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Constrained variable clustering and the best
basis problem in functional data analysis

Fabrice Rossi and Yves Lechevallier

Abstract Functional data analysis involves data described by regular functions
rather than by a finite number of real valued variables. Whilesome robust data anal-
ysis methods can be applied directly to the very high dimensional vectors obtained
from a fine grid sampling of functional data, all methods benefit from a prior sim-
plification of the functions that reduces the redundancy induced by the regularity.
In this paper we propose to use a clustering approach that targets variables rather
than individual to design a piecewise constant representation of a set of functions.
The contiguity constraint induced by the functional natureof the variables allows a
polynomial complexity algorithm to give the optimal solution.

1 Introduction

Functional data [13] appear in applications in which objects to analyse display some
form of variability. In spectrometry, for instance, samples are described by spectra:
each spectrum is a mapping from wavelengths to e.g., transmittance1. Time varying
objects offer a more general example: when the characteristics of objects evolve
through time, a loss free representation consists in describing these characteristics
as functions that map time to real values.

In practice, functional data are given as high dimensional vectors (e.g., more
than 100 variables) obtained by sampling the functions on a fine grid. For smooth
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functions (for instance in near infrared spectroscopy), this scheme leads to highly
correlated variables. While many data analysis methods canbe made robust to this
type of problem (see, e.g., [6] for discriminant analysis),all methods benefit from a
compression of the data [12] in which relevant and yet easy tointerpret features are
extracted from the raw functional data.

There are well-known standard ways of extracting optimal features according
to a given criterion. For instance in unsupervised problems, the first k principal
components of a dataset give the best linear approximation of the original data in
R

k for the quadratic norm (see [13] for functional principal component analysis
(PCA)). In regression problems, the partial least-squaresapproach extracts features
with maximal correlation with a target variable (see also Sliced Inversion Regression
methods [4]). The main drawback of those approaches is that they extract features
that are not easy to interpret: while the link between the original features and the
new ones is linear, it is seldom sparse; an extracted featuregenerally depends on
many original features.

A different line of thoughts is followed in the present paper: the goal is to extract
features that are easy to interpret in terms of the original variables. This is done by
approximating the original functions by piecewise constant functions. We first recall
in Section 2 the best basis problem in the context of functional data approximation.
Section 3 shows how the problem can be recast in term of a constrained clustering
problem for which efficient solutions are available.

2 Best basis for functional data

Let us considern functional data,(si)1≤i≤n. Eachsi is a function from[a,b] to R,
where[a,b] is a fixed interval common to all functions (more precisely,si belongs
to L2([a,b]), the set of square integrable functions on[a,b]). In terms of functional
data, linear feature extraction consists in choosing for each feature a linear opera-
tor from L2([a,b]) to R. Equivalently, one can choose a functionφ from L2([a,b])
and compute〈si,φ〉L2 =

∫ b
a φ(x)si(x)dx. In an unsupervised context, using e.g., a

quadratic error measure, choosing thek best features consists in findingk orthonor-
mal functions(φi)1≤i≤k that minimise the following quantity:

n

∑
i=1

∥

∥

∥

∥

∥

si −
k

∑
j=1

〈si,φk〉L2φk

∥

∥

∥

∥

∥

2

L2

. (1)

The(φi)1≤i≤k form an orthonormal basis of the subspace that they span: theoptimal
set of such functions is therefore called thebest basis for the original set of functions
(si)1≤i≤n.

If the φk are unconstrained, the best basis is given by functional PCA[13]. How-
ever, in order for the corresponding feature to be easy to interpret, theφk should
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have compact supports, the simple case ofφk = I[uk ,vk]
being the easiest to analyse

(I[u,v](x) = 1 whenx ∈ [u,v] and 0 elsewhere).
The problem of choosing an optimal basis among a set of bases has been studied

for some time in the wavelet community [3, 15]. In unsupervised context, the best
basis is obtained by minimizing the entropy of the features (i.e., of the coordinates
of the functions on the basis) in order to enable compressionby discarding the less
important features. Following [12], [14] proposes a different approach, based on B-
splines: a leave-one-out version of Equation (1) is used to select the best B-splines
basis. While the orthonormal basis induced by the B-splinesdoes not correspond to
compactly supported functions, the dependency between a new feature and the orig-
inal ones is still localized enough to allow easy interpretation. Nevertheless both
approaches have some drawbacks. Wavelet based methods leadto compactly sup-
ported basis functions but the basis has to be chosen in a treestructured set of bases.
As a consequence, the support of a basis function cannot be any sub-interval of
[a,b]. The B-spline approach suffers from a similar problem: the approximate sup-
ports have all the same lengths leading either to a poor representation of some local
details or to a large number of basis functions.

3 Best basis via constrained clustering

3.1 From best basis to constrained clustering

The goal of the present paper is to select an optimal basis using only basis func-
tions of the formI(u,v), without restriction on the possible intervals among sub-
interval of[a,b]2. Let us consider(φ j =

1
v j−u j

I(u j ,v j))1≤ j≤k such an orthonormal ba-

sis. We assume that the((u j,v j))1≤ j≤k form a partition of[a,b]. Obviously, we have
〈φ j,si〉=

1
v j−u j

∫ v j
u j

si(x)dx, i.e., the feature corresponding toφ j is the mean value of

si on [u j,v j]. In other words,∑k
j=1〈si,φk〉L2φk is a piecewise constant approximation

of si (which is optimal according to theL2 norm).
In practice, functional data are sampled on a fine grid with support pointsa≤ t1 <

.. . < tm ≤ b, i.e., rather than observing the functions(si)1≤i≤n, one gets the vectors
(si(tl))1≤i≤n,1≤l≤m from R

m. Then〈φ j,si〉 can be approximated by1|I j |
∑l∈I j

si(tl)

whereI j is the subset of indexes{1, ...,m} such thattl ∈ (u j,v j)⇔ l ∈ I j. Any par-
tition of ((u j,v j))1≤ j≤k of [a,b] corresponds to a partition of{1, ...,m} in k subsets
(I j)1≤ j≤k that satisfies an ordering constraint: ifr ands belong toI j then any integer
t ∈ [r,s] belongs also toI j. Finding the best basis means for instance minimizing the
sum of squared errors given by Equation (1) which can be approximated as follows

2 The notations(u,v) is used to include all the possible cases of open and close boundaries for the
considered intervals.
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n

∑
i=1

k

∑
j=1

∑
l∈I j

(

si(tl)−
1
|I j|

∑
u∈I j

si(tu)

)2

=
k

∑
j=1

Q(I j), (2)

where

Q(I) =
n

∑
i=1

∑
l∈I

(

si(tl)−
1
|I| ∑u∈I

si(tu)

)2

(3)

The second version of the error shows that it corresponds to an additive quality
measure of the partition of{1, ...,m} induced by the(I j)1≤ j≤k. Therefore, finding
the best basis for the sampled functions is equivalent to finding an optimal partition
of {1, ...,m} with some ordering constraints and according to an additivecost func-
tion. A suboptimal solution to this problem, based on an ascending (agglomerative)
hierarchical clustering, is proposed in [9].

3.2 Dynamic programming

However, an optimal solution can be reached in a reasonable amount of time, as
pointed out in [10]: when the quality criterion of a partition is additive and when a
total ordering constraint is enforced, a dynamic programming approach leads to the
optimal solution (this is a generalization of the algorithmproposed by Bellman for
a single function in [16, 2]; see also [1, 8] for rediscoveries/extensions of this early
work). The algorithm is simple and proceeds iteratively by computingF( j,k) as the
value of the quality measure (from Equation (2)) of the best partition in k classes of
{ j, ...,m}:

1. initialization: setF( j,1) to Q({ j, . . . ,m}) for all j
2. iterate fromp = 2 to k:

a. for all 1≤ j ≤ m− p+1 compute

F( j, p) = min
j≤l≤m−p+1

Q({ j, . . . , l})+F(l +1, p−1)

The minimizing indexl = l( j, p) is kept for all j andp. This allows to reconstruct
the best partition by backtracking fromF(1,k): the first class of the partition is
{1, . . . , l(1,k)}, the second{l(1,k)+1, . . . , l(l(1,k) +1,k− 1)}, etc. A similar al-
gorithm was used to find an optimal approximation of a single function in [2, 11].
Another related work is [7] which provides simultaneously afunctional clustering
and a piecewise constant approximation of the prototype functions.

The internal loop runsO(km2) times. It uses the valuesQ({ j, . . . , l}) for all j ≤ l.
Those quantities can be computed prior to the search for the optimal partition, using
for instance a recursive variance computation formula, leading to a cost inO(nm2).
More precisely, we are interested in
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Qi, j,l =
l

∑
r= j

(si(tr)−Mi, j,l)
2
, (4)

where

Mi, j,l =
1

l − j+1

l

∑
u= j

si(tu). (5)

For a fixed functionsi, theMi, j,l andQi, j,l are computed and stored in twom×m
arrays, according to the following algorithm:

1. initialisation: setMi, j, j = si(t j) andQi, j, j = 0 for all j ∈ {1, . . . ,m}
2. computeMi,1, j andQi,1, j for j > 1 recursively with:

Mi,1, j =
1
j

(

( j−1)Mi,1, j−1+ si(t j)
)

Qi,1, j = Qi,1, j−1+
j

j−1
(si(t j)−Mi,1, j)

2

3. computeMi, j,l andQi, j,l for l > j > 1 recursively with:

Mi, j,l =
1

l − j+1

(

(l − j+2)Mi, j−1,l − si(t j−1)
)

Qi, j,l = Qi, j−1,l −
l − j+1
l − j+2

(si(t j−1)−Mi, j,l)
2

This algorithm is applied to each function leading to a totalcost ofO(nm2) with a
O(m2) storage. The full algorithm has therefore a complexity ofO((n+ k)m2).

3.3 Extensions

As pointed out in [10], the previous scheme can be used for anyadditive quality
measure. It is therefore possible to use e.g., a piecewise linear approximation of the
functions on a sub-interval rather than a constant approximation (this is the origi-
nal problem studied in [2] for a single function). However, additivity is a stringent
restriction. In the case of a piecewise linear approximation for instance, it prevents
the introduction of continuity conditions: if one searchesfor the best continuous
piecewise linear approximation of a function, then the optimized criterion is no
more additive (this is in fact the case for all spline smoothing approaches expect
the piecewise constant ones).

In addition, for the general case of an arbitrary quality measureQ there might be
no recursive formula for evaluatingQ. In this case, the cost of computing the needed
quantities might exceedO(nm2) and reachO(nm3) or more, depending on the exact
definition ofQ.
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That said, the particular case of leave-one-out is quite interesting. Indeed when
the studied functions are noisy, it is important to rely on a good estimate of the ap-
proximation error to avoid overfitting the best basis to the noise. It is straightforward
to show that the leave-one-out (l.o.o.) estimate of the total error from equation (2)
is given by

n

∑
i=1

k

∑
j=1

∑
l∈I j

(

|I j|

|I j|−1

)2
(

si(tl)−
1
|I j|

∑
u∈I j

si(tu)

)2

, (6)

when l.o.o. is done on the sampling points of the functions. This is an additive qual-
ity measure which can be computed using from theQi, j,l , that is in an efficient recur-
sive way. As shown above, the piecewise constant approximation with k segments
is obtained via the computation of the best approximation for all l in {1, . . . ,k}. It
is then possible to choose the bestl based on the leave-one-out error estimate at the
same cost as the one needed to compute the best approximationfor the maximal
value ofl. This leads to two variants of the algorithm. In the first one,the standard
algorithm is applied to compute all the best bases and the best number of segments
is chosen via the l.o.o. error estimate (which can be readilycomputed once the best
basis is known). In the second one, we compute the best basis directly according
to the l.o.o. error estimate, leveraging its additive structure. It is expected that this
second solution will perform better in practice, as it constrains the best basis to be
reasonable (see Section 4 for an experimental validation).For instance, it will never
select an interval with only one point whereas this could be the case for the stan-
dard solution. As a consequence, the standard solution willlikely produce bases
with rather bad leave-one-out performances and tend to select a too small number
of segments (see Section 4 for an example of this behavior).
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Fig. 1 Three spectra from the Wine dataset
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4 Experiments

We illustrate the algorithm on the Wine dataset3 which consists in 124 spectra of
wine samples recorded in the mid infrared range at 256 different wavenumbers4

between 4000 and 400 cm−1. Spectra number 34, 35 and 84 of the learning set of
the original dataset have been removed as they are outliers.As shown on Figure 1
the function approximation problem is interesting as the smoothness of the spectrum
varies along the spectral range and an optimal basis will obviously not consist in
functions with supports of equal size. Figure 2 shows an example of the best basis
obtained by the proposed approach fork = 16 clusters, while Figure 3 gives the
suboptimal solution obtained by a basis with equal length intervals (as used in [14]).
The uniform length approach is clearly unable to pick up details such as the peak
on the right of the spectra. The total approximation error (equation (2)) is reduced
from 62.66 with the uniform approach to 7.74 with the optimal solution. On the
same dataset, the greedy ascending hierarchical clustering approach proposed in
[9] reaches a total error of 8.55 for a similar running time of the optimal approach
proposed in the present paper.
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Fig. 2 Example of the optimal approximation results for 16 clusters on the Wine dataset

To test the leave-one-out approach, we have first added a Gaussian noise with
0.04 standard deviation (the functions take values in[−0.265,0.581]). Then we look
for the best basis up to 64 segments. As expected, the total approximation error

3 This dataset is provided by Prof. Marc Meurens, Universitécatholique de Louvain, BNUT unit,
and available athttp://www.ucl.ac.be/mlg/index.php?page=DataBases.
4 The wavenumber is the inverse of the wavelength.
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Fig. 3 Example of the uniform approximation results for 16 clusters on the Wine dataset

decreases with the number of segments and would therefore lead to a best basis
with 64 segments. Moreover, as explained in the previous Section, the bases are
not controlled by a l.o.o. error estimate. As a consequence,the optimization leads
very quickly to basis with very small segments (starting atk = 12, there is at least
one segment with only one sample point in it). Therefore, thel.o.o. error estimate
applied to this set of bases selects a quite low number of segments, namelyk = 11.
When the bases are optimized according to the l.o.o. error estimate, the behavior is
more smooth in the sense that small segments are always avoided. The minimum
value of the l.o.o. estimate leads to the selection ofk = 20 segments.

Basis Noisy data Real spectra

k = 64 (standard approach) 37.28 14.35
k = 11 (l.o.o. after the standard approach) 63.19 17.35
k = 20 (full l.o.o.) 54.07 12.07

Table 1 Total squared errors for the Wine dataset with noise

Table 1 summarizes the results by displaying the total approximation error on the
noisy spectra and the total approximation error on the original spectra (the ground
truth) for the three alternatives. The full l.o.o. approachleads clearly to the best
results, as illustrated on Figures 4 and 5.

Those experiments show that the proposed approach is flexible and provides an
efficient way to get an optimal basis for a set of functional data. We are currently
investigating supervised extensions of the approach following principles from [5].
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Fig. 4 Best basis selected by leave-one-out with the standard approach combined with loo
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Fig. 5 Best basis selected by leave-one-out with the full loo approach
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