barrault, 75013 Paris, France, e-mail: Fabrice.Rossi@telecom-paristech.fr Y. Lechevallier Projet AxIS, INRIA, Domaine de Voluceau, Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France, e-mail: Yves.Lechevallier@inria.fr functions (for instance in near infrared spectroscopy), this scheme leads to highly correlated variables. While many data analysis methods can be made robust to this type of problem (see, e.g., [START_REF] Hastie | Penalized discriminant analysis[END_REF] for discriminant analysis), all methods benefit from a compression of the data [START_REF] Olsson | Compression of first-order spectral data using the b-spline zero compression method[END_REF] in which relevant and yet easy to interpret features are extracted from the raw functional data.

There are well-known standard ways of extracting optimal features according to a given criterion. For instance in unsupervised problems, the first k principal components of a dataset give the best linear approximation of the original data in R k for the quadratic norm (see [START_REF] Ramsay | Functional Data Analysis[END_REF] for functional principal component analysis (PCA)). In regression problems, the partial least-squares approach extracts features with maximal correlation with a target variable (see also Sliced Inversion Regression methods [START_REF] Ferré | Functional sliced inverse regression analysis[END_REF]). The main drawback of those approaches is that they extract features that are not easy to interpret: while the link between the original features and the new ones is linear, it is seldom sparse; an extracted feature generally depends on many original features.

A different line of thoughts is followed in the present paper: the goal is to extract features that are easy to interpret in terms of the original variables. This is done by approximating the original functions by piecewise constant functions. We first recall in Section 2 the best basis problem in the context of functional data approximation. Section 3 shows how the problem can be recast in term of a constrained clustering problem for which efficient solutions are available.

Best basis for functional data

Let us consider n functional data, (s i ) 1≤i≤n . Each s i is a function from a φ (x)s i (x)dx. In an unsupervised context, using e.g., a quadratic error measure, choosing the k best features consists in finding k orthonormal functions (φ i ) 1≤i≤k that minimise the following quantity:

n ∑ i=1 s i - k ∑ j=1 s i , φ k L 2 φ k 2 L 2
.

(

The (φ i ) 1≤i≤k form an orthonormal basis of the subspace that they span: the optimal set of such functions is therefore called the best basis for the original set of functions

(s i ) 1≤i≤n .
If the φ k are unconstrained, the best basis is given by functional PCA [13]. How- ever, in order for the corresponding feature to be easy to interpret, the φ k should have compact supports, the simple case of φ k = I [u k ,v k ] being the easiest to analyse (I [u,v] (x) = 1 when x ∈ [u, v] and 0 elsewhere).

The problem of choosing an optimal basis among a set of bases has been studied for some time in the wavelet community [START_REF] Coifman | Entropy-based algorithms for best basis selection[END_REF][START_REF] Saito | Local discriminant bases and their applications[END_REF]. In unsupervised context, the best basis is obtained by minimizing the entropy of the features (i.e., of the coordinates of the functions on the basis) in order to enable compression by discarding the less important features. Following [START_REF] Olsson | Compression of first-order spectral data using the b-spline zero compression method[END_REF], [START_REF] Rossi | Fast selection of spectral variables with bspline compression[END_REF] proposes a different approach, based on Bsplines: a leave-one-out version of Equation ( 1) is used to select the best B-splines basis. While the orthonormal basis induced by the B-splines does not correspond to compactly supported functions, the dependency between a new feature and the original ones is still localized enough to allow easy interpretation. Nevertheless both approaches have some drawbacks. Wavelet based methods lead to compactly supported basis functions but the basis has to be chosen in a tree structured set of bases. As a consequence, the support of a basis function cannot be any sub-interval of [a, b]. The B-spline approach suffers from a similar problem: the approximate supports have all the same lengths leading either to a poor representation of some local details or to a large number of basis functions.

Best basis via constrained clustering

From best basis to constrained clustering

The goal of the present paper is to select an optimal basis using only basis functions of the form I (u,v) , without restriction on the possible intervals among subinterval of [a, b]2 . Let us consider (φ j = 1 v j -u j I (u j ,v j ) ) 1≤ j≤k such an orthonormal basis. We assume that the ((u j , v j )) 1≤ j≤k form a partition of [a, b]. Obviously, we have φ j , s i = 1 v j -u j v j u j s i (x)dx, i.e., the feature corresponding to φ j is the mean value of s i on [u j , v j ]. In other words, ∑ k j=1 s i , φ k L 2 φ k is a piecewise constant approximation of s i (which is optimal according to the L 2 norm).

In practice, functional data are sampled on a fine grid with support points a ≤ t 1 < . . . < t m ≤ b, i.e., rather than observing the functions (s i ) 1≤i≤n , one gets the vectors (s i (t l )) 1≤i≤n,1≤l≤m from R m . Then φ j , s i can be approximated by 1 |I j | ∑ l∈I j s i (t l ) where I j is the subset of indexes {1, ..., m} such that t l ∈ (u j , v j ) ⇔ l ∈ I j . Any partition of ((u j , v j )) 1≤ j≤k of [a, b] corresponds to a partition of {1, ..., m} in k subsets (I j ) 1≤ j≤k that satisfies an ordering constraint: if r and s belong to I j then any integer t ∈ [r, s] belongs also to I j . Finding the best basis means for instance minimizing the sum of squared errors given by Equation (1) which can be approximated as follows

n ∑ i=1 k ∑ j=1 ∑ l∈I j s i (t l ) - 1 |I j | ∑ u∈I j s i (t u ) 2 = k ∑ j=1 Q(I j ), (2) 
where

Q(I) = n ∑ i=1 ∑ l∈I s i (t l ) - 1 |I| ∑ u∈I s i (t u ) 2 (3) 
The second version of the error shows that it corresponds to an additive quality measure of the partition of {1, ..., m} induced by the (I j ) 1≤ j≤k . Therefore, finding the best basis for the sampled functions is equivalent to finding an optimal partition of {1, ..., m} with some ordering constraints and according to an additive cost function. A suboptimal solution to this problem, based on an ascending (agglomerative) hierarchical clustering, is proposed in [START_REF] Krier | A data-driven functional projection approach for the selection of feature ranges in spectra with ica or cluster analysis[END_REF].

Dynamic programming

However, an optimal solution can be reached in a reasonable amount of time, as pointed out in [START_REF] Lechevallier | Classification automatique optimale sous contrainte d'ordre total[END_REF]: when the quality criterion of a partition is additive and when a total ordering constraint is enforced, a dynamic programming approach leads to the optimal solution (this is a generalization of the algorithm proposed by Bellman for a single function in [START_REF] Stone | Approximation of curves by line segments[END_REF][START_REF] Bellman | On the approximation of curves by line segments using dynamic programming[END_REF]; see also [START_REF] Auger | Algorithms for the optimal identification of segment neighborhoods[END_REF][START_REF] Jackson | An algorithm for optimal partitioning of data on an interval[END_REF] for rediscoveries/extensions of this early work). The algorithm is simple and proceeds iteratively by computing F( j, k) as the value of the quality measure (from Equation ( 2)) of the best partition in k classes of { j, ..., m}:

1. initialization: set F( j, 1) to Q({ j, . . . , m}) for all j 2. iterate from p = 2 to k:

a. for all 1 ≤ j ≤ mp + 1 compute

F( j, p) = min j≤l≤m-p+1 Q({ j, . . . , l}) + F(l + 1, p -1)
The minimizing index l = l( j, p) is kept for all j and p. This allows to reconstruct the best partition by backtracking from F(1, k): the first class of the partition is {1, . . . , l(1, k)}, the second {l(1, k) + 1, . . . , l(l(1, k) + 1, k -1)}, etc. A similar algorithm was used to find an optimal approximation of a single function in [START_REF] Bellman | On the approximation of curves by line segments using dynamic programming[END_REF][START_REF] Lechevallier | Recherche d'une partition optimale sous contrainte d'ordre total[END_REF]. Another related work is [START_REF] Hugueney | Réduction de séries temporelles par classification et segmentation[END_REF] which provides simultaneously a functional clustering and a piecewise constant approximation of the prototype functions. The internal loop runs O(km 2 ) times. It uses the values Q({ j, . . . , l}) for all j ≤ l. Those quantities can be computed prior to the search for the optimal partition, using for instance a recursive variance computation formula, leading to a cost in O(nm 2 ). More precisely, we are interested in

Q i, j,l = l ∑ r= j (s i (t r ) -M i, j,l ) 2 , (4) 
where

M i, j,l = 1 l -j + 1 l ∑ u= j s i (t u ). (5) 
For a fixed function s i , the M i, j,l and Q i, j,l are computed and stored in two m × m arrays, according to the following algorithm:

1. initialisation: set M i, j, j = s i (t j ) and Q i, j, j = 0 for all j ∈ {1, . . . , m} 2. compute M i,1, j and Q i,1, j for j > 1 recursively with:

M i,1, j = 1 j ( j -1)M i,1, j-1 + s i (t j ) Q i,1, j = Q i,1, j-1 + j j -1 (s i (t j ) -M i,1, j ) 2
3. compute M i, j,l and Q i, j,l for l > j > 1 recursively with:

M i, j,l = 1 l -j + 1 (l -j + 2)M i, j-1,l -s i (t j-1 ) Q i, j,l = Q i, j-1,l - l -j + 1 l -j + 2 (s i (t j-1 ) -M i, j,l ) 2
This algorithm is applied to each function leading to a total cost of O(nm 2 ) with a O(m 2 ) storage. The full algorithm has therefore a complexity of O((n + k)m 2 ).

Extensions

As pointed out in [START_REF] Lechevallier | Classification automatique optimale sous contrainte d'ordre total[END_REF], the previous scheme can be used for any additive quality measure. It is therefore possible to use e.g., a piecewise linear approximation of the functions on a sub-interval rather than a constant approximation (this is the original problem studied in [START_REF] Bellman | On the approximation of curves by line segments using dynamic programming[END_REF] for a single function). However, additivity is a stringent restriction. In the case of a piecewise linear approximation for instance, it prevents the introduction of continuity conditions: if one searches for the best continuous piecewise linear approximation of a function, then the optimized criterion is no more additive (this is in fact the case for all spline smoothing approaches expect the piecewise constant ones).

In addition, for the general case of an arbitrary quality measure Q there might be no recursive formula for evaluating Q. In this case, the cost of computing the needed quantities might exceed O(nm 2 ) and reach O(nm 3 ) or more, depending on the exact definition of Q.

That said, the particular case of leave-one-out is quite interesting. Indeed when the studied functions are noisy, it is important to rely on a good estimate of the approximation error to avoid overfitting the best basis to the noise. It is straightforward to show that the leave-one-out (l.o.o.) estimate of the total error from equation ( 2) is given by

n ∑ i=1 k ∑ j=1 ∑ l∈I j |I j | |I j | -1 2 s i (t l ) - 1 |I j | ∑ u∈I j s i (t u ) 2 , (6) 
when l.o.o. is done on the sampling points of the functions. This is an additive quality measure which can be computed using from the Q i, j,l , that is in an efficient recursive way. As shown above, the piecewise constant approximation with k segments is obtained via the computation of the best approximation for all l in {1, . . ., k}. It is then possible to choose the best l based on the leave-one-out error estimate at the same cost as the one needed to compute the best approximation for the maximal value of l. This leads to two variants of the algorithm. In the first one, the standard algorithm is applied to compute all the best bases and the best number of segments is chosen via the l.o.o. error estimate (which can be readily computed once the best basis is known). In the second one, we compute the best basis directly according to the l.o.o. error estimate, leveraging its additive structure. It is expected that this second solution will perform better in practice, as it constrains the best basis to be reasonable (see Section 4 for an experimental validation). For instance, it will never select an interval with only one point whereas this could be the case for the standard solution. As a consequence, the standard solution will likely produce bases with rather bad leave-one-out performances and tend to select a too small number of segments (see Section 4 for an example of this behavior). 

Experiments

We illustrate the algorithm on the Wine dataset 3 which consists in 124 spectra of wine samples recorded in the mid infrared range at 256 different wavenumbers 4between 4000 and 400 cm -1 . Spectra number 34, 35 and 84 of the learning set of the original dataset have been removed as they are outliers. As shown on Figure 1 the function approximation problem is interesting as the smoothness of the spectrum varies along the spectral range and an optimal basis will obviously not consist in functions with supports of equal size. Figure 2 shows an example of the best basis obtained by the proposed approach for k = 16 clusters, while Figure 3 gives the suboptimal solution obtained by a basis with equal length intervals (as used in [START_REF] Rossi | Fast selection of spectral variables with bspline compression[END_REF]).

The uniform length approach is clearly unable to pick up details such as the peak on the right of the spectra. The total approximation error (equation ( 2)) is reduced from 62.66 with the uniform approach to 7.74 with the optimal solution. On the same dataset, the greedy ascending hierarchical clustering approach proposed in [START_REF] Krier | A data-driven functional projection approach for the selection of feature ranges in spectra with ica or cluster analysis[END_REF] reaches a total error of 8.55 for a similar running time of the optimal approach proposed in the present paper. 1 summarizes the results by displaying the total approximation error on the noisy spectra and the total approximation error on the original spectra (the ground truth) for the three alternatives. The full l.o.o. approach leads clearly to the best results, as illustrated on Figures 4 and5.

Those experiments show that the proposed approach is flexible and provides an efficient way to get an optimal basis for a set of functional data. We are currently investigating supervised extensions of the approach following principles from [START_REF] Franc ¸ois | Estimation de redondance pour le clustering de variables spectrales[END_REF]. 
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Table 1

 1 Example of the optimal approximation results for 16 clusters on the Wine datasetTo test the leave-one-out approach, we have first added a Gaussian noise with 0.04 standard deviation (the functions take values in [-0.265, 0.581]). Then we look for the best basis up to 64 segments. As expected, the total approximation error Example of the uniform approximation results for 16 clusters on the Wine dataset decreases with the number of segments and would therefore lead to a best basis with 64 segments. Moreover, as explained in the previous Section, the bases are not controlled by a l.o.o. error estimate. As a consequence, the optimization leads very quickly to basis with very small segments (starting at k = 12, there is at least one segment with only one sample point in it). Therefore, the l.o.o. error estimate applied to this set of bases selects a quite low number of segments, namely k = 11. When the bases are optimized according to the l.o.o. error estimate, the behavior is more smooth in the sense that small segments are always avoided. The minimum value of the l.o.o. estimate leads to the selection of k = 20 segments. Total squared errors for the Wine dataset with noise Table
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In spectrometry, transmittance is the fraction of incident light at a specified wavelength that passes through a sample.

The notations (u, v) is used to include all the possible cases of open and close boundaries for the considered intervals.

This dataset is provided by Prof. Marc Meurens, Université catholique de Louvain, BNUT unit, and available at http://www.ucl.ac.be/mlg/index.php?page=DataBases.

The wavenumber is the inverse of the wavelength.
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